Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.110
Filtrar
1.
Talanta ; 266(Pt 1): 124969, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524040

RESUMO

Studies have shown that hypobromous acid (HOBr) produced during chlorination disinfection of tap water can react with some organic matter in water to form toxic brominated disinfection byproducts (Br-DBPs) and HOBr also plays an important role during the process of micro pollutants degradation. Hence, real-time monitoring of HOBr in water environment plays a significant role in controlling the generation of Br-DBPs and degradation of micro pollutants. Herein, a novel highly specific fluorescent probe (PBE-HOBr) for accurate detection of HOBr was constructed based on the HOBr-induced oxidation elimination of benzothiazoline moiety employing the photo-induced electron transfer (PET) mechanism. PBE-HOBr has high sensitivity and linear response to HOBr with a low detection limit of 119 nM. PBE-HOBr not only has the ability to detect endogenous and exogenous HOBr in cells and zebrafish, but also has been used to monitor the formation of HOBr in water treatment. In addition, benzothiazoline group was demonstrated for the first time to be able to be used as a new recognition receptor for developing highly specific fluorescent probes for HOBr.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Corantes Fluorescentes , Peixe-Zebra , Bromatos , Desinfecção , Halogenação , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 460: 132454, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703742

RESUMO

The excessive use of quaternary ammonium compounds (QACs) following the COVID-19 pandemic has raised substantial concerns regarding their biosafety. Overuse of QACs has been associated with chronic biological adverse effects, including genotoxicity or carcinogenicity. In particular, inadvertent intravascular administration or oral ingestion of QACs can lead to fatal acute toxicity. To enhance the biosafety and antimicrobial efficacy of QACs, this study reports a new series of QACs, termed as PACs, with the alkyl chain of benzalkonium substituted by a phthalocyanine moiety. Firstly, the rigid phthalocyanine moiety enhances the selectivity of QACs to bacteria over human cells and reduces alkyl chain's entropic penalty of binding to bacterial membranes. Furthermore, phthalocyanine neutralizes hemolysis and cytotoxicity of QACs by binding with albumin in plasma. Our experimental results demonstrate that PACs inherit the optical properties of phthalocyanine and validate the broad-spectrum antibacterial activity of PACs in vitro. Moreover, the intravascular administration of the most potent PAC, PAC1a, significantly reduced bacterial burden and ameliorated inflammation level in a bacteria-induced septic mouse model. This study presents a new strategy to improve the antimicrobial efficacy and biosafety of QACs, thus expanding their range of applications to the treatment of systemic infections.


Assuntos
COVID-19 , Desinfetantes , Animais , Camundongos , Humanos , Antibacterianos/toxicidade , Compostos de Amônio Quaternário/toxicidade , Contenção de Riscos Biológicos , Pandemias , Indóis/toxicidade
3.
BMC Microbiol ; 23(1): 256, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704976

RESUMO

BACKGROUND: Chlorhexidine (CHG) is a disinfectant commonly used in hospitals. However, it has been reported that the excessive use of CHG can cause resistance in bacteria to this agent and even to other clinical antibiotics. Therefore, new methods are needed to alleviate the development of CHG tolerance and reduce its dosage. This study aimed to explore the synergistic effects of CHG in combination with bacteriophage against CHG-tolerant Pseudomonas aeruginosa (P. aeruginosa) and provide ideas for optimizing disinfection strategies in clinical environments as well as for the efficient use of disinfectants. METHODS: The CHG-tolerant P. aeruginosa strains were isolated from the First Affiliated Hospital of Wenzhou Medical University in China. The bacteriophage vB3530 was isolated from the sewage inlet of the hospital, and its genome was sequenced. Time-killing curve was used to determine the antibacterial effects of vB3530 and chlorohexidine gluconate (CHG). The phage sensitivity to 16 CHG-tolerant P. aeruginosa strains and PAO1 strain was detected using plaque assay. The emergence rate of resistant bacterial strains was detected to determine the development of phage-resistant and CHG-tolerant strains. Finally, the disinfection effects of the disinfectant and phage combination on the surface of the medical devices were preliminarily evaluated. RESULTS: The results showed that (1) CHG combined with bacteriophage vB3530 significantly inhibited the growth of CHG-resistant P. aeruginosa and reduced the bacterial colony forming units (CFUs) after 24 h. (2) The combination of CHG and bacteriophage inhibited the emergence of phage-resistant and CHG-tolerant strains. (3) The combination of CHG and bacteriophage significantly reduced the bacterial load on the surface of medical devices. CONCLUSIONS: In this study, the combination of bacteriophage vB3530 and CHG presented a combined inactivation effect to CHG-tolerant P. aeruginosa and reduced the emergence of strains resistant to CHG and phage. This study demonstrated the potential of bacteriophage as adjuvants to traditional disinfectants. The use of bacteriophage in combination with commercial disinfectants might be a promising method for controlling the spread of bacteria in hospitals.


Assuntos
Bacteriófagos , Desinfetantes , Humanos , Clorexidina/farmacologia , Pseudomonas aeruginosa , Desinfetantes/farmacologia , Antibacterianos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37681849

RESUMO

Serratia marcescens is an environmental bacterium and clinical pathogen that can cause an array of infections. We describe an environmental sampling and comparative genomics approach used to investigate a multi-year outbreak of S. marcescens at a correctional facility. Whole genome sequencing analysis revealed a predominant cluster of clonally related S. marcescens from nine patient cases and items associated with illicit drug use. Closely related strains found among items associated with case-patient cells and diluted Cell Block 64 (CB64), a quaternary ammonium disinfectant, and Break Out (BO), a multipurpose cleaner, highlighted their role as environmental reservoirs for S. marcescens in this outbreak. Comparative genomic analysis suggested outbreak strains were both persistent (identical strains found over long periods and in multiple locations of the correctional facility) and diverse (strains clustered with multiple global samples from NCBI database). No correlation was found between antimicrobial resistance (AMR) genes of outbreak strains; NCBI strains have more AMR genes. Principal component analysis (PCA) of virulence factors associated with persistence and infectivity indicated variation based on phylogroups, including the predominant cluster; identifiable variations among environmental versus clinical strains were not observed. Identification of multiple distinct genetic groups highlights the importance of putting epidemiological genomic studies in a proper genetic context.


Assuntos
Desinfetantes , Serratia marcescens , Humanos , Serratia marcescens/genética , Genômica , Bases de Dados Factuais , Surtos de Doenças
5.
Sci Rep ; 13(1): 14832, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684315

RESUMO

Candida albicans (C. albicans) and Streptococcus mutans (S. mutans) biofilms involve in denture stomatitis. This study compared compound 1 to 2% chlorhexidine gluconate (CHX), Polident, and distilled water (DW) in biofilms reduction and effect on polymethylmethacrylate acrylic (PMMA) properties. The structure of lawsone (naphthoquinone derivative) was modified by the addition of an alkylnyloxy group to yield compound 1. Dual-species biofilms of C. albicans and S. mutans were developed on PMMA discs. The colony-forming unit count measured the number of residual biofilm cells after exposure to the test agents. PMMA discs were examined for color stability, surface roughness, hardness, and chemical structure after 28 days. At 3 min, compound 1 was less effective than CHX in reducing C. albicans (p = 0.004) and S. mutans (p = 0.034) but more effective than Polident in reducing C. albicans (p = 0.001). At 15 min, no viable cells were detectable for compound 1 and its effectiveness was comparable to CHX (p = 0.365). SEM showed fungal cell surface damages in CHX, compound 1 and Polident groups. Only color change was affected by time (p < 0.001) and type of test agent (p = 0.008), and only CHX reached a clinical perception level. Compound 1 is a promising agent for removing biofilm from the PMMA surface without substantially degrading surface properties.


Assuntos
Desinfetantes , Naftoquinonas , Polimetil Metacrilato , Biofilmes , Candida albicans , Naftoquinonas/farmacologia , Streptococcus mutans , Propriedades de Superfície , Dentaduras
6.
Epidemiol Infect ; 151: e149, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644902

RESUMO

This study aimed to summarise the findings of the studies assessing the effectiveness of ultraviolet C (UV-C) room disinfection in reducing the incidence rate of healthcare-associated multi-drug-resistant organism (MDRO) infections. A systematic screening was conducted using PubMed, EMBASE, and Scopus for randomised controlled trials (RCTs), quasi-experimental studies, and before-after studies, which assessed the efficacy of the UV-C disinfectant system in reducing the incidence of MDRO infections. A random-effects model was used for the analysis. Effect sizes were described as incidence rate ratio (IRR) with 95% confidence intervals (CI). Nine studies were included, all of which were conducted in the USA. No statistically significant reduction in Clostridioides difficile (CD) (IRR: 0.90, 95% CI; 0.62-1.32) and vancomycin-resistant enterococcal (VRE) infection rates (IRR 0.72, 95% CI; 0.38-1.37) was observed with the use of UV-C, but the risk of Gram-negative rod infection was reduced (IRR 0.82, 95% CI; 0.68-0.99).


Assuntos
Infecção Hospitalar , Desinfetantes , Humanos , Desinfecção , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Bactérias Gram-Negativas , Instalações de Saúde
7.
J Dent ; 137: 104656, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567495

RESUMO

OBJECTIVES: Denture stomatitis is prevalent in older people and poses serious health risks. Ready-to-use (RTU) neutral-pH Electrolysed Oxidizing Water (EOW) is an effective environmental disinfectant used in residential care settings and geriatric wards. However, the influence of storage on stability and effectiveness for denture disinfection has not been established. This research investigated the storage-related stability and antimicrobial activity of RTU EOW, and its efficacy against Candida albicans biofilms formed on denture resin. METHODS: The pH, oxidation/reduction potential (mV), available chlorine content (mg/L) and [HOCl] (mM) of RTU EOW (Envirolyte, New Zealand) solutions (n = 22) were measured from bottle opening to 28 days following storage at 4 °C, room temperature (RT) or 37 °C. Staphylococcus aureus and C. albicans cells were incubated in 80% EOW for contact times (CTs) up to 15 min and colony-forming units (cfu) determined. Minimum inhibitory concentrations (MIC90 EOW-HOCl) after CTs up to five minutes were determined for S. aureus and C. albicans reference strains and clinical isolates. C. albicans-denture resin disc biofilms were assessed after a five-minute CT with undiluted EOW by XTT-metabolic activity assay. RESULTS: [HOCl] remained stable when RTU EOW was stored at 4 °C or RT for five months after manufacture. One-minute CT resulted in log10 cfu reductions of >6 for S. aureus and >5 for C. albicans. Mean MIC90 for five-minute CT was 37 µM (S. aureus) and 54 µM (C. albicans). Undiluted EOW reduced C. albicans biofilm metabolic activity by 86%. CONCLUSIONS: RTU neutral-pH EOW is stable over five-months storage and is an effective denture disinfectant. CLINICAL SIGNIFICANCE: The efficacy of the RTU neutral EOW against C. albicans isolates and biofilms formed on denture resin surfaces supports its use as a denture disinfectant and can inform future research to assess its potential for preventing denture-related oral Candida infections in the older population, especially in resource-limited communities.


Assuntos
Desinfetantes , Água , Humanos , Idoso , Staphylococcus aureus , Candida albicans , Desinfetantes/farmacologia , Biofilmes , Concentração de Íons de Hidrogênio , Bases de Dentadura
8.
Environ Sci Technol ; 57(32): 12063-12071, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531609

RESUMO

The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3-) into produce, this study evaluated whether switching to chlorine dioxide (ClO2) could reduce chlorate concentrations within the produce. Because ClO2 exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO3- can form through several pathways, particularly by reactions between ClO2 and the chlorine used to generate ClO2 via reaction with chlorite (ClO2-) or chlorine that forms when ClO2 reacts with produce. This study demonstrates that purging ClO2 from the chlorine and ClO2- mixture used for its generation through a trap containing ClO2- can scavenge chlorine, substantially reducing ClO3- concentrations in ClO2 stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO3- formation by binding the chlorine produced by ClO2 reactions with produce as inactive chloramines without scavenging ClO2. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO3- concentrations were below regulatory guidelines for each of these vegetables when treated with ClO2 together with these two purification measures. Switching to purified ClO2 also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce.


Assuntos
Compostos Clorados , Desinfetantes , Purificação da Água , Desinfecção , Cloratos , Cloro , Compostos Clorados/química , Óxidos/química , Desinfetantes/química
9.
Environ Pollut ; 335: 122311, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37543075

RESUMO

Due to the intensive use of antibiotics, the drinking water distribution system (DWDS) has become one of the hotspots of antibiotic resistance. However, little is known about the role of biofilm in the aspect of spreading resistance in DWDS. In present study, four lab-scale biological annular reactors (BAR) were constructed to investigate the transmission of ARGs exposed to a certain amount of antibiotic (sulfamethoxazole) synergistic disinfectants. It was emphasized that pipe wall biofilm was an important way for ARGs to propagate in the pipeline, and the results were quantified by constructing an operational taxonomic unit (OTU) network map. The network analysis results showed the biofilm contribution to waterborne bacteria was finally estimated to be 51.45% and 34.27% in polyethylen (PE) pipe and ductile iron (DI) pipe, respectively. The proportion of vertical gene transfer (VGT) in biofilm was higher than that in water, and the occurrence of this situation had little relationship with the selection of pipe type. Overall, this study revealed how biofilm promoted the transmission of resistome in bulk water, which can provide insights into assessing biofilm-associated risks and optimizing pipe material selection for biofilm control in DWDS.


Assuntos
Desinfetantes , Água Potável , Água Potável/microbiologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Biofilmes , Antibacterianos/toxicidade , Abastecimento de Água
10.
BMC Public Health ; 23(1): 1582, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596576

RESUMO

BACKGROUND: The fast spread of COVID-19 reinforced the daily use of disinfectants around the world. However, the awareness gap of disinfectant use could lead to health risks during the prevention of the pandemic. This study aims to assess the level of awareness and performance towards COVID-related disinfectant use among various university communities (student, staff, and faculty) in Lebanon. METHODS: A cross-sectional study was conducted between December 2021 and June 2022 among 925 participants (males and females aged between 18 and 64 years old) from academic settings in Lebanese universities using convenience sampling. An online validated survey (score-based questionnaire) of personal disinfectants' utilization was conducted to evaluate the awareness and performance levels using SPSS (version 21). Mann-Whitney and Kruskal-Wallis tests were used to check significant differences in awareness and performance levels among gender, age, provinces, educational level, university status, and field of study. Friedman test was used to test for significant differences in performance level questions pre-and post-COVID-19. The Spearman correlation test was used to determine the correlation between the awareness and performance of the respondents regarding the use of disinfectants. RESULTS: It was found that the majority of the respondents showed a weak level of awareness (70.8%) while their performance (61.9%) was moderate. Spearman's correlation analysis concluded a weak correlation between the awareness and performance levels (p < 0.01). The Mann-Whitney test indicated that there was a significant difference (p < 0.05) in awareness and performance levels between males and females. Another notable variable was the educational level of the respondents (p < 0.05) with postgraduate degrees holders recording higher mean scores of awareness than the ones with undergraduate and high school degrees as per Kruskal-Wallis test. Significant differences were shown in awareness scores among the age groups and in performance scores among the field of study (p < 0.05). CONCLUSIONS: The study findings highlighted the necessity of awareness campaigns and training programs addressing the technical handling of disinfectants among the communities in Lebanon. Lebanese governmental authorities (Ministry of Public Health, MoPH, and Ministry of Education and Higher Education, MEHE), and the healthcare professionals and public health researchers in Lebanon may utilize this new evidence to initiate public health interventions as a part of the United Nations (UN) sustainability goal of wellbeing (Sustainable Development Goal 3, SDG 3).


Assuntos
COVID-19 , Desinfetantes , Feminino , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Líbano , COVID-19/prevenção & controle , Estudos Transversais , Universidades
11.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37587011

RESUMO

AIMS: Disinfectants such as benzalkonium chloride (BC), extensively used in animal farms and food-processing industries, contribute to the development of adaptive and cross-resistance in foodborne pathogens, posing a serious threat to food safety and human health. The purpose of this study is to explore whether continuous exposure of Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-) to sublethal concentrations of BC could result in acquired resistance to this agent and other environmental stresses (e.g. antibiotics, heat, and acid). METHODS AND RESULTS: BC tolerance increased in all tested strains after exposure to gradually increasing concentrations of BC, with increases in minimum inhibitory concentrations between two and sixfold. The survival rate of BC-adapted strains was significantly (P < 0.05) higher than that of their wild-type (non-adapted) counterparts in lethal concentrations of BC. In addition, significant reductions (P < 0.05) in zeta potential were observed in BC-adapted strains compared to wild-type ones, indicating that a reduction in cell surface charge was a cause of adaptative resistance. More importantly, two BC-adapted strains exhibited increased antibiotic resistance to levofloxacin, ceftazidime, and tigecycline, while gene mutations (gyrA, parC) and antibiotic efflux-related genes (acrB, mdsA, mdsB) were detected by genomic sequencing analysis. Moreover, the tolerance of BC-adapted strains to heat (50, 55, and 60°C) and acid (pH 2.0, 2.5) was strain-dependent and condition-dependent. CONCLUSIONS: Repeated exposure to sublethal concentrations of BC could result in the emergence of BC- and antibiotic-resistant S. 1,4,[5],12:i:- strains.


Assuntos
Antibacterianos , Desinfetantes , Animais , Humanos , Antibacterianos/farmacologia , Compostos de Benzalcônio/farmacologia , Desinfetantes/farmacologia , Sorogrupo , Ceftazidima
12.
Sci Rep ; 13(1): 12983, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563252

RESUMO

The World Health Organization's R&D Blueprint list of priority diseases for 2022 includes Lassa fever, signifying the need for research and development in emergency contexts. This disease is caused by the arenavirus Lassa virus (LASV). Being an enveloped virus, LASV should be susceptible to a variety of microbicidal actives, although empirical data to support this expectation are needed. We evaluated the virucidal efficacy of sodium hypochlorite, ethanol, a formulated dual quaternary ammonium compound, an accelerated hydrogen peroxide formulation, and a p-chloro-m-xylenol formulation, per ASTM E1052-20, against LASV engineered to express green fluorescent protein (GFP). A 10-µL volume of virus in tripartite soil (bovine serum albumin, tryptone, and mucin) was combined with 50 µL of disinfectant in suspension for 0.5, 1, 5, or 10 min at 20-25 °C. Neutralized test mixtures were quantified by GFP expression to determine log10 reduction. Remaining material was passaged on Vero cells to confirm absence of residual infectious virus. Input virus titers of 6.6-8.0 log10 per assay were completely inactivated by each disinfectant within 1-5 min contact time. The rapid and substantial inactivation of LASV suggests the utility of these microbicides for mitigating spread of infectious virus during Lassa fever outbreaks.


Assuntos
Anti-Infecciosos , Desinfetantes , Febre Lassa , Animais , Chlorocebus aethiops , Humanos , Vírus Lassa , Febre Lassa/prevenção & controle , Células Vero , Anti-Infecciosos/metabolismo , Desinfetantes/farmacologia , Desinfetantes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
13.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569507

RESUMO

Unravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant-benzalkonium chloride (BAC)-over a significant pathogen-L. monocytogenes-in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time-kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time-kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.


Assuntos
Desinfetantes , Listeria monocytogenes , Desinfecção , Compostos de Benzalcônio/farmacologia , Microbiologia de Alimentos , Simulação de Dinâmica Molecular , Cinética , Desinfetantes/farmacologia
14.
Sci Rep ; 13(1): 13058, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567996

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease started in late 2019 and still continues as a global pandemic, spreading among people around the world. There is limited knowledge about the role of contaminated environmental surfaces, especially high-touch public surfaces, in the transmission of the disease. The objective of the present investigation was detection of different variants (Delta, UK, and Omicron) of SARS-CoV-2 RNA (genome) on inanimate surfaces in high-touch public environmental surfaces in different seasons. Automated teller machines of banks (ATM), point-of-sale (POS) machine, gas station pump nozzles, and escalator handrails of malls were selected as high-touch environmental surfaces in public places. Overall, 75 samples were collected from these places and examined for the presence of SARS-CoV-2 RNA (genome), and 21 samples (28%) were positive. Although the role of fomite transmission of COVID-19 is understood, more studies should be conducted to determine the virus survival rate as well as the required efforts to prevent the spread of SARS-CoV-2 such as frequent cleaning and the use of efficient disinfectants on environmental surfaces, especially high-touch public places. In conclusion, the results address the importance of touching contaminated inanimate objects as well as transmission through environmental surfaces, and they could be used to establish an effective protocol to prevent indirect environmental transmission of SARS-CoV-2, slow down the spread of the virus, and reduce the risk of infection.


Assuntos
COVID-19 , Desinfetantes , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , RNA Viral/genética , Tato
15.
J Korean Med Sci ; 38(34): e290, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37644686

RESUMO

This research proposes a safety strategy for coronavirus disease 2019 (COVID-19) walk-through booths to optimize pandemic preparedness. These booths, designed for respiratory sample collection during the COVID-19 pandemic, effectively reduce infection risk and personal protective equipment-related fatigue among healthcare workers. However, inadequate disinfection and glove management could escalate infection transmission. Using computational fluid dynamics simulations, we analyzed droplet dispersion on booth surfaces and gloves under various wind conditions. Our findings suggest that when setting up COVID-19 walk-through booths, their location should be strategically chosen to minimize the effects of wind. All surfaces of booth gloves must be thoroughly disinfected with a certified disinfectant after nasopharyngeal swab collection. It is also recommended to wear disposable gloves over booth gloves when changing between patient examinations. In wind-affected areas, individuals nearby should not solely rely on the 2-meter distancing rule due to potential droplet spread from walk-through booths. We strongly recommend consistent and proper mask use for effective droplet blocking. Adherence to these guidelines can significantly enhance the safety and efficiency of walk-through booths, particularly in potential future pandemics.


Assuntos
COVID-19 , Desinfetantes , Humanos , Pandemias/prevenção & controle , Desinfecção , Fadiga
16.
PLoS One ; 18(8): e0290325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616303

RESUMO

Prion diseases are transmissible, fatal neurologic diseases that include Creutzfeldt-Jakob Disease (CJD) in humans, chronic wasting disease (CWD) in cervids, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. Prions are extremely difficult to inactivate and established methods to reduce prion infectivity are often dangerous, caustic, expensive, or impractical. Identifying viable and safe methods for treating prion contaminated materials is important for hospitals, research facilities, biologists, hunters, and meat-processors. For three decades, some prion researchers have used a phenolic product called Environ LpH (eLpH) to inactivate prions. ELpH has been discontinued, but a similar product, Wex-cide 128, containing the similar phenolic chemicals as eLpH is now available. In the current study, we directly compared the anti-prion efficacy of eLpH and Wex-cide 128 against prions from four different species (hamster 263K, cervid CWD, mouse 22L and human CJD). Decontamination was performed on either prion infected brain homogenates or prion contaminated steel wires and mouse bioassay was used to quantify the remaining prion infectivity. Our data show that both eLpH and Wex-cide 128 removed 4.0-5.5 logs of prion infectivity from 22L, CWD and 263K prion homogenates, but only about 1.25-1.50 logs of prion infectivity from human sporadic CJD. Wex-cide 128 is a viable substitute for inactivation of most prions from most species, but the resistance of CJD to phenolic inactivation is a concern and emphasizes the fact that inactivation methods should be confirmed for each target prion strain.


Assuntos
Síndrome de Creutzfeldt-Jakob , Cervos , Desinfetantes , Príons , Scrapie , Entorses e Distensões , Cricetinae , Humanos , Animais , Bovinos , Camundongos , Ovinos , Encéfalo , Desinfetantes/farmacologia , Fenóis
17.
J Med Chem ; 66(16): 11555-11572, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37566805

RESUMO

Antimicrobial cationic peptides are intriguing and propitious antibiotics for the future, even against multidrug-resistant superbugs. Venoms serve as a source of cutting-edge therapeutics and innovative, unexplored medicines. In this study, a novel cationic peptide library consisting of seven sequences was designed and synthesized from the snake venom cathelicidin, batroxicidin (BatxC), with the inclusion of the FLPII motif at the N-terminus. SP1V3_1 demonstrated exceptional antibacterial effectiveness against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae and destroyed the bacteria by depolarizing, rupturing, and permeabilizing their membranes, as evident from fluorescence assays, atomic force microscopy, and scanning electron microscopy. SP1V3_1 was observed to modulate the immune response in LPS-elicited U937 cells and exhibited good antibiofilm activity against MRSA and K. pneumoniae. The peptide promoted wound healing and disinfection in the murine model. The study demonstrated that SP1V3_1 is an exciting peptide lead and may be explored further for the development of better therapeutic peptides.


Assuntos
Anti-Infecciosos , Desinfetantes , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Testes de Sensibilidade Microbiana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Cicatrização , Venenos de Serpentes , Escherichia coli
18.
J Hazard Mater ; 459: 132241, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567136

RESUMO

Iodinated disinfection by-products (I-DBPs) exhibited potential health risk owing to the high toxicity. Our recent study demonstrated that I-DBPs from Laminaria japonica (Haidai), the commonly edible seaweed, upon simulated household cooking condition were several hundred times more than the concentration of drinking water. Here, the characterization of Haidai and its leachate tandem with the formation, identification and toxicity of I-DBPs from the cooking of Haidai were systemically investigated. The dominant organic matter in Haidai leachate were polysaccharides, while the highest iodine specie was iodide (∼90% of total iodine). Several unknown I-DBPs generated from the cooking of Haidai were tentatively proposed, of which 3,5-diiodo-4-hydroxybenzaldehyde was dominant specie. Following a simulated household cooking with real chloraminated tap water, the presence of Haidai sharply increased aggregate iodinated trihalomethanes, iodinated haloacetic acids, and total organic iodine concentrations to 97.4 ± 7.6 µg/L,16.4 ± 2.1 µg/L, and 0.53 ± 0.06 mg/L, respectively. Moreover, the acute toxicity of Haidai soup to Vibrio qinghaiensis sp.-Q67 was around 7.3 times higher than that of tap water in terms of EC50. These results demonstrated that the yield of I-DBPs from the cooking of Haidai and other seaweed should be carefully considered.


Assuntos
Desinfetantes , Água Potável , Iodo , Laminaria , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Iodo/toxicidade , Halogenação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Culinária , Trialometanos , Desinfetantes/análise
19.
Sci Total Environ ; 896: 165282, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406691

RESUMO

Polyvinyl chloride (PVC) pipes are widely used as drinking water distribution pipes in rural areas of China. However, whether phthalate acid esters (PAEs) released from PVC pipes will affect tap water quality is still unknown. The influence of released PAEs on the water quality was analysed in this study, especially after ClO2 disinfection. The results indicated that ClO2 disinfection could control the growth of total coliforms and heterotrophic bacteria (HPC). However, when the ClO2 residual decreased to below 0.10 mg/L, HPC and opportunistic pathogens, including Mycobacterium avium and Pseudomonas aeruginosa, increased significantly. In addition, after ClO2 disinfection, PAEs concentrations increased from 10.6-22.2 µg/L to 21.2-58.8 µg/L in different sampling cites. Linear discriminant analysis (LDA) effect size (LEfSe) and statistical analysis of metagenomic profiles (Stamp) showed that ClO2 disinfection induced the enrichment of Pseudomonas, Bradyrhizobium, and Mycobacterium and functions related to human diseases, such as pathogenic Escherichia coli infection, shigellosis, Staphylococcus aureus infection, and Vibrio cholerae infection. The released PAEs not only promoted the growth of these ClO2-resistant bacterial genera but also enhanced their functions related to human diseases. Moreover, these PAEs also induced the enrichment of other bacterial genera, such as Blastomonas, Dechloromonas, and Kocuria, and their functions, such as chronic myeloid leukaemia, African trypanosomiasis, leishmaniasis, hepatitis C and human T-cell leukaemia virus 1 infection. The released PAEs enhanced the microbial risk of the drinking water. These results are meaningful for guaranteeing water quality in rural areas of China.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Humanos , Desinfetantes/farmacologia , Cloreto de Polivinila , Compostos Clorados/farmacologia , Desinfecção/métodos , Bactérias , Ésteres , Cloro/farmacologia
20.
Sci Total Environ ; 899: 165590, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474067

RESUMO

Aquatic plant-derived dissolved organic matter (DOM) in water bodies is an important source of disinfection byproduct (DBP) precursors. It is therefore very important to investigate DBP formation, and the main DBP precursors that enter drinking water during treatment processes. In this study, Lythrum salicaria root extract (LSRE) and Acorus calamus root extract (ACRE) were analyzed. The LSRE and ACRE were chlorinated and disinfected to generate trihalomethanes, haloacetic acids, haloketones, and haloacetaldehydes. The DBP formation potential of LSRE, dominated by humus, was higher than that of Suwannee River natural organic matter (SRNOM), and trichloroacetic acid was the main DBP. It was calculated that 2.09 % of the increased DOC brought by the surface flow wetland planted with emergent aquatic plants, and the contribution rates of TCMFP, DCAAFP and TCAAFP in effluent were 3.34 %, 3.23 % and 3.05 %, respectively. A total of 706 chlorinated-formula were detected by FTICR-MS, among which mono- and di-chlorinated formulae were the most abundant. Macromolecular hydrophobic organics and tannins were the main precursors for LSRE. Unlike LSRE, the DOM composition of ACRE was dominated by protein or aliphatic compounds; therefore, the risk of DBP formation was not as high as that for LSRE. This study is the first to determine the risk of DBP formation associated with aquatic plant root extracts, and confirmed that tannins in plant-derived DOM are more important DBP precursors than lignins.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Exsudatos de Plantas , Áreas Alagadas , Poluentes Químicos da Água/análise , Trialometanos/análise , Exsudatos e Transudatos/química , Raízes de Plantas/química , Desinfetantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...