Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.292
Filtrar
1.
F1000Res ; 9: 674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123349

RESUMO

Background: The ability to protect workers and healthcare professionals from infection by SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is of great concern. Hospitals, nursing homes and employers are adopting infection control strategies based on guidance from leading public health organizations such as the CDC, OSHA, FDA, and other government bodies. Certain hard surface disinfectants are effective against SARS-CoV-2 but are not suitable for use on skin or personal protective equipment (PPE) that comes into contact with skin. Furthermore, near-ubiquitous alcohol-based hand sanitizers are acceptable for use on skin, but they are not suitable for use on PPE. PPE, especially masks, are also commonly being used for longer durations than normal. There is a need for new products and techniques that can effectively disinfect PPE during wear time without having detrimental effects on surrounding skin. Clyraguard spray is a novel copper iodine complex designed to be used on non-critical PPE. Methods: In this study, the Clyraguard copper iodine complex was tested for its ability to inactivate SARS-CoV-2 in solution. Results: These data indicate the product to be effective in reducing SARS-CoV-2 titers in a time-dependent manner, with the virus being reduced below the detection limits within 30 minutes. Conclusions: These results suggest that Clyraguard may be an effective tool for mitigating cross-contamination of non-critical PPE that may come into contact with SARS-CoV-2.


Assuntos
Betacoronavirus/efeitos dos fármacos , Cobre/farmacologia , Desinfetantes/farmacologia , Iodo/farmacologia , Inativação de Vírus/efeitos dos fármacos , Infecções por Coronavirus , Humanos , Pandemias , Pneumonia Viral
2.
Int J Food Microbiol ; 335: 108887, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33002710

RESUMO

Disinfection of fruits is one of the most important steps since they are going to be eaten fresh-or minimally-processed. This step affects quality, safety, and shelf-life of the product. Despite being a common sanitizer in the fruit industry, chlorine may react with organic matter leading to the formation of toxic by-products. Alternative sustainable disinfection strategies to chlorine are under study to minimize environmental and human health impact. Water-assisted UV-C light (WUV-C) is proposed here as an alternative sanitizing method for strawberries. In this study, strawberries were washed for 1 or 5 min in a tank with 2 or 4 lamps on, each emitting UV-C light at 17.2 W/cm2, or in a chlorine solution (200 ppm, pH 6.5). Moreover, trials with 4 lamps on, together with a washing solution consisting on peracetic acid at 40 or 80 ppm, were carried out. Overall, quality and nutritional parameters of strawberries after treatments were maintained. Changes in color were not noticeable and fruits did not lose firmness. No major changes were observed in antioxidant activity, organic acid, anthocyanin, vitamin C, and total phenolic content. Yeasts and molds were not affected by the WUV-C treatment, and 5 min were needed to significantly reduce total aerobic mesophylls population. However, reductions of artificially inoculated Listeria innocua and Salmonella Typhimurium after WUV-C treatments were comparable to those obtained with chlorine-wash, which were 3.0 log CFU / g. Moreover, WUV-C light was effective to minimize microorganisms remaining in washing water, avoiding cross-contamination and thus, allowing water recirculation. This effect was improved when combining the action of UV-C light with peracetic acid, showing the suitability of this combined treatment, understood as an alternative to chlorine sanitation, for sanitizing strawberries and keeping the populations of pathogenic bacteria in washing water lower than 0.6 ±â€¯0.1 log CFU / mL.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Fragaria/microbiologia , Ácido Peracético/farmacologia , Raios Ultravioleta , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Cloro/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Frutas/microbiologia
3.
J Water Health ; 18(5): 843-848, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33095205

RESUMO

The outbreak of coronavirus (COVID-19) has led to a broad use of chemical disinfectants in order to sterilize public spaces and prevent contamination. This paper surveys the chemicals that are effective in deactivating the virus and their mode of action. It presents the different chemical classes of disinfectants and identifies the chemical features of these compounds that pertain to their biocidal activity, relevant to surface/water disinfection.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Desinfetantes/farmacologia , Humanos
4.
Nat Commun ; 11(1): 5026, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024104

RESUMO

How to design experiments that accelerate knowledge discovery on complex biological landscapes remains a tantalizing question. We present an optimal experimental design method (coined OPEX) to identify informative omics experiments using machine learning models for both experimental space exploration and model training. OPEX-guided exploration of Escherichia coli's populations exposed to biocide and antibiotic combinations lead to more accurate predictive models of gene expression with 44% less data. Analysis of the proposed experiments shows that broad exploration of the experimental space followed by fine-tuning emerges as the optimal strategy. Additionally, analysis of the experimental data reveals 29 cases of cross-stress protection and 4 cases of cross-stress vulnerability. Further validation reveals the central role of chaperones, stress response proteins and transport pumps in cross-stress exposure. This work demonstrates how active learning can be used to guide omics data collection for training predictive models, making evidence-driven decisions and accelerating knowledge discovery in life sciences.


Assuntos
Biologia Computacional/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Modelos Biológicos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Desinfetantes/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Aprendizado de Máquina , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Projetos de Pesquisa , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
5.
Structure ; 28(11): 1218-1224.e4, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058760

RESUMO

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized ß-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.


Assuntos
Betacoronavirus/ultraestrutura , Desinfetantes/farmacologia , Propiolactona/farmacologia , Vírion/efeitos dos fármacos , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Vacinas de Produtos Inativados/imunologia , Células Vero , Vacinas Virais/imunologia , Vírion/ultraestrutura
7.
Int J Food Microbiol ; 335: 108856, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-32961522

RESUMO

This study aimed to evaluate the sensitivity of heat-resistant molds isolated from spoiled thermally processed foods to antimicrobial compounds used for food industry sanitation. An ortho-phenylphenol-based smoke generator sanitizer, liquid chemical sanitizers (benzalkonium chloride, biguanide, iodine, peracetic acid, and sodium hypochlorite), and acidic and alkaline electrolyzed water were used against Aspergillus australensis (MB 2579; NFF 02), Aspergillus aureoluteus (NFC1), Paecilomyces fulvus (PFF 01), Paecilomyces niveus (PNT 01; PNDC 01; PNB1 01), and Paecilomyces variotii (PV 01; PV 01; PVCH 03). The fungal strains were exposed separately to liquid sanitizers and electrolyzed water in stainless steel discs for 15 min following the European Committee for Standardization (CEN) recommendations. Moreover, the fungal strains were exposed to the smoke generator sanitizer for 7 h following French protocol NF-T-72281. The best results of fungal inactivation were achieved when the highest concentration specified in the label of these sanitizers was tested. On the opposite, the lowest concentration specified in the label should be avoided since it was ineffective in most cases (94%). The ortho-phenyphenol-based smoke generator sanitizer and peracetic acid (1%) showed the best results of spore inactivation, while iodine and benzalkonium chloride achieved satisfactory results against the strains evaluated. Sodium hypochlorite and biguanide were ineffective against most of the fungi studied at all concentrations tested. Acidic and basic electrolyzed water was also ineffective to achieve the 3-log CFU reduction required in the concentrations tested. In general, Paecilomyces spp. was more sensitive than Aspergillus spp. against all sanitizers evaluated, whereas A. aureoluteus NFC1 was resistant to all agents and concentrations tested. The heat-resistant fungal strains showed varied sensitivity against the different agents. Notably, the two most effective commercial sanitizers against the heat-resistant strains were ineffective against the filamentous fungi recommended for sanitizer testing (A. brasiliensis ATCC 16404), which demonstrates the relevance of testing fungal isolates that cause spoilage to choose the most effective compound and obtain the best results of fungal control.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Desinfetantes/farmacologia , Paecilomyces/efeitos dos fármacos , Compostos de Benzalcônio/farmacologia , Compostos de Bifenilo/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Peróxido de Hidrogênio/farmacologia , Testes de Sensibilidade Microbiana , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Aço Inoxidável
8.
Rev Assoc Med Bras (1992) ; 66Suppl 2(Suppl 2): 124-129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32965370

RESUMO

An alarming fact was revealed by recent publications concerning disinfectants: chlorhexidine digluconate is ineffective for disinfecting surfaces contaminated by the new coronavirus. This is a finding that requires immediate disclosure since this substance is widely used for the disinfection of hands and forearms of surgeons and auxiliaries and in the antisepsis of patients in minimally invasive procedures commonly performed in hospital environments. The objective of this study is to compare the different disinfectants used for disinfection on several surfaces, in a review of worldwide works. Scientific studies were researched in the BVS (Virtual Health Library), PubMed, Medline, and ANVISA (National Health Surveillance Agency) databases. The following agents were studied: alcohol 62-71%, hydrogen peroxide 0.5%, sodium hypochlorite 0.1%, benzalkonium chloride 0.05-0.2%, povidone-iodine 10%, and chlorhexidine digluconate 0.02%, on metal, aluminum, wood, paper, glass, plastic, PVC, silicone, latex (gloves), disposable gowns, ceramic, and Teflon surfaces. Studies have shown that chlorhexidine digluconate is ineffective for inactivating some coronavirus subtypes, suggesting that it is also ineffective to the new coronavirus.


Assuntos
Anti-Infecciosos Locais/farmacologia , Clorexidina/farmacologia , Coronavirus/efeitos dos fármacos , Desinfetantes/farmacologia , Povidona-Iodo/farmacologia , Infecções por Coronavirus/epidemiologia , Desinfecção , Humanos , Pandemias , Pneumonia Viral/epidemiologia
9.
Pathog Glob Health ; 114(7): 349-359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32877308

RESUMO

Coronavirus disease 2019 (COVID-19), which causes severe acute respiratory syndrome and lung failure, is caused by the novel coronavirus, also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to high transmission rates from individual to individual, it has progressed to a pandemic. However, indirect transmission from inanimate objects or surfaces that have come in contact with a patient poses an even more significant threat as it is difficult to trace the source of infection in these cases. Therefore, these surfaces and objects require disinfection with chemicals having potent viricidal activity. These include alcohols, aldehydes, quaternary ammonium compounds, chlorhexidine, and chlorine-based disinfectants, among others. They vary in their viricidal activity depending on their structure, concentrations, and mechanism of action. Several studies have looked into these agents and the transmission of the virus related to it. Moreover, certain viricides, if used as constituents of commercially available oral disinfectants, can further aid in preventing ventilator-associated pneumonia and maintain oral hygiene. However, these chemicals are not entirely free of potential hazards. In this review, we have compiled and critically appraised some commonly used viricidal agents in healthcare settings and the role they can play in the prevention of SARS-CoV-2 transmission.


Assuntos
Antivirais/administração & dosagem , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/fisiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Desinfetantes/farmacologia , Humanos , Pneumonia Viral/transmissão , Pneumonia Viral/virologia
10.
PLoS One ; 15(9): e0238860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32916695

RESUMO

The presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli on poultry products is an important issue for veterinary and human health due to the zoonotic infection risk for producers and consumers. The present study focuses on testing the efficacy of six different disinfection methods on eggshell samples, aiming to reduce ESBL producing E. coli contamination on the hatching egg. Sterile eggshell cutouts were artificially contaminated with 108 cfu/ml CTX-M-1 producing E. coli and used as a carrier model to analyze the efficacy of six disinfection methods. The contaminated samples were separated into two groups; 1) contaminated and disinfected, 2) contaminated and non-disinfected. Six independent disinfection protocols were performed following product specifications and protocols. Each eggshell sample was separately crushed, and the total viable bacterial count was calculated to determine the disinfection efficacy. Five out of six tested methods (formaldehyde gassing, hydrogen peroxide + alcohol spray, essential oils spray, peracetic acid foam, and low energetic electron radiation) demonstrated a reduction or completely eliminated the initial ESBL producing E. coli contamination. One method (essential oils as cold fog) only partly reached the expected efficacy threshold (reduction of >102 cfu/ml) and the result differed significantly when compared to the reference method i.e. formaldehyde gassing.


Assuntos
Desinfetantes/farmacologia , Desinfecção/classificação , Desinfecção/métodos , Casca de Ovo/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/enzimologia , beta-Lactamases/metabolismo , Animais , Casca de Ovo/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Técnicas In Vitro
11.
Int J Food Microbiol ; 334: 108810, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805511

RESUMO

Strawberries are often consumed fresh or only receive minimal processing, inducing a significant health risk to the consumer if contamination occurs anywhere from farm to fork. Outbreaks of foodborne illness associated with strawberries often involve a broad range of microbiological agents, from viruses (human norovirus) to bacteria (Salmonella spp. and Listeria monocytogenes). The addition of sanitizers to water washes is one of the most commonly studied strategies to remove or inactivate pathogens on berries as well as avoid cross contamination due to reuse of process wash water. The risk posed with the safety issues of by-products from chlorine disinfection in the fruit industry has led to a search for alternative sanitizers. We evaluated the applicability of different chemical sanitizers (peracetic acid (PA), hydrogen peroxide (H2O2), citric acid (CA), lactic acid (LA) and acetic acid (AA)) for the inactivation of S. enterica, L. monocytogenes and murine norovirus (MNV-1) on strawberries. A control treatment with chlorine (NaClO) (100 ppm) was included. For each sanitizer, different doses (40, 80 and 120 ppm for PA and 1, 2.5 and 5% for H2O2, LA, AA and CA) and time (2 and 5 min) were studied in order to optimize the decontamination washing step. The best concentrations were 80 ppm for PA, 5% for H2O2 and 2.5% for organic acids (LA, AA and CA) after 2 min treatment. Results indicate that the sanitizers selected may be a feasible alternative to chlorine (100 ppm) for removing selected pathogenic microorganisms (P > 0.05), with reductions about ≥2 log for bacterial strains and ≥ 1.7 log for MNV-1. As the washing water may also increase the microbial counts by cross-contamination, we observed that no pathogenic bacteria were found in wash water after 5% H2O2 and 80 ppm PA after 2 min treatment. On the other hand, we also reported reductions about total aerobic mesophyll (TAM) (0.0-1.4 log CFU/g) and molds and yeasts (M&Y) (0.3-1.8 log CFU/g) with all alternative sanitizers tested. Strawberries treated did not shown significant differences about physio-chemical parameters compared to the untreated samples (initial). For this study, the optimal sanitizer selected was PA, due to the low concentration and cost needed and its microbiocidal effect in wash water and fruit. Notwithstanding the results obtained, the effect of PA in combination with other non-thermal technologies such as water-assisted ultraviolet (UV-C) light should be studied in future research to improve the disinfection of strawberries.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Indústria de Processamento de Alimentos/métodos , Fragaria/microbiologia , Microbiologia de Alimentos , Fragaria/virologia , Frutas/microbiologia , Frutas/virologia , Fungos/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Salmonella/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-32842654

RESUMO

The formation of potentially carcinogenic N-nitrosamines, associated with monochloramine, requires further research due to the growing interest in using this biocide for the secondary disinfection of water in public and private buildings. The aim of our study was to evaluate the possible formation of N-nitrosamines and other toxic disinfection by-products (DBPs) in hospital hot water networks treated with monochloramine. The effectiveness of this biocide in controlling Legionella spp. contamination was also verified. For this purpose, four different monochloramine-treated networks, in terms of the duration of treatment and method of biocide injection, were investigated. Untreated hot water, municipal cold water and, limited to N-nitrosamines analysis, hot water treated with chlorine dioxide were analyzed for comparison. Legionella spp. contamination was successfully controlled without any formation of N-nitrosamines. No nitrification or formation of the regulated DBPs, such as chlorites and trihalomethanes, occurred in monochloramine-treated water networks. However, a stable formulation of hypochlorite, its frequent replacement with a fresh product, and the routine monitoring of free ammonia are recommended to ensure a proper disinfection. Our study confirms that monochloramine may be proposed as an effective and safe strategy for the continuous disinfection of building plumbing systems, preventing vulnerable individuals from being exposed to legionellae and dangerous DBPs.


Assuntos
Cloraminas , Desinfetantes , Purificação da Água , Cloraminas/farmacologia , Desinfetantes/farmacologia , Desinfecção , Humanos , Água , Microbiologia da Água
13.
Biochem Biophys Res Commun ; 530(1): 1-3, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828268

RESUMO

Alcohol-based disinfectant shortage is a serious concern in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Acidic electrolyzed water (EW) with a high concentration of free available chlorine (FAC) shows strong antimicrobial activity against bacteria, fungi, and viruses. Here, we assessed the SARS-CoV-2-inactivating efficacy of acidic EW for use as an alternative disinfectant. The quick virucidal effect of acidic EW depended on the concentrations of contained-FAC. The effect completely disappeared in acidic EW in which FAC was lost owing to long-time storage after generation. In addition, the virucidal activity increased proportionately with the volume of acidic EW mixed with the virus solution when the FAC concentration in EW was same. These findings suggest that the virucidal activity of acidic EW against SARS-CoV-2 depends on the amount of FAC contacting the virus.


Assuntos
Betacoronavirus/efeitos dos fármacos , Cloro/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Inativação de Vírus/efeitos dos fármacos , Ácidos/química , Ácidos/farmacologia , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/fisiologia , Cloro/química , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Desinfetantes/química , Eletrólise/métodos , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Água/química , Água/farmacologia
14.
Antimicrob Resist Infect Control ; 9(1): 129, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771064

RESUMO

OBJECTIVES: Hand sanitisers are urgently needed in the time of COVID-19, and as a result of shortages, some people have resorted to making their own formulations, including the repurposing of distilleries. We wish to highlight the importance of those producing hand sanitisers to avoid methylated spirits containing methanol and to follow WHO recommended formulations. METHODS: We explore and discuss reports of methanol toxicity through ingestion and transdermal absorption. We discuss the WHO formulations and explain the rationale behind the chosen ingredients. SHORT CONCLUSION: We advise those producing hand sanitisers to follow WHO recommended formulations, and advise those producing hand sanitisers using methylated spirits, to avoid formulations which contain methanol.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Desinfetantes/farmacologia , Etanol/farmacologia , Metanol/farmacologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Desinfetantes/química , Desinfetantes/normas , Desinfetantes/toxicidade , Composição de Medicamentos , Etanol/química , Desinfecção das Mãos/instrumentação , Humanos , Metanol/química , Metanol/toxicidade , Pneumonia Viral/virologia , Organização Mundial da Saúde
15.
PLoS One ; 15(8): e0237069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845891

RESUMO

BACKGROUND: Paro and other robot animals can improve wellbeing for older adults and people with dementia, through reducing depression, agitation and medication use. However, nursing and care staff we contacted expressed infection control concerns. Little related research has been published. We assessed (i) how microbiologically contaminated robot animals become during use by older people within a care home and (ii) efficacy of a cleaning procedure. METHODS: This study had two stages. In stage one we assessed microbial load on eight robot animals after interaction with four care home residents, and again following cleaning by a researcher. Robot animals provided a range of shell-types, including fur, soft plastic, and solid plastic. Stage two involved a similar process with two robot animals, but a care staff member conducted cleaning. The cleaning process involved spraying with anti-bacterial product, brushing fur-type shells, followed by vigorous top-to-tail cleaning with anti-bacterial wipes on all shell types. Two samples were taken from each of eight robots in stage one and two robots in stage two (20 samples total). Samples were collected using contact plate stamping and evaluated using aerobic colony count and identification (gram stain, colony morphology, coagulase agglutination). Colony counts were measured by colony forming units per square centimetre (CFU/cm2). RESULTS: Most robots acquired microbial loads well above an acceptable threshold of 2.5 CFU/cm2 following use. The bacteria identified were micrococcus species, coagulase negative staphylococcus, diptheriods, aerobic spore bearers, and staphylococcus aureus, all of which carry risk for human health. For all devices the CFU/cm2 reduced to well within accepted limits following cleaning by both researcher and care staff member. CONCLUSIONS: Companion robots will acquire significant levels of bacteria during normal use. The simple cleaning procedure detailed in this study reduced microbial load to acceptable levels in controlled experiments. Further work is needed in the field and to check the impact on the transmission of viruses.


Assuntos
Desinfecção/métodos , Contaminação de Equipamentos/prevenção & controle , Robótica/tendências , Idoso , Idoso de 80 Anos ou mais , Bactérias , Contagem de Colônia Microbiana/métodos , Infecção Hospitalar/prevenção & controle , Desinfetantes/farmacologia , Humanos , Casas de Saúde , Infecções Estafilocócicas/prevenção & controle
16.
BMC Microbiol ; 20(1): 265, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847510

RESUMO

BACKGROUND: Acetic acid has been used to clean and disinfect surfaces in the household for many decades. The antimicrobial efficacy of cleaning procedures can be considered particularly important for young, old, pregnant, immunocompromised people, but may also concern other groups, particularly with regards to the COVID-19 pandemics. This study aimed to show that acetic acid exhibit an antibacterial and antifungal activity when used for cleaning purposes and is able to destroy certain viruses. Furthermore, a disinfecting effect of laundry in a simulated washing cycle has been investigated. RESULTS: At a concentration of 10% and in presence of 1.5% citric acid, acetic acid showed a reduction of > 5-log steps according to the specifications of DIN EN 1040 and DIN EN 1275 for the following microorganisms: P. aeruginosa, E. coli, S. aureus, L. monocytogenes, K. pneumoniae, E. hirae and A. brasiliensis. For MRSA a logarithmic reduction of 3.19 was obtained. Tests on surfaces according to DIN EN 13697 showed a complete reduction (> 5-log steps) for P. aeruginosa, E. coli, S. aureus, E. hirae, A. brasiliensis and C. albicans at an acetic acid concentration of already 5%. Virucidal efficacy tests according to DIN EN 14476 and DIN EN 16777 showed a reduction of ≥4-log-steps against the Modified Vaccinia virus Ankara (MVA) for acetic acid concentrations of 5% or higher. The results suggest that acetic acid does not have a disinfecting effect on microorganisms in a dosage that is commonly used for cleaning. However, this can be achieved by increasing the concentration of acetic acid used, especially when combined with citric acid. CONCLUSIONS: Our results show a disinfecting effect of acetic acid in a concentration of 10% and in presence of 1.5% citric acid against a variety of microorganisms. A virucidal effect against enveloped viruses could also be proven. Furthermore, the results showed a considerable antimicrobial effect of acetic acid when used in domestic laundry procedures.


Assuntos
Ácido Acético/farmacologia , Anti-Infecciosos/farmacologia , Betacoronavirus/efeitos dos fármacos , Ácido Cítrico/farmacologia , Infecções por Coronavirus/prevenção & controle , Desinfetantes/farmacologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Bactérias/efeitos dos fármacos , Desinfecção/métodos , Fungos/efeitos dos fármacos , Humanos , Norovirus/efeitos dos fármacos
18.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717853

RESUMO

As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.


Assuntos
Betacoronavirus/efeitos dos fármacos , Desinfetantes/farmacologia , Peróxido de Hidrogênio/análise , Nanotubos de Carbono/química , Adsorção , Infecções por Coronavirus/prevenção & controle , Teoria da Densidade Funcional , Desinfetantes/química , Estabilidade de Medicamentos , Humanos , Ferro/química , Ferro/farmacologia , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Platina/química , Platina/farmacologia , Pneumonia Viral/prevenção & controle , Ródio/química , Ródio/farmacologia , Rutênio/química , Rutênio/farmacologia , Inativação de Vírus
19.
Int J Food Microbiol ; 332: 108782, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32650061

RESUMO

The aim of this study was to assess the impact of the physiological state and intraspecific variability on the efficacy of 70% ethanol to inactivate conidia of Penicillium commune, used as a representative species of dairy product contaminants. Four physiological states were obtained by modifying the water activity during the production of conidia (0.995 and 0.950) and the harvesting conditions (hydrated and non-hydrated). These conditions were applied to four different P. commune strains isolated from contaminated dairy products. Five minutes exposure to 70% ethanol at ambient temperature allowed total inactivation of conidia (>4 log10) regardless of the physiological state or the strain. For 1 min exposure, regardless of the strains, only dry-harvested conidia produced at aw 0.950 exhibited survivors. Survival after 2 min exposure was observed for this physiological state for P. commune UBOCC-A-116003 only. For this strain, the impact of the physiological state was greater than 1.54 log10 between dry-harvested conidia produced at aw 0.950 that exhibited survivors after 1 min treatment and the 3 other kinds of conidia that were all inactivated. For 1 min exposure, by comparing the more resistant strain to the three other strains, the impact of the intraspecific variability was 2.35 log10. These results demonstrated that the physiological state of the conidia, the representativeness of the tested species and strains should be taken into account to assess the efficacy of disinfectants in dairies.


Assuntos
Desinfetantes/farmacologia , Etanol/farmacologia , Penicillium/efeitos dos fármacos , Laticínios/microbiologia , Microbiologia de Alimentos , Viabilidade Microbiana/efeitos dos fármacos , Penicillium/fisiologia , Especificidade da Espécie , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Água/farmacologia
20.
Int J Food Microbiol ; 333: 108789, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32688136

RESUMO

Two decontamination methods were evaluated for inactivating a cocktail of Salmonella or Listeria monocytogenes inoculated onto model low moisture foods (LMFs; dried strawberry, dried apple, raisins, chocolate crumb, cornflakes, shell-on or deshelled pistachio nuts). One treatment was based on a peracetic acid-ethanol (PAA-ethanol) sanitizer combination with the other being an Advanced Oxidation Process (AOP) that simultaneously applied UV-C (254 nm), ozone and hydrogen peroxide. The low moisture food was spray inoculated then dried prior to treatment. With Salmonella it was found that a pre-incubation step in 1% w/v glycerol-tryptic soy broth for 1 h prior to plating, significantly increased recovery of the pathogen compared to TSB alone. However, no increased recovery of L. monocytogenes was observed using the TSB-glycerol pre-incubation step. No Salmonella was detected on cornflakes, chocolate crumb and strawberry using 1.25 parts per thousand (‰) PAA-ethanol. The inactivation of Salmonella on deshelled pistachio was significantly higher using 2.5‰ PAA-ethanol sanitizer compared to the AOP treatments tested. Only negligible reductions of Salmonella (<1 log cfu) were obtained with shell-on pistachio treated with PAA-ethanol sanitizer or AOP. Salmonella could be reduced on dried apple slices by >4 log CFU when 5.0‰ PAA-ethanol was applied. L. monocytogenes was more sensitive to PAA-ethanol compared to Salmonella and could be eliminated on all the LMFs apart from shell-on pistachio. An AOP treatment applied 10% v/v hydrogen peroxide, ozone and 54 mJ/cm2 UV-C could significantly reduce Salmonella on dried apple slices compared to when the individual elements (hydrogen peroxide, ozone or UV-C) were applied. Salmonella was also eliminated by AOP on the other LMFs (apart from shell-on pistachio) although the same level of inactivation was achieved by spraying with 10% v/v hydrogen peroxide alone. L. monocytogenes was sensitive to hydrogen peroxide and AOP being eliminated from all the LMFs. Although this may suggest that hydrogen peroxide spray was equivalent to AOP treatment it was noted that no residual H2O2 or changes in visual appearance was evident on samples treated with the latter process. The study has demonstrated that the two decontamination methods assessed can be applied to reduce Salmonella and L. monocytogenes on LMFs although efficacy is dependent on the pathogen and product type.


Assuntos
Chocolate/microbiologia , Desinfetantes/farmacologia , Etanol/farmacologia , Frutas/microbiologia , Listeria monocytogenes/efeitos dos fármacos , Nozes/microbiologia , Ácido Peracético/farmacologia , Salmonella/efeitos dos fármacos , Antibacterianos/farmacologia , Cacau/microbiologia , Contagem de Colônia Microbiana , Descontaminação/métodos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Peróxido de Hidrogênio/farmacologia , Oxirredução , Pistacia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA