Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.592
Filtrar
1.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-48226

RESUMO

A solução de hipoclorito de sódio (NaClO), popularmente conhecida como água sanitária, é comumente utilizada na higienização de ambientes, pois, quando diluída em água, forma o ácido hipocloroso (HClO), eficaz contra os microorganismo patogênicos. Nesse período de pandemia, é importante saber a correta manipulação desse produto, principalmente por segurança, mas também para que não haja um mau uso e consequentemente o gasto desnecessário de dinheiro. Buscando orientar a população sobre a forma correta de higienizar a casa com água sanitária e assim evitar a contaminação pelo novo coronavírus, o Conselho Federal de Química (CFQ) desenvolveu uma cartilha com perguntas e respostas sobre o manejo desse composto


Assuntos
Infecções por Coronavirus/prevenção & controle , Pneumonia Viral/prevenção & controle , Desinfecção , Clareadores
2.
Environ Pollut ; 283: 117232, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34034019

RESUMO

Restoring woody vegetation to riparian zones helps to protect waterways from excessive sediment and nutrient inputs. However, the associated leaf litter can be a major source of dissolved organic matter (DOM) leached into surface waters. DOM can lead to the formation of disinfection by-products (DBPs) during drinking water treatment. This study investigated the DBPs formed during chlorination of DOM leached from leaf litter and assessed the potential toxicity of DBPs generated. We compared the leachate of two native Australian riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis, and a reservoir water source from a catchment dominated by Eucalyptus species. Leachates were diluted to dissolved organic carbon concentrations equivalent to the reservoir (~9 mg L-1). E. tereticornis leachates produced more trihalomethanes (THMs), haloacetic acids (HAAs), and haloketones after chlorination, while C. cunninghamiana produced more chloral hydrate and haloacetonitriles. Leachate from both species produced less THMs and more HAAs per mole of carbon than reservoir water. This may be because reservoir water had more aromatic, humic characteristics while leaf leachates had relatively more protein-like components. Using in vitro bioassays to test the mixture effects of all chemicals, chlorinated E. tereticornis leachate induced oxidative stress in HepG2 liver cells and bacterial toxicity more frequently and at lower concentrations than C. cunninghamiana and reservoir water. Overall, this study has shown that the DOM leached from litter of these species has the potential to generate DBPs and each species has a unique DBP profile with differing bioassay responses. E. tereticornis may pose a relatively greater risk to drinking water than C. cunninghamiana as it showed greater toxicity in bioassays. This implies tree species should be considered when planning riparian zones to ensure the benefits of vegetation to waterways are not offset by unintended increased DBP production and associated toxicity following chlorination at downstream drinking water intakes.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Austrália , Desinfecção , Halogenação , Trialometanos/análise , Trialometanos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
J Environ Sci (China) ; 104: 225-232, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33985725

RESUMO

Chlorine dioxide (ClO2) disinfection usually does not produce halogenated disinfection by-products, but the formation of the inorganic by-product chlorite (ClO2-) is a serious consideration. In this study, the ClO2- formation rule in the ClO2 disinfection of drinking water was investigated in the presence of three representative reductive inorganics and four natural organic matters (NOMs), respectively. Fe2+ and S2- mainly reduced ClO2 to ClO2- at low concentrations. When ClO2 was consumed, the ClO2- would be further reduced by Fe2+ and S2-, leading to the decrease of ClO2-. The reaction efficiency of Mn2+ with ClO2 was lower than that of Fe2+ and S2-. It might be the case that MnO2 generated by the reaction between Mn2+ and ClO2 had adsorption and catalytic oxidation on Mn2+. However, Mn2+ would not reduce ClO2-. Among the four NOMs, humic acid and fulvic acid reacted with ClO2 actively, followed by bovine serum albumin, while sodium alginate had almost no reaction with ClO2. The maximum ClO2- yields of reductive inorganics (70%) was higher than that of NOM (around 60%). The lower the concentration of reductive substances, the more ClO2- could be produced by per unit concentration of reductive substances. The results of the actual water samples showed that both reductive inorganics and NOM played an important role in the formation of ClO2- in disinfection.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Cloretos , Cloro , Desinfecção , Compostos de Manganês , Óxidos
4.
J Environ Sci (China) ; 104: 233-241, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33985726

RESUMO

Algal organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM) from algal blooms, is widely accepted as essential precursors of disinfection byproducts (DBPs). This study evaluated the effect of ozonation or ozone combined with activated carbon (O3-AC) treatment on characteristic alternation and DBP formation with subsequent chlorination of Chlorella sp.. The effects of pH and bromide concentration on DBP formation by ozonation or O3-AC treatment were also investigated. Results showed that the potential formation of DBPs might be attributed to ozonation, but these DBP precursors could be further removed by activated carbon (AC) treatment. Moreover, the formation of target DBPs was controlled at acidic pH by alleviating the reactions between chlorine and AOM. Besides, the bromide substitution factor (BSF) value of trihalomethanes (THMs) from EOM and IOM remained constant after AC treatment. However, THM precursors could be significantly decreased by AC treatment. The above results indicated that O3-AC was a feasible treatment method for algal-impacted water.


Assuntos
Chlorella , Desinfetantes , Ozônio , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Desinfecção , Halogenação , Trialometanos/análise , Poluentes Químicos da Água/análise
5.
Water Res ; 198: 117165, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33962243

RESUMO

UV254 irradiation disinfection is a commonly used method to inactivate pathogenic viruses in water and wastewater treatment. Model prediction method can serve as a pre-screening tool to quickly estimate the effectiveness of UV254 irradiation on emerging or unculturable viruses. In this study, an improved prediction model was applied to estimate UV254 photolysis kinetics of viral genomes (kpred, genome) based on the genome sequences and their photoreactivity and to correlate with the experimental virus infectivity loss kinetics (kexp, infectivity). The UV254 inactivation data of 102 viruses (including 2 dsRNA, 65 ssRNA, 33 dsDNA and 2 ssDNA viruses) were collected from the published experimental data with kexp, infectivity ranging from 0.016 to 3.49 cm2 mJ-1. The model had fairly good performance in predicting the virus susceptibility to UV254 irradiation except dsRNA viruses (Pearson's correlation coefficient = 0.64) and 70% of kpred, genome fell in the range of 1/2 to 2 times of kexp, infectivity. The positive deviation of the model often occurred for photoresistant viruses with low kexp, infectivity less than 0.20 cm2 mJ-1 (e.g., Adenovirus, Papovaviridae and Retroviridae). We also applied this model to predict the UV254 inactivation rate of SARS-CoV-2 (kpred, genome = 3.168 cm2 mJ-1) and a UV dose of 3 mJ cm-2 seemed to be able to achieve a 2-log removal by conservative calculation using 1/2kpred, genome value. This prediction method can be used as a prescreening tool to assess the effectiveness of UV254 irradiation for emerging/unculturable viruses in water or wastewater treatment.


Assuntos
Inativação de Vírus , Desinfecção , Genoma Viral , Humanos , Cinética , Fotólise , Raios Ultravioleta
6.
BMC Musculoskelet Disord ; 22(1): 404, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33941147

RESUMO

BACKGROUND: It is important to know the biomechanical properties of an allograft. This is because when looking to do a transplant of a tendon, the tendon must have very similar biomechanical properties to the original tendon. To use tendon allografts, it is critical to properly sterilize the tendon before implantation. In past decades, several sterilization procedures have been used. This study aimed to systematically evaluate the existing literature to compare the values of failure load/ultimate strength and Young's modulus of elasticity of different sterilization methods on commonly used tendon allografts. Five major scientific literature databases (Web of Science, Science Direct, Scopus, PLOS ONE, Hindawi) and additional sources were used. RESULTS: Studies used had to show a particular sterilization method. Studies were identified to meet the following inclusion criteria: is a controlled laboratory study, gamma irradiation (dose reported), and other sterilization methods. Search for publications dated between 1991 and March 31st, 2020. The database search and additional sources resulted in 284 records. Two hundred thirty records eliminated during the screening for various reasons. The number of articles used in the final synthesis was 54. CONCLUSIONS: Identified sterilization methods (gamma irradiation, ethylene oxid, supercritical carbon dioxide (SCCO2), BioCleanse, Electron Beam) are offered as a catalog of potential methods. As a result of the broadness of the present research, it provides an overview of sterilization methods and their effect on the mechanical properties (failure load and Young's modulus of elasticity) of tendons. It does not stand for the state-of-the-art of any single process. Based on a systematic literature review, we recommend freezing and gamma irradiation or electron beam at 14.8-28.5 kGy. These methods are effective at keeping or improving the mechanical properties, while fully sterilizing the inside and the outside of the tendon. Other sterilization method (ethylene oxide, supercritical carbon dioxide (SCCO2), BioCleanse) deteriorated the mechanical properties. These methods are not recommended.


Assuntos
Desinfecção , Tendões , Aloenxertos , Fenômenos Biomecânicos , Elasticidade , Humanos , Transplante Homólogo
8.
Chemosphere ; 274: 129957, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979920

RESUMO

Disinfection is usually the final step in water treatment and its effectiveness is of paramount importance in ensuring public health. Chlorination, ultraviolet (UV) irradiation and ozone (O3) are currently the most common methods for water disinfection; however, the generation of toxic by-products and the non-remnant effect of UV and O3 still constitute major drawbacks. Photo-assisted electrochemical advanced oxidation processes (EAOPs) on the other hand, appear as a potentially effective option for water disinfection. In these processes, the synergism between electrochemically produced active species and photo-generated radicals, improve their performance when compared with the corresponding separate processes and with other physical or chemical approaches. In photo-assisted EAOPs the inactivation of pathogens takes place by means of mechanisms that occur at different distances from the anode, that is: (i) directly at the electrode's surface (direct oxidation), (ii) at the anode's vicinity by means of electrochemically generated hydroxyl radical species (quasi-direct), (iii) or at the bulk solution (away from the electrode surface) by photo-electrogenerated active species (indirect oxidation). This review addresses state of the art reports concerning the inactivation of pathogens in water by means of photo-assisted EAOPs such as photo-electrocatalytic process, photo-assisted electrochemical oxidation, photo-electrocoagulation and cathodic processes. By focusing on the oxidation mechanism, it was found that while quasi-direct oxidation is the preponderant inactivation mechanism, the photo-electrocatalytic process using semiconductor materials is the most studied method as revealed by numerous reports in the literature. Advantages, disadvantages, trends and perspectives for water disinfection in photo-assisted EAOPs are also analyzed in this work.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise
9.
Water Sci Technol ; 83(10): 2526-2535, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34032628

RESUMO

Quasi-collimated beam apparatus (QCBA), a typical bench scale UV apparatus, is crucial for the biodosimetry determination of UV dose in target reactors. However, the key parameters for the QCBA construction are usually estimated via rule-of-thumb calculations. Computational fluid dynamics models are applied in this study to simulate the UV fluence rate (FR) distributions in QCBAs. QCBAs with either a cylindrical tube or successive apertures irradiate quasi parallel light into selected dishes. The simulated Petri factors (PF) in the target QCBAs with a single aperture were all >0.84, and increased with the extended distance (L1) from the UV lamp to the upper aperture. QCBAs with two successive apertures are recommended compared with those with three apertures or cylindrical tube. A trend of FR distribution from dispersed to concentrated is observed when L1 or the interval distance between each aperture increases in a dual-aperture QCBA. QCBAs with multiple lamps were favorable to increase the UV output power, while having a nearly negligible loss of parallelism. An actual QCBA was constructed, and the maximal and average FR and PF values in a 60-mm dish were 0.159 and 0.164 W/m2, and 0.967, respectively, in accordance with the simulated results.


Assuntos
Hidrodinâmica , Purificação da Água , Desinfecção , Raios Ultravioleta
10.
Sci Robot ; 6(52)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34043552

RESUMO

The world was unprepared for the COVID-19 pandemic, and recovery is likely to be a long process. Robots have long been heralded to take on dangerous, dull, and dirty jobs, often in environments that are unsuitable for humans. Could robots be used to fight future pandemics? We review the fundamental requirements for robotics for infectious disease management and outline how robotic technologies can be used in different scenarios, including disease prevention and monitoring, clinical care, laboratory automation, logistics, and maintenance of socioeconomic activities. We also address some of the open challenges for developing advanced robots that are application oriented, reliable, safe, and rapidly deployable when needed. Last, we look at the ethical use of robots and call for globally sustained efforts in order for robots to be ready for future outbreaks.


Assuntos
Controle de Doenças Transmissíveis/tendências , Doenças Transmissíveis , Robótica/tendências , COVID-19/prevenção & controle , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/terapia , Desinfecção/tendências , Humanos , Aprendizado de Máquina , Pandemias/prevenção & controle , Tecnologia de Sensoriamento Remoto/tendências , Procedimentos Cirúrgicos Robóticos/tendências , Robótica/instrumentação , SARS-CoV-2 , Interface Usuário-Computador
11.
J Occup Environ Hyg ; 18(6): 265-275, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33989113

RESUMO

The COVID-19 pandemic has caused a high demand for respiratory protection among health care workers in hospitals, especially surgical N95 filtering facepiece respirators (FFRs). To aid in alleviating that demand, a survey of commercially available filter media was conducted to determine whether any could serve as a substitute for an N95 FFR while held in a 3D-printed mask (Stopgap Surgical Face Mask from the NIH 3D Print Exchange). Fourteen filter media types and eight combinations were evaluated for filtration efficiency, breathing resistance (pressure drop), and liquid penetration. Additional testing was conducted to evaluate two filter media disinfection methods in the event that the filters were reused in a hospital setting. Efficiency testing was conducted in accordance with the procedures established for approving an N95 FFR. One apparatus used a filter-holding device and another apparatus employed a manikin head to which the 3D-printed mask could be sealed. The filter media and combinations exhibited collection efficiencies varied between 3.9% and 98.8% when tested with a face velocity comparable to that of a standard N95 FFR at the 85 L min-1 used in the approval procedure. Breathing resistance varied between 10.8 to >637 Pa (1.1 to > 65 mm H2O). When applied to the 3D-printed mask efficiency decreased by an average of 13% and breathing resistance increased 4-fold as a result of the smaller surface area of the filter media when held in that mask compared to that of an N95 FFR. Disinfection by dry heat, even after 25 cycles, did not significantly affect filter efficiency and reduced viral infectivity by > 99.9%. However, 10 cycles of 59% vaporized H2O2 significantly (p < 0.001) reduced filter efficiency of the media tested. Several commercially available filter media were found to be potential replacements for the media used to construct the typical cup-like N95 FFR. However, their use in the 3D-printed mask demonstrated reduced efficiency and increased breathing resistance at 85 L min-1.


Assuntos
COVID-19/prevenção & controle , Desinfecção/normas , Contaminação de Equipamentos/prevenção & controle , Teste de Materiais/normas , Respiradores N95/virologia , Exposição Ocupacional/prevenção & controle , Pandemias/prevenção & controle , Poluentes Ocupacionais do Ar/análise , Análise de Falha de Equipamento/estatística & dados numéricos , Guias como Assunto , Humanos , Exposição por Inalação/análise , SARS-CoV-2
12.
Water Res ; 199: 117204, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34004443

RESUMO

This study explores the degradation kinetics and mechanisms of N-chloro-α-amino acids and the changes in the formation potential of nitrogenous disinfection byproducts (N-DBPs) upon UV254 irradiation. UV254 irradiation significantly accelerated the degradation of all the tested N-chloro-α-amino acids compared to those in the dark. Both direct photolysis-induced cleavage of the N-Cl bonds and radical oxidation (e.g., Cl• and Cl2•-) involved reactions that contributed to their enhanced degradation. The fluence-based photolysis rate constants of the N-chloro-α-amino acids varied in the range of (1.06-5.47) × 10-3 cm2 mJ-1 at pH 6.0 and (0.74-2.79) × 10-3 cm2 mJ-1 at pH 8.0. The apparent quantum yields (Φapp) of the majority of the N-chloro-α-amino acids were in the range of 0.41-0.95 at pH 6.0 and 0.22-0.79 at pH 8.0, except N-chloroaspartic acid, N-chlorohistidine, and N-chloroalanine. UV254 irradiation significantly enhanced the formation of trichloronitromethane (TCNM) from the tested N-chloro-α-amino acids after post-chlorination, but exhibited various effects on the formation of dichloroacetonitrile (DCAN). A longer UV254 irradiation time generated more TCNM, and a lower pH produced more DCAN from the N-chloro-α-amino acids. The degradation pathways of N-chlorotyrosine, as a representative N-chloro-α-amino acid, are proposed, and the ß-scission and 1,2-H shift pathways led to the formation of different precursors of TCNM and DCAN. The results of this study improve our understanding of the fate of N-chloro-α-amino acids under UV254 irradiation and post-chlorination.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Aminoácidos , Cloro , Desinfecção , Halogenação , Cinética , Poluentes Químicos da Água/análise
13.
Chemosphere ; 278: 130403, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33819895

RESUMO

Phenylalanine (Phe) is widely present in natural water and serves as a precursor of disinfection by-products (DBPs). We reported the identification of chloramination DBPs from Phe in drinking water using ultra-high performance liquid chromatography (UHPLC) coupled with complementary high-resolution quadrupole time-of-flight (QTOF) and triple quadrupole (tQ) tandem mass spectrometry (MS/MS). In the chloraminated Phe water solution, sixteen new DBPs in a total of seventeen were identified based on their accurate mass, MS/MS spectra and 35Cl/37Cl isotopic patterns. Three of these DBPs were verified as benzamide, phenylacetamide, and p-hydroxyphenylacetamide with their standards, while the others were chlorinated derivatives of Phe, hydrazone, amidine, amide and peroxide, in which the unique structures of these DBPs were rarely reported. Their stability and formation process were investigated as well. Furthermore, a method consisting of solid phase extraction (SPE) and UHPLC-MS/MS using dynamic multiple reaction monitoring (dMRM) was developed to investigate these DBPs in authentic waters. Phe, benzamide, phenylacetamide, and N-Cl-2-phenylacetimidamide were detected in chlorinated tap water. Compared with the other identified DBPs, these three DBPs were exceptionally stable and could be formed in wide formation conditions. Our work not only provided ideas for the identification of new chloramination DBPs, but also demonstrated that some DBPs usually generated in the chloramination disinfection process could also be found in the chlorinated drinking water.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Desinfecção , Halogenação , Fenilalanina , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-33809670

RESUMO

Endoscopes are medical instruments that are used routinely in health structures. Due to their invasive nature and contact with many patients, they may cause hospital-acquired infections if not disinfected correctly. To ensure a high-level disinfection procedure or reprocessing, since the methods currently adopted in our institute are adequate, we evaluated retrospectively the presence of microorganisms in our endoscopes after reprocessing. Microbiological surveillance was performed from January 2016 to December 2019 in the instruments in use in our endoscopic room after reprocessing. In total, 35 endoscopes (3 duodenoscopes, 3 echoendoscopes, 12 bronchoscopes, 5 colonoscopes, and 12 gastroscopes) were evaluated for the presence of microorganisms, including multidrug-resistant pathogens and indicator microorganisms (IMOs). Our procedures were in agreement with an internal protocol based on Italian, international, and the Center for Disease Control and Prevention (CDC) recommendations. Of a total of 811 samples, 799 (98.5%) complied with the regulatory guidelines, while 9 (1.1%) were positive for IMOs, and 3 (0.4%) displayed more than 10 colony-forming units (CFU) of environmental and commensal pathogens. Our results show that the internal reprocessing protocol is very efficient, leading to a very low number of observed contaminations, and it could be easily implemented by other health facilities that face a huge number of hospital-acquired infections due to incorrectly disinfected endoscopes.


Assuntos
Endoscópios , Reutilização de Equipamento , Desinfecção , Contaminação de Equipamentos , Hospitais , Humanos , Itália/epidemiologia , Estudos Retrospectivos
15.
Ig Sanita Pubbl ; 77(1): 404-413, 2021.
Artigo em Italiano | MEDLINE | ID: mdl-33883750

RESUMO

Disinfection of hospital environments is a cornerstone of intervention strategies to reduce the risk of hospital-associated infections. Many studies show that standard cleaning procedures are not sufficient for proper disinfection of hospital environments and that the addition of no-touch technologies, such us ultraviolet light, can provide deeper sanitisation. This study aims to test whether the application of ultraviolet light after standard procedures improves hygiene levels in the shortest possible time and shows the degree of contamination before and after irradiation. A cross-sectional study was conducted in a real clinical setting in rehabilitation rooms of a contracted clinic "Rugani Hospital" in Monteriggioni (SI), Italy, between December 2019 and August 2020.the study was carried out according to the following protocol: i) quantization of contamination of 12 selected target points in room; ii) attribution to the points of a probability of contamination risk; iii) sampling of a subset of 6 points with probabilistic assignment; iv) evaluation of the pre-post disinfection environmental hygiene using a UV-C system. For the pre-post statistical analysis the non-parametric Wilcoxon test was used; the multivariate MANOVA was used to verify the role of different confounders, with post hoc Bonferroni test. Probabilistic calculations minimised the samplings required to conclude that the application of the ultraviolet light device reduced the level of contamination in a statistically significant manner (p < 0.01) when comparing pre- and post-exposure, with less irradiation time than indicated by the manufacturer.


Assuntos
Infecção Hospitalar , Xenônio , Estudos Transversais , Desinfecção , Hospitais , Humanos , Itália
16.
Ig Sanita Pubbl ; 77(1): 414-425, 2021.
Artigo em Italiano | MEDLINE | ID: mdl-33883751

RESUMO

OBJECTIVES: To evaluate the effectiveness and the frequency of use of a pulsed xenon ultraviolet light-emitting no-touch portable device (PX-UV), applied after perform current cleaning, in reducing environmental bacterial burden and the presence of pathogens on surfaces in the operating rooms at the Policlinico University Hospital of Foggia. DESIGN: Prospective before-and-after study with a follow up duration of four months, from May to August 2019. SETTING AND PARTICIPANTS: Two operating rooms of an Orthopaedic and a Neurosurgical ward in a 780-bed university hospital in the District of Foggia, Italy (about 600,000 inhabitants). MAIN OUTCOME MEASURES: According to the hygienic standards proposed by the Italian Workers Compensation Authority (ISPESL), the total and the average bacterial load and the presence of six pathogens were evaluated between pre- and post- PX-UV use combined with routine manual cleaning. RESULTS: The PX-UV system was applied at five distinct time points: t1: start of the experiment, t2: after 28 days, t3: after 13 days, t4: after 7 days, and t5: after 8 days (t2-t5: 28 days in total). About 16-min of PX-UV cycle showed significant reduction in the level of environmental contamination by decreasing the mean colony count by 87.5%, compliant with the standard (5< X ≤15 CFU per plat). Staphylococcus aureus and Acinetobacter baumannii that had been isolated in some of the samplings before PX-UV were no longer detected after t1, t2 and t5 treatments. Before PX-UV, the mean colony count was similar between t1 and t2 (p>0.05); after t3 and t4 treatments, it was lower before t5 in both the Orthopaedic and Neurosurgical operating rooms (= -97% and -75%, respectively; p<0,01). CONCLUSIONS: Implication for practice: PX-UV could supplement the standard cleaning process in reducing the microbial burden in the operating rooms and potentially achieving lower healthcare-associated surgical site infections rates.


Assuntos
Infecção Hospitalar , Desinfecção , Humanos , Itália , Salas Cirúrgicas , Estudos Prospectivos , Xenônio
17.
Environ Sci Technol ; 55(9): 5906-5916, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33830743

RESUMO

Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question: how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. For chlorine contact times of 0.25-72 h, aromatic fractions accounted for 49-67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26-36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Desinfetantes/toxicidade , Desinfecção , Halogenação , Halogênios/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Sci Technol ; 55(9): 6197-6205, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33856208

RESUMO

An individual virion was long believed to act as an independent infectious unit in virology, until the recent discovery of vesicle-cloaked virus clusters which has greatly challenged this central paradigm. Vesicle-cloaked virus clusters (also known as viral vesicles) are phospholipid-bilayer encapsulated fluid sacs that contain multiple virions or multiple copies of viral genomes. Norovirus is a global leading causative agent of gastroenteritis, and the reported prevalence of vesicle-cloaked norovirus clusters in stool has raised concerns whether the current disinfection, sanitation, and hygiene practices can effectively control environmental pollution by these pathogenic units. In this study, we have demonstrated that vesicle-cloaked murine norovirus (MNV-1) clusters were highly persistent under temperature variation (i.e., freeze-thaw) and they were partially resistant to detergent decomposition. MNV-1 vesicles were 1.89-3.17-fold more infectious in vitro than their free virus counterparts. Most importantly, MNV-1 vesicles were up to 2.16-times more resistant to UV254 disinfection than free MNV-1 at a low viral load in vitro. Interestingly, with the increase of the viral load, free MNV-1 and MNV-1 vesicles showed equivalent resistance to UV254 disinfection. We show that the increased multiplicity of infection provided by vesicles is in part responsible for these attributes. Our study, for the first time, sheds light on the environmental behavior of vesicle-cloaked virus clusters as unique emerging pathogenic units. Our study highlights the need to revisit current paradigms of disinfection, sanitation, and hygiene practices for protecting public health.


Assuntos
Infecções por Caliciviridae , Norovirus , Animais , Desinfecção , Fezes , Camundongos
19.
Artigo em Inglês | MEDLINE | ID: mdl-33917088

RESUMO

The coronavirus SARS-CoV-2 pandemic has become a global health burden. Surface sanitation is one of the key points to reduce the risk of transmission both in healthcare and other public spaces. UVC light is already used in hospital and laboratory infection control, and some recent studies have shown its effectiveness on SARS-CoV-2. An innovative UV chip technology, described in Part I of this study, has recently appeared able to overcome the limits of old lamps and is proposed as a valid alternative to LEDs. This study was designed to test the virucidal activity on SARS-CoV-2 of a device based on the new UV chip technology. Via an initial concentration of virus suspension of 107.2 TCID50/mL, the tests revealed a viral charge reduction of more than 99.9% after 3 min; the maximum detectable attenuation value of Log10 = 5.7 was measured at 10 min of UV exposure.


Assuntos
Desinfecção , Humanos , Tecnologia , Raios Ultravioleta , Inativação de Vírus
20.
Artigo em Inglês | MEDLINE | ID: mdl-33917465

RESUMO

SARS-CoV-2 environmental monitoring can track the rate of viral contamination and can be used to establish preventive measures. This study aimed to detect by RT-PCR the presence of SARS-CoV-2 from inert surface samples in public health settings with a literature review about surface contamination and its burden on spread virus. Samples were collected from health settings in Curitiba, Brazil, between July and December 2020. A literature review was conducted using PRISMA. A total of 711 environmental surface samples were collected from outpatient areas, dental units, doctors' offices, COVID-19 evaluation areas, and hospital units, of which 35 (4.9%) were positive for SARS-CoV-2 RNA. The frequency of environmental contamination was higher in primary care units than in hospital settings. The virus was detected on doctors' personal items. Remarkably, the previously disinfected dental chair samples tested positive. These findings agree with those of other studies in which SARS-CoV-2 was found on inanimate surfaces. Detection of SARS-CoV-2 RNA on surfaces in public health settings, including those not meant to treat COVID-19, indicates widespread environmental contamination. Therefore, the intensification of disinfection measures for external hospital areas may be important for controlling community COVID-19 dissemination.


Assuntos
Brasil , Desinfecção , Humanos , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...