Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
1.
Ecotoxicol Environ Saf ; 188: 109847, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31732268

RESUMO

Chlorothalonil is a fungicide present in antifouling paints and other formulations used in agriculture, although studies have shown this chemical to be toxic to fish species. To clarify the deleterious effects of chlorothalonil for these non-target organisms, the present study evaluated the toxic effects of this biocide for the estuarine guppy Poecilia vivipara in terms of an acute mortality test (96 h) and the analysis of biomarkers of oxidative stress, genotoxicity, and sperm quality. The LC50 calculated for P. vivipara was 40.8 µg/L of chlorothalonil. For the analysis of biomarkers, fish were exposed (96 h) to 1 and 10 µg/L of chlorothalonil. It was observed that chlorothalonil alters the levels of pro- and antioxidants towards oxidative stress. In the gills, a negative effect on total antioxidant capacity (ACAP) was detected, while there was a reduction in the activity of glutathione S-transferase (GST) in the liver. However, levels of glutathione (GSH) and the activity and glutamate-cysteine-ligase (GCL) increased in both tissues, as a possible detoxification response. Following chlorothalonil exposure, oxidative damage measured by lipoperoxidation (LPO) significantly increased at the cellular level only (red blood cells (RBCs) and sperm cells). An increase in fluidity of membranes, reactive oxygen species concentration and micronuclei (MNs) incidence were also seen in RBCs. In sperm cells, LPO increased, while membrane and mitochondrial functionality as well as sperm motility decreased. Based on these results, chlorothalonil can be considered as a toxic compound for fish, causing genotoxicity and affecting the RBCs physiology and the fertility of males of P. vivipara.


Assuntos
Biomarcadores/análise , Nitrilos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poecilia/fisiologia , Espermatozoides/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Dano ao DNA , Desinfetantes/toxicidade , Fungicidas Industriais/toxicidade , Dose Letal Mediana , Masculino , Poecilia/metabolismo , Espermatozoides/fisiologia
2.
Sci Total Environ ; 701: 134992, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31715484

RESUMO

The present investigation was designed to monitor the cytotoxic potential of Sodium Hypochlorite using lentil (Lens culinaris) as a bioindicator of toxicity. Sodium hypochlorite (NaClO), is a chemical compound that is used mainly for its disinfectant properties, its effect is widely toxic, which is why it is marketed in low concentrations and it is also a component in various products such as agrochemicals. In the present study the L. culinaris seeds were exposed to different NaClO dose 0, 0.2, 1, 3, 5 and 7 mg L-1 during 24, 48 and 72 h; timeslots in which the root growth was also studied. The cytotoxic potential of NaClO was determined by calculating the mitotic index (MI), calculating cellular anomalies (CA) and observing the longitudinal growth of the roots during the various time periods. The radicular growth was prolonged and it was observed that there was a greater growth at the dose of 1 and 7 mg L-1 in the time of 72 h. The cytotoxic effects could be analyzed in the mitotic index, since the higher the concentration, the lower the mitotic index, as observed in the dose of 7 mg L-1 where a reduction of the mitotic index of the meristematic cells is observed. The results indicate that NaClO has a cytotoxic effect that induces various types of chromosomal abnormalities. This indicates that Sodium Hypochlorite has a cytotoxic effect according to the increase in its dose. Therefore, Lens culinaris turned out to be a kind of appropriate bioindicator to study the cytotoxic effects of various potentially toxic substances.


Assuntos
Desinfetantes/toxicidade , Lens (Planta)/efeitos dos fármacos , Meristema/efeitos dos fármacos , Hipoclorito de Sódio/toxicidade
3.
Environ Health Perspect ; 127(11): 117006, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31755747

RESUMO

BACKGROUND: Drinking water disinfection inadvertently leads to the formation of numerous disinfection by-products (DBPs), some of which are cytotoxic, mutagenic, genotoxic, teratogenic, and potential carcinogens both in vitro and in vivo. OBJECTIVES: We investigated alterations to global gene expression (GE) in nontransformed human small intestine epithelial cells (FHs 74 Int) after exposure to six brominated and two chlorinated DBPs: bromoacetic acid (BAA), bromoacetonitrile (BAN), 2,6-dibromo-p-benzoquinone (DBBQ), bromoacetamide (BAM), tribromoacetaldehyde (TBAL), bromate (BrO3-), trichloroacetic acid (TCAA), and trichloroacetaldehyde (TCAL). METHODS: Using whole-genome cDNA microarray technology (Illumina), we examined GE in nontransformed human cells after 4h exposure to DBPs at predetermined equipotent concentrations, identified significant changes in gene expression (p≤0.01), and investigated the relevance of these genes to specific toxicity pathways via gene and pathway enrichment analysis. RESULTS: Genes related to activation of oxidative stress-responsive pathways exhibited fewer alterations than expected based on prior work, whereas all DBPs induced notable effects on transcription of genes related to immunity and inflammation. DISCUSSION: Our results suggest that alterations to genes associated with immune and inflammatory pathways play an important role in the potential adverse health effects of exposure to DBPs. The interrelationship between these pathways and the production of reactive oxygen species (ROS) may explain the common occurrence of oxidative stress in other studies exploring DBP toxicity. Finally, transcriptional changes and shared induction of toxicity pathways observed for all DBPs caution of additive effects of mixtures and suggest further assessment of adverse health effects of mixtures is warranted. https://doi.org/10.1289/EHP4945.


Assuntos
Desinfetantes/toxicidade , Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Água Potável , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos
4.
J Water Health ; 17(5): 683-690, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638020

RESUMO

The presence of disinfection by-products (DBPs) increases the mutagenicity of water and may pose adverse health effects. Gut microbiota exerts a fundamental role on host physiology, and how extrinsic perturbations influence its composition has been increasingly examined. However, the effect of DBPs on gut microbiota is still poorly understood. In the present study, adult zebrafish were exposed to different concentrations of dichloroacetamide (DCAcAm, an emerging nitrogenous DBP) for 30 days. Sequencing of 16S rRNA amplicons revealed a significant change in the richness and diversity of microbiota in the gut of DCAcAm-exposed zebrafish. At the phylum level, the abundance of Proteobacteria decreased and the abundance of Fusobacteria and Firmicutes increased significantly in the gut after exposure to 100 and 500 µg/L DCAcAm. At the genus level, the abundances of several bacteria which are considered pathogens or opportunistic pathogens in fish and closely related to fish metabolism, disease and inflammation (Aeromonas, Stenotrophomonas, Bacteroides and Ralstonia) increased in the DCAcAm-treated groups. Our results reveal that DBPs in drinking water potentially affect gut microbiota composition, which may contribute to the toxicity assessment of DBPs in future and provide new insight into the complex interactions between the DBPs in drinking water and host health.


Assuntos
Acetamidas/toxicidade , Desinfetantes/toxicidade , Microbioma Gastrointestinal , Purificação da Água , Peixe-Zebra/microbiologia , Animais , Desinfecção , Água Potável/química , RNA Ribossômico 16S
5.
J Water Health ; 17(5): 762-776, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638027

RESUMO

Disinfection is intended to improve drinking water quality and human health. Although disinfectants may transform organic matter and form disinfection by-products (DBPs), many are branded as cyto- and genotoxic. Traditionally, research focuses on the effects of DBPs on human health, but cytogenic impacts on aquatic organisms still remain ill defined. The current study examines the potential toxic effect of chloroform and iodoform (DBPs) on Cyprinus carpio, selected as a model organism. Fish specimens were exposed to various concentrations of DBPs primarily based on LD50 values, where acute toxicity was monitored for 96 h. Headspace SPME extraction through gas chromatography was employed to assess the effects of spiked DBPs doses in fish blood. Cytotoxicity was monitored using Comet assay. Tail length, tail DNA, and olive tail moment values were quantified to be significant (P < 0.05) as compared to control. A statistically significant (P < 0.05) decrease in all blood parameters (hematology) was observed. Changes in biochemical indices (glucose, total protein, and alanine aminotransferase (ALT)) were also significant. ALT secretion was significantly increased (93 ± 0.05 and 82.8 ± 0.1 U/L) at higher concentration compared to control (56 ± 0.1 U/L), suggesting liver damage. Results demonstrated that iodoform was statistically more damaging as compared to chloroform.


Assuntos
Carpas/fisiologia , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Dano ao DNA , Desinfecção , Hematologia , Humanos
6.
Chemosphere ; 237: 124475, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549636

RESUMO

Two commercial coating systems, each one consisting of both a primer and an antifouling ("System 1" based on Copper Oxide and "System 2" based on Zinc Oxide), have been analyzed in order to investigate their environmental impacts through Life Cycle Assessment (LCA) and laboratory tests. A cradle-to-grave analysis has been performed in order to quantify the environmental footprint of each coating solution and to define which element, material, or process mainly affect the environmental impact of such products. Moreover, it was performed a comparison between the different products to determine the most environmentally sustainable choice. In addition to LCA, several incubations of coated metal samples, by means of an innovative incubation system developed by the authors, have also been performed in marine water (Gulf of Naples, Mediterranean Sea, Italy), as critical environment favoring metal corrosion and biofouling generation. The life cycle analysis has showed that the production phase presents the highest environmental impact in almost all categories, mainly due to the use of chemical compounds. Moreover, after the laboratory tests, strong biotoxicity and contaminant diffusion, contributing to the marine toxicity potential, have been observed for both the commercial paints. As a final remark, there are straightforward indications of a strong need for anti-Microbial-Induced-Corrosion commercial coatings to substitute the toxic compounds with others in order to develop a greener solution.


Assuntos
Incrustação Biológica/prevenção & controle , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Cobre , Ecossistema , Itália , Vida , Mar Mediterrâneo , Metais/análise , Pintura , Óxido de Zinco/análise
7.
Chemosphere ; 234: 902-908, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31519098

RESUMO

An emerging class of unregulated disinfection byproducts, halobenzoquinones (HBQs), has gained recent interest following suggestions of enhanced toxicity compared to regulated disinfection byproducts. While the kinetics of HBQ hydrolysis in water have been well characterized, the stability of HBQs in cell culture media, a critical parameter when evaluating toxicity in vitro, has been overlooked. The objective of this study was: (1) to contrast the stability of a prevalent HBQ, 2,6-dichloro-1,4-benzoquinone (DCBQ), in cell culture media and water, and (2) to evaluate the cytotoxicity of parent and transformed DCBQ compounds as well as the ability of these compounds to generate intracellular reactive oxygen species (ROS) in normal human colon cells (CCD 841 CoN) and human liver cancer cells (HepG2). The half-life of DCBQ in cell media was found to be less than 40 min, compared to 7.2 h in water at pH 7. DCBQ induced a concentration-dependent decrease in cell viability and increase in ROS production in both cell lines. The parent DCBQ compound was found to induce significantly greater cytotoxicity compared to transformed DCBQ products. We demonstrate that the study design used by most published studies (i.e., extended exposure periods) has led to a potential underestimation of the cytotoxicity of HBQs by evaluating the toxicological profile primarily of transformed HBQs, rather than corresponding parent compounds. Future in vitro toxicological studies should account for HBQ stability in media to evaluate the acute cytotoxicity of parent HBQs.


Assuntos
Benzoquinonas/toxicidade , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Benzoquinonas/química , Desinfecção , Água Potável/química , Humanos , Hidrólise , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Purificação da Água
8.
Ecotoxicol Environ Saf ; 184: 109663, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31539807

RESUMO

Humidifier disinfectants have been widely used in Korea to prevent the growth of microorganisms in humidifier water. However, their use has been banned since 2011 after epidemiological studies reported humidifier disinfectant induced lung injury. In the present study, the developmental effects of exposure to two humidifier disinfectants (Oxy® and Wiselect) and their main component, polyhexamethylene guanidine (PHMG)-phosphate, were investigated in zebrafish embryos/larvae for seven days. The effects on triiodothyronine (T3) and thyroxine (T4) hormones, reactive oxygen species (ROS) generation, antioxidant enzyme activities, and changes in expression of the genes related to the hypothalamus-pituitary-thyroid (HPT) axis and oxidative stress were also investigated. Zebrafish embryos exposed to the highest concentration (amounts recommended for use by the manufacturers) of all tested humidifier disinfectants showed an increase in embryo coagulation, leading to death without hatching. Exposure to Oxy® and Wiselect resulted in significantly decreased body length, increased ROS generation and antioxidant enzyme activities, decreased T4, and up-regulated genes related to the HPT axis (trh, trß, and tpo) and oxidative damage (sod2 and gpx1b). The humidifier disinfectants and PHMG-phosphate could induce oxidative stress and disrupt thyroid hormone systems in zebrafish, leading to developmental retardation when used at sub-lethal concentrations. Potential effects of long-term exposure to humidifier disinfectants and mixture effects of several major components deserve further investigation.


Assuntos
Desinfetantes/toxicidade , Disruptores Endócrinos/toxicidade , Umidificadores/normas , Peixe-Zebra/crescimento & desenvolvimento , Animais , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , República da Coreia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/crescimento & desenvolvimento , Hormônios Tireóideos/metabolismo
9.
Sci Total Environ ; 692: 1267-1275, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539958

RESUMO

Humans are exposed to disinfection by-products (DBPs) mainly through drinking water ingestion and dermal contact. As an emerging class of nitrogenous DBPs (N-DBPs), haloacetamides (HAcAms) have been found to have significantly higher cytotoxicity than regulated DBPs. In this study, we investigated the cytotoxicity of HAcAms on two exposure pathway-related cell lines: human gastric epithelial GES-1 cells and immortalized keratinocytes HaCaT. Our results showed that the ranking order of cytotoxicity of 13 HAcAms was different between HaCaT and GES-1 cells. In addition, the 50% inhibitive concentration in HaCaT was 1.01-3.29 times that in GES-1. Further comparison among GES-1, HaCaT and CHO cell lines confirmed that different cell lines exhibited different sensitivity to the same compound. Importantly, HAcAms showed 5.83-7.13 × 104 times higher toxicity than the well-clarified DBP chloroform, clearly demonstrating the increased toxicity of HAcAms. Finally, using a novel high-content screening (HCS) analysis, we found that 39.29% of chlorinated HAcAms, 42.86% of brominated HAcAms and 16.07% of iodinated HAcAms significantly affected at least one of the cell-health parameters, such as nuclear size, membrane permeability, mitochondrial membrane potential, or cytochrome c release, in GES-1 or HaCaT cells. Thus, brominated HAcAms appear to have stronger effects under the sublethal exposure dose, possibly causing cytotoxicity via apoptosis. Together, our study provides new insights to the toxicity of HAcAms and a comprehensive toxicology dataset for health risk assessment.


Assuntos
Acetamidas/toxicidade , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Desinfecção , Humanos , Testes de Toxicidade
10.
Mar Pollut Bull ; 149: 110492, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31437615

RESUMO

Marine antifouling paints (MAPs) are widely used to prevent organisms from fouling vessel hulls. When scraped from vessels as part of regular maintenance, MAP particles discharged into the seawater become a source of toxic substances, like copper (Cu), to the environment, and biocides leaching from them are known to cause toxic effects on non-target organisms. We investigated the toxicity of MAP particles collected from a Bermuda boatyard on local copepod communities using two experiments. Copepod survival, Chlorophyll a and total dissolved Cu concentrations were measured before and after MAP particles addition. In an acute toxicity test, the addition of 0.3 g/L of MAP particles resulted in 0% copepods survival within 88 h and increased dissolved Cu by 1.8 µM. A significant inverse relationship was observed between copepod survival and MAP particles quantity, highlighting the toxic effects of MAP particles from boat maintenance on copepod communities in the surrounding seawater.


Assuntos
Copépodes , Cobre , Desinfetantes , Animais , Bermudas , Clorofila A , Copépodes/efeitos dos fármacos , Cobre/farmacologia , Cobre/toxicidade , Desinfetantes/farmacologia , Desinfetantes/toxicidade , Pintura , Água do Mar , Navios , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 696: 133930, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470329

RESUMO

Harmful algal blooms (HABs) and the invasion of smooth cordgrass (Spartina alterniflora) have become important environmental problems in intertidal zones of China, which caused serious damage on the coastal ecological systems. By using S. alterniflora as algaecide, this helps to utilize this invasive plant, in addition, is expected to help to control the expansion of S. alterniflora. The potential of S. alterniflora in HABs mitigation was investigated on controlling Phaeocystis globosa (haptophyceae) and Prorocentrum donghaiense (dinophyceae). The growth of both HABs species was significantly inhibited at high concentrations, and P. globosa was more sensitive than P. donghaiense. Furthermore, the extracts of S. alterniflora reduced the effective quantum yield, photosynthetic efficiency, and relative maximal electron transport rate of both algal species at high concentrations, which implies a disruption on their photosynthetic system. Flavonoids, which were previously known as antialgal chemicals, were found to be abundant in the extracts of S. alterniflora by UPLC-MS detection. Our results revealed that the potential of S. alterniflora as a novel antialgal agent for controlling HABs, simultaneously, resource utilization possibility for the invasive plant S. alterniflora.


Assuntos
Dinoflagelados , Desinfetantes/toxicidade , Haptófitas , Extratos Vegetais/toxicidade , Poaceae , China , Proliferação Nociva de Algas/efeitos dos fármacos , Espécies Introduzidas , Áreas Alagadas
12.
Ecotoxicol Environ Saf ; 182: 109423, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31325810

RESUMO

Indole derivatives derived from the secondary metabolites of marine organisms possess the excellent antifouling property to inhibit the biofouling. These compounds and their analogues are simple in structure and have been proven to have low toxicity and bioaccumulation. Therefore, the active indole antifoulants are expected to replace the potentially toxic antifoulants which are widely used in current antifouling coatings. Seven indole derivatives were synthesized via the Friedel-Crafts alkylation reaction and were characterized by IR spectra, 1H NMR, 13C NMR and elemental analysis. Inhibition experiments against marine algae and bacteria were conducted, and the partial inhibition rates of algae and bacteria were more than 90%. This outcome indicates that indole derivatives possess excellent properties suitable for use as targeting anti-fouling compound for algae and bacteria. Non-invasive Micro-test Technology (NMT) reveals that the Ca2+ efflux of Platymonas subcordiformis dramatically increased in the presence of indole derivatives, which is inferred to be the molecular mechanism for inhibiting the growth of marine algae. The antifouling coatings containing indole derivatives were prepared and subjected to an antifouling test in a marine environment, and the results show that N-(1-H-5-bromo-indole-3-ylmethyl) benzamide and N-(1-H-2-phenyl-indole-3-ylmethyl) benzamide possess better antifouling performance compared to copper pyrithione (CuPT). According to these results, indole derivatives in this study might become novel and promising antifoulants.


Assuntos
Incrustação Biológica/prevenção & controle , Desinfetantes/toxicidade , Indóis/toxicidade , Organismos Aquáticos , Bactérias/crescimento & desenvolvimento
13.
Ecotoxicol Environ Saf ; 182: 109455, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31344592

RESUMO

Irgarol 1051 is highly toxic to marine autotrophs and has been widely used as an antifouling booster biocide. This study tested the toxicities of two s-triazine derivatives of Irgarol, namely M2 (3-[4-tert-butylamino-6-methylthiol-s-triazin-2-ylamino]propionaldehyde) and M3 (2-methylthio-4,6-bis-tert-butylamino-s-triazine) to two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana through standard acute (96h) and chronic (7d) growth inhibition tests. Results showed that both of the two chemicals significantly inhibited the growth of S. costatum (M2: 96h-EC50 = 6789.7 µg L-1, 7d-EC50 = 3503.7 µg L-1; M3: 96h-EC50 = 45193.9 µg L-1, 7d-EC50 = 5330.0 µg L-1) and T. pseudonana (M2: 96h-EC50 = 366.2 µg L-1, 7d-EC50 = 312.5 µg L-1; M3: 96h-EC50 = 2633.4 µg L-1, 7d-EC50 = 710.5 µg L-1), while their toxicity effects were much milder than Irgarol and its major degradation product M1. By comparing with previous findings, the susceptibilities of these s-triazine compounds to two tested species were ranked as: Irgarol > M1 ≫ M2 > M3. This study promotes future research efforts on better understanding of the ecotoxicities of M2 and M3, and incorporating such information to improve the current monitoring, risk assessment and regulation of the use of Irgarol.


Assuntos
Diatomáceas/efeitos dos fármacos , Desinfetantes/toxicidade , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Diatomáceas/crescimento & desenvolvimento , Desinfetantes/química , Especificidade da Espécie , Relação Estrutura-Atividade , Testes de Toxicidade , Triazinas/química , Poluentes Químicos da Água/química
14.
Environ Sci Pollut Res Int ; 26(26): 27112-27127, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31317435

RESUMO

In this study, we screened for the antifouling activity of 15 species plant extracts from Brazilian the Brazilian Caatinga Fabaceae against the initial colonization of natural marine bacterial biofilm. We also investigated the potential toxicity of extracts against planktonic and benthic non-target organisms. Aqueous extracts of plants collected in the Caatinga biome (PE, Brazil) were prepared and tested at different concentration levels (0, 0.5, 1, 2, 4, and 8 mg mL-1). Natural marine bacterial consortium was inoculated in multi-well plates and incubated with the different treatments for 48 h. The biofilm and planktonic bacterial density and biomass inhibition were evaluated along with biofilm biomass eradication. The extracts that showed the highest bacterial biofilm inhibition were evaluated for toxicity against microalgae and crustaceans. The biofilm and planktonic bacterial inhibition potential were evaluated through flow cytometry and spectrophotometry. The selected treatments were evaluated for their toxicity using the microalgae Chaetoceros calcitrans, the copepod Nitokra sp., and the brine shrimp Artemia salina as bioindicators. Our work demonstrates the biotechnological potential of Fabaceae plant compounds as a safe antifouling alternative. Anadenanthera colubrina var. cebil fruits and Apuleia leiocarpa leaf extracts showed antibiofilm activity (≥ 80%), while Myroxylon peruiferum and Dioclea grandiflora leaf extracts showed antibiotic activity. These extracts were safe to planktonic and benthic non-target organisms. The results of this study point to potential substitutes to highly toxic antifouling paints and shed light on the prospect of a yet to be explored biome for more sustainable alternatives in biofouling research.


Assuntos
Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Artemia/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Brasil , Copépodes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Desinfetantes/toxicidade , Ecotoxicologia/métodos , Microalgas/efeitos dos fármacos , Pintura , Plâncton/efeitos dos fármacos , Plâncton/microbiologia , Extratos Vegetais/toxicidade
15.
Chemosphere ; 235: 194-204, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31255760

RESUMO

Ballast water managements systems (BWMS) installed on vessels may use active substances to inactivate organisms. This paper provides new insights in the global issue of noxious disinfection by-products (DBP) discharge with ballast water, and the related risk assessment for human health. The GESAMP ballast water working group plays a role in the certification process of BWMS that make use of active substances evaluating potential negative effects. We analyzed all BWMS that passed GESAMP final approval over a decade until 2017 providing an overview of chemicals in the discharged ballast water generated by BWMS. We used these data to calculate the chemical load humans may be exposed to for two different commercial ports (Koper, Slovenia and Hamburg, Germany). None of the chemicals in this study reached levels of concern that would indicate a risk for humans after exposure to chemicals present in the discharged ballast water. Nevertheless, although this exposure only adds to a lesser degree to the overall exposure to disinfection by-products, some chemicals, such as tribromomethane, have carcinogenic properties. In case studies we show which chemicals have the largest contribution to the aggregated exposure of humans. We note that tribromomethane, despite its low bio-concentration factor (BCF), may accumulate in fat, when fish are continuously exposed to DBPs during low-level chlorination. Since this figure would give a higher value for the internal dose for tribromomethane from seafood consumption than the current BCF in the GISIS database, the calculated value may underestimate the contribution of tribromomethane, and possibly also other DBPs.


Assuntos
Desinfetantes/toxicidade , Exposição Ambiental/análise , Medição de Risco/métodos , Água do Mar/análise , Navios , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Animais , Desinfetantes/análise , Desinfecção/métodos , Exposição Ambiental/efeitos adversos , Peixes , Alemanha , Halogenação , Humanos , Água do Mar/química , Eslovênia , Poluentes Químicos da Água/análise
16.
Ecotoxicol Environ Saf ; 182: 109415, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299471

RESUMO

Erythromycin (ERY), azithromycin (AZI) and telithromycin (TEL) are widely-used macrolide antibiotics that are frequently detected in various water environments, including resource water and drinking water. In the performed chlorination disinfection process, at least 10, 20 and 200 new disinfection byproducts of ERY, AZI and TEL, respectively, were observed (the mixtures of the disinfection byproducts of ERY, AZI and TEL were named ERY-M, AZI-M and TEL-M, respectively). There is limited information available regarding their comparative toxicities, and their potential health risks are still unknown. In this study, the Jurkat cell line was used to compare the toxicities of the disinfection byproduct mixtures and their precursor compounds. The cell viability results indicated that the toxicity of ERY-M may not be enhanced after disinfection by chlorination. In contrast, at the same concentrations, AZI-M and TEL-M induced more significant inhibitory effects on cell viability than their parent compounds. Additionally, the total antioxidant capacity (T-AOC) and cell cytokine release (including interleukin-2, interleukin-8 and tumor necrosis factor-α) analyses of AZI-M and TEL-M further verified these results. Our findings demonstrate that the cytotoxicity of AZI and TEL was enhanced during the chlorination disinfection process. This investigation will provide substantial new details related to the toxicity of the mixed disinfection byproducts (DBPs) of ERY, AZI and TEL generated in the chlorination disinfection process.


Assuntos
Antibacterianos/toxicidade , Desinfetantes/toxicidade , Antibacterianos/análise , Desinfetantes/análise , Desinfecção/métodos , Água Potável/análise , Eritromicina/análise , Halogenação , Cetolídeos , Testes de Toxicidade , Poluentes Químicos da Água/análise , Purificação da Água/métodos
17.
Chemosphere ; 233: 273-281, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176128

RESUMO

Chlorine plays a primary role in the disinfection of drinking water and wastewater due to its effectiveness as a biocide; however, there is evidence of the formation of toxic byproducts from its application, and this has promoted the search for alternatives. Alternative disinfectants can be effective in the inactivation of pathogenic microorganisms and are less damaging to human health and aquatic ecosystems. However, more information is needed on the effect of residual concentrations on the environment. This work compares the ecotoxicological effects of PAA disinfectants and the active chlorine of calcium hypochlorite in relation to the organism Dugesia tigrina (planaria), in terms of the acute effects: LC50, and chronic effects: feeding, locomotion, regeneration, reproduction and fertility. The results indicated that the active chlorine was more toxic than PAA, with LC50 (96 h) of 2.63 mg.L-1 and 3.16 mg.L-1, respectively. Sub-lethal exposure to active chlorine was more toxic when compared to PAA, and there was evidence of significantly reduced feeding and locomotion, causing a greater delay in regeneration and impairment in reproduction and fertility. The results allowed the comparison of the two disinfectants using half-life constants of the compounds and the lowest observed effect level (LOEC) of the oxidants. Chlorine represents a greater risk to the ecosystem for a longer period. The results obtained in this study can help in the establishment of discharge limits for PAA in water bodies.


Assuntos
Cloro/toxicidade , Desinfetantes/toxicidade , Ecotoxicologia/métodos , Ácido Peracético/toxicidade , Planárias/efeitos dos fármacos , Animais , Compostos de Cálcio/química , Desinfecção/métodos , Biomarcadores Ambientais/efeitos dos fármacos , Feminino , Fertilidade , Planárias/fisiologia , Regeneração/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
18.
Toxicol In Vitro ; 60: 389-399, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31195087

RESUMO

A well-known cationic biocide of guanidine polymer family, polyhexamethylene guanidine hydrochloride (PHMG) has been tested against smooth muscle cells isolated from swine myometrium, synaptosomes of rat brain nerve terminals and rat blood platelets for the membrane action. It was established that PHMG blocked the activity of Na+,K+-ATPase of smooth muscle cells plasma membrane by 82.2 ±â€¯0.9% at a concentration of 7 ppm, whilst a dose-dependent depolarization of synaptosomes and platelets became appreciable at 100-500 ppm. Comparative studies by the methods of mass spectrometry (MALDI-TOF and PDMS-TOF), viscosimetry, dynamic light scattering and model phospholipid membranes revealed PHMG oligomers with various number of repeat units (8-16) that formed K+-selective potential-dependent pores in sterol-free phosphatidylethanolamine-containing phospholipid bilayers at a concentration of 1 ppm. Obtained results suggest that besides acidic lipids and membrane proteins phosphatidylethanolamine and cholesterol are the other major factors responsible for the differences between PHMG-induced plasma membrane depolarization of microbial and eukaryotic cells and thus, diverse modes of PHMG membrane action.


Assuntos
Plaquetas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Desinfetantes/toxicidade , Guanidinas/toxicidade , Miócitos de Músculo Liso/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Animais , Bicamadas Lipídicas/metabolismo , Masculino , Fosfolipídeos/metabolismo , Porosidade , Ratos Wistar
19.
J Toxicol Sci ; 44(6): 415-424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31168028

RESUMO

Polyhexamethylene guanidine phosphate (PHMG-p) is an active ingredient of humidifier disinfectants and causes severe lung injury resulting in pulmonary fibrosis. Current evidence indicates that pulmonary fibrosis is initiated as a result of epithelial damage, which can lead to an inflammatory response and fibrotic cell infiltration; however, the toxic mechanism of PHMG-p on the epithelium is still unknown. In this study, the toxic response of PHMG-p on human lung epithelial cells was evaluated, and its mechanisms associated with reactive oxygen species (ROS), DNA damage, and its relationship with p53 activation were investigated. The toxic responses of epithelial cells were assessed by flow cytometry analysis and western blot analysis. The results revealed that PHMG-p induced G1/S arrest and apoptosis in A549 cells. Interestingly, p53 was activated by PHMG-p treatment and p53 knockdown suppressed PHMG-p-induced apoptosis and cell cycle arrest. PHMG-p promoted ROS generation and consequently increased the expression of DNA damage markers such as ATM and H2AX phosphorylation. The antioxidant N-acetylcysteine reduced the expression of phosphorylated ATM and H2AX, and the ATM inhibitor, caffeine, inhibited p53 activation. Taken together, our results demonstrate that PHMG-p triggered G1/S arrest and apoptosis through the ROS/ATM/p53 pathway in lung epithelial cells.


Assuntos
Desinfetantes/toxicidade , Células Epiteliais/efeitos dos fármacos , Guanidinas/toxicidade , Células A549 , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Células Epiteliais/metabolismo , Humanos , Pulmão/citologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Sci Total Environ ; 677: 1-8, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31051379

RESUMO

The ecotoxicological evaluation of combined sewer overflow (CSO) disinfectants, with their degradation products, is important for ensuring safe use. For this form of toxicity, data for organisms representing different trophic levels are needed. We studied the toxicity of the alternative disinfectants peracetic acid (PAA), performic acid (PFA) and chlorine dioxide (ClO2) and their degradation products hydrogen peroxide (H2O2) and chlorite (ClO2-) on Vibrio fischeri and Daphnia magna. ClO2 was more toxic to D. magna (EC50 < 0.09 mg/L) and PFA was most toxic to V. fischeri (EC50 0.24 mg/L). EC50 of PFA, PAA, ClO2, H2O2 and ClO2- on D. magna were 0.85, 0.78, <0.09, 3.46 and 0.36 mg/L, respectively. Similarly, EC50 of PFA, PAA, ClO2, H2O2 and ClO2- on V. fischeri were 0.24, 0.42, 1.10, 5.67 and 30.93 mg/L, respectively. For both PFA and ClO2, the degradation in water was faster than for PAA, H2O2 and chlorite. Using these data together with literature values, we derived environmental quality standards. By combining these with typical concentrations of disinfectants used for CSOs, we estimated the dilution required for discharging CSOs after disinfection, which can be used for quick assessment of the environmental feasibility of disinfection systems at specific CSO sites. Minimal dilutions in the receiving water, in the orders of 44, 70 or 138-fold, are needed for ClO2, PFA and PAA, respectively. This highlights PFA as the most widely applicable disinfectant, taking into account both its efficiency and the lower risk of unwanted environmental effects.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cloretos/toxicidade , Compostos Clorados/toxicidade , Desinfecção , Formiatos/toxicidade , Peróxido de Hidrogênio/toxicidade , Óxidos/toxicidade , Ácido Peracético/toxicidade , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA