Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.107
Filtrar
1.
Nat Commun ; 11(1): 5172, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057164

RESUMO

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Poluentes Atmosféricos/economia , Betacoronavirus , Dióxido de Carbono/economia , Infecções por Coronavirus/economia , Infecções por Coronavirus/prevenção & controle , Monitoramento Ambiental , Combustíveis Fósseis/análise , Combustíveis Fósseis/economia , Humanos , Indústrias/economia , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/economia , Pandemias/economia , Pandemias/prevenção & controle , Pneumonia Viral/economia , Pneumonia Viral/prevenção & controle
2.
Sci Total Environ ; 741: 140515, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887014

RESUMO

An ecologic analysis was conducted to explore the correlation between air pollution, and COVID-19 cases and fatality rates in London. The analysis demonstrated a strong correlation (R2 > 0.7) between increment in air pollution and an increase in the risk of COVID-19 transmission within London boroughs. Particularly, strong correlations (R2 > 0.72) between the risk of COVID-19 fatality and nitrogen dioxide and particulate matter pollution concentrations were found. Although this study assumed the same level of air pollution across a particular London borough, it demonstrates the possibility to employ air pollution as an indicator to rapidly identify the city's vulnerable regions. Such an approach can inform the decisions to suspend or reduce the operation of different public transport modes within a city. The methodology and learnings from the study can thus aid in public transport's response to COVID-19 outbreak by adopting different levels of human-mobility reduction strategies based on the vulnerability of a given region.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus , Cidades , Humanos , Londres , Dióxido de Nitrogênio/análise , Material Particulado/análise
3.
Sci Total Environ ; 741: 140465, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887012

RESUMO

BACKGROUND: Long-term exposure to air pollution is linked with increased risk of adverse health outcomes, but the evidence for the association between nitrogen dioxide (NO2) and mortality is weak because of the inadequate adjustment of potential confounders and limited spatial resolution of the exposure assessment. Moreover, there are concerns about the independent effects of NO2. Therefore, we examined the association between NO2 long-term exposure and all-cause and cause-specific mortality. METHODS: We included participants who were enrolled in health checkups in Okayama City, Japan, in 2006 or 2007 and were followed until 2016. We used a land-use regression model to estimate the average NO2 concentrations from 2006 to 2007 and allocated them to the participants. We estimated hazard ratios (HRs) for a 10-µg/m3 increase in NO2 levels for all-cause or cause-specific mortality using Cox proportional hazard models. RESULTS: After excluding the participants who were assigned with outlier exposures, a total of 73,970 participants were included in the analyses. NO2 exposure was associated with increased risk of mortality and the HRs and their confidence intervals were 1.06 (95% CI: 1.02, 1.11) for all-cause, 1.02 (0.96, 1.09) for cardiopulmonary, and 1.36 (1.14, 1.63) for lung cancer mortality. However, the elevated risks became equivocal after the adjustment for fine particulate matter except lung cancer. CONCLUSION: Long-term exposure to NO2 was associated with increased risk of all-cause, cardiopulmonary, and lung cancer mortality. The elevated risk for lung cancer was still observable even after adjustment for fine particulate matter.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Causas de Morte , Poluentes Atmosféricos/toxicidade , Exposição Ambiental/análise , Humanos , Japão , Dióxido de Nitrogênio/análise , Material Particulado/análise
4.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20200188, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981442

RESUMO

We suggest that the unprecedented and unintended decrease of emissions of air pollutants during the COVID-19 lock-down in 2020 could lead to declining seasonal ozone concentrations and positive impacts on crop yields. An initial assessment of the potential effects of COVID-19 emission reductions was made using a set of six scenarios that variously assumed annual European and global emission reductions of 30% and 50% for the energy, industry, road transport and international shipping sectors, and 80% for the aviation sector. The greatest ozone reductions during the growing season reached up to 12 ppb over crop growing regions in Asia and up to 6 ppb in North America and Europe for the 50% global reduction scenario. In Europe, ozone responses are more sensitive to emission declines in other continents, international shipping and aviation than to emissions changes within Europe. We demonstrate that for wheat the overall magnitude of ozone precursor emission changes could lead to yield improvements between 2% and 8%. The expected magnitude of ozone precursor emission reductions during the Northern Hemisphere growing season in 2020 presents an opportunity to test and improve crop models and experimentally based exposure response relationships of ozone impacts on crops, under real-world conditions. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Assuntos
Poluição do Ar/análise , Betacoronavirus , Infecções por Coronavirus/epidemiologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Ozônio/análise , Pandemias , Pneumonia Viral/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Europa (Continente) , Humanos , Modelos Biológicos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/toxicidade , Medição de Risco , Estações do Ano
5.
Ecotoxicol Environ Saf ; 203: 111018, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888591

RESUMO

Few multicity studies have been conducted in developing countries to distinguish the acute effects of ambient nitrogen dioxide (NO2) on the years of life lost (YLL) from different subtypes of stroke. We aimed to differentiate the associations between NO2 exposure and YLL from major pathological types of stroke in China, and estimate the relevant economic loss. A time-series study was conducted to explore the associations between short-term NO2 exposure and YLL from ischaemic and haemorrhagic stroke from 2013 to 2017 in 48 Chinese cities. Daily NO2 data and stroke mortality counts for each city were obtained from the National Urban Air Quality Real-time Publishing Platform and Chinese Center for Disease Control and Prevention, respectively. Generalized additive models were applied to estimate the cumulative effects of NO2 in each city, and meta-analysis was used to combine the city-specific estimates. The relevant economic loss was estimated using the method of the value per statistical life year (VSLY). A 10 µg/m3 increase in ambient NO2 concentration on the present day and previous day (lag 0-1) would lead to relatively higher increments in percentage change of YLL from ischaemic stroke (0.82%, 95% CI: 0.46%, 1.19%) than haemorrhagic stroke (0.46%, 95% CI: 0.09%, 0.84%). The association was significantly stronger in the low-education population than high-education population for ischaemic stroke. Furthermore, significantly higher association was found in South China than those in North China for both subtypes of stroke. Economic loss due to excess YLL from ischaemic stroke related to NO2 exposure was higher than that for haemorrhagic stroke. Our study indicated higher association and economic loss of ischaemic than haemorrhagic stroke related to NO2 exposure in China, which informed priorities for type-specific stroke prevention strategies related to NO2 pollution and vulnerable population protection.


Assuntos
Poluentes Atmosféricos/análise , Isquemia Encefálica/epidemiologia , Expectativa de Vida/tendências , Dióxido de Nitrogênio/análise , Material Particulado/análise , Acidente Vascular Cerebral/epidemiologia , Idoso , Poluição do Ar/análise , China/epidemiologia , Cidades , Exposição Ambiental/análise , Feminino , Humanos , Masculino
6.
Environ Monit Assess ; 192(10): 646, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32939661

RESUMO

We investigated the associations between the daily variations of coarse particulate matter (PM10) and/or sulfur dioxide (SO2) and hospital admissions for asthma and/or chronic obstructive pulmonary disease (COPD) diseases in Kirsehir, Center of Anatolia of Turkey. We analyzed the poison generalized linear model (GLM) to analyze the association between ambient air pollutants such as PM10 and SO2 and asthma and/or COPD admissions. We investigated single-lag days and multi-lag days for the risk increase in asthma, COPD, asthma, and/or COPD hospital admissions PM10, SO2, and PM10 with SO2 per 10 µg/m3. In single-lag day model a 10 µg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.027 (95% CI:1.022-1.033) and 1.069 (95% CI:1.062, 1.077) for asthma. A 10 µg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.029 (95% CI:1.022-1.035) and 1.065 (95% CI:1.056, 1.075) for COPD. A 10 µg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.028 (95% CI:1.024-1.032) and 1.068 (95% CI:1.062, 1.074) for asthma and/or COPD. It was found that some lag structures were related with PM10 and SO2. Significant lags were detected in some lag structures from the previous first day until the previous eighth day (lag 1 to lag 7) in the asthma, COPD, and asthma and/or COPD hospital admissions in the model created with PM10 with SO2 both in the single-lag day model and in the multi-lag day model. Our study that used GLM in time series analysis showed that PM10 and/or SO2 short-term exposure in single-lag day and multi-lag day models was related with increased asthma, COPD, and asthma and/or COPD hospital admissions in the city between 2016 and 2019 until the previous-eighth day.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Asma , Doença Pulmonar Obstrutiva Crônica , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Dióxido de Enxofre/análise , Turquia
7.
Occup Environ Med ; 77(11): 798-800, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895319

RESUMO

OBJECTIVES: To examine the impact of COVID-19 lockdown restrictions in March/April 2020 on concentrations of nitrogen dioxide (NO2) and ambient fine particulate matter (PM2.5) air pollution measured at roadside monitors across Scotland by comparing data with previous years. METHODS: Publicly available data of PM2.5 concentrations from reference monitoring systems at sites across Scotland were extracted for the 31-day period immediately following the imposition of lockdown rules on 23 March 2020. Similar data for 2017, 2018 and 2019 were gathered for comparison. Mean period values were calculated from the hourly data and logged values compared using pairwise t-tests. Weather effects were corrected using meteorological normalisation. RESULTS: NO2 concentrations were significantly lower in the 2020 lockdown period than in the previous 3 years (p<0.001). Mean outdoor PM2.5 concentrations in 2020 were much lower than during the same period in 2019 (p<0.001). However, despite UK motor vehicle journeys reducing by 65%, concentrations in 2020 were within 1 µg/m3 of those measured in 2017 (p=0.66) and 2018 (p<0.001), suggesting that traffic-related emissions may not explain variability of PM2.5 in outdoor air in Scotland. CONCLUSIONS: The impact of reductions in motor vehicle journeys during COVID-19 lockdown restrictions may not have reduced ambient PM2.5 concentrations in some countries. There is also a need for work to better understand how movement restrictions may have impacted personal exposure to air pollutants generated within indoor environments.


Assuntos
Poluição do Ar/análise , Infecções por Coronavirus/prevenção & controle , Dióxido de Nitrogênio/análise , Pandemias/prevenção & controle , Material Particulado/análise , Pneumonia Viral/prevenção & controle , Quarentena , Poluentes Atmosféricos/análise , Infecções por Coronavirus/epidemiologia , Monitoramento Ambiental/métodos , Humanos , Pneumonia Viral/epidemiologia , Escócia , Viagem/legislação & jurisprudência , Emissões de Veículos/análise
8.
Nat Commun ; 11(1): 4229, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843631

RESUMO

Scarlet fever has resurged in China starting in 2011, and the environment is one of the potential reasons. Nationwide data on 655,039 scarlet fever cases and six air pollutants were retrieved. Exposure risks were evaluated by multivariate distributed lag nonlinear models and a meta-regression model. We show that the average incidence in 2011-2018 was twice that in 2004-2010 [RR = 2.30 (4.40 vs. 1.91), 95% CI: 2.29-2.31; p < 0.001] and generally lower in the summer and winter holiday (p = 0.005). A low to moderate correlation was seen between scarlet fever and monthly NO2 (r = 0.21) and O3 (r = 0.11). A 10 µg/m3 increase of NO2 and O3 was significantly associated with scarlet fever, with a cumulative RR of 1.06 (95% CI: 1.02-1.10) and 1.04 (95% CI: 1.01-1.07), respectively, at a lag of 0 to 15 months. In conclusion, long-term exposure to ambient NO2 and O3 may be associated with an increased risk of scarlet fever incidence, but direct causality is not established.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Escarlatina/diagnóstico , Poluição do Ar/efeitos adversos , China/epidemiologia , Exposição Ambiental/efeitos adversos , Geografia , Humanos , Incidência , Dióxido de Nitrogênio/análise , Dinâmica não Linear , Ozônio/análise , Material Particulado/análise , Fatores de Risco , Escarlatina/epidemiologia , Escarlatina/etiologia , Estações do Ano , Análise Espaço-Temporal
9.
Ecotoxicol Environ Saf ; 202: 110923, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800210

RESUMO

Many studies have reported that exposure to ambient air pollution has adverse effects on health. However, there are little researches to explore the relationship between ambient air pollution and chronic sinusitis (CS). From January 1 2015 to December 31 2018, a time-series study were carried out to investigate the acute adverse roles of six criteria ambient air pollutants (fine particulate matter [PM2.5], inhalable particulate matter [PM10], nitrogen dioxide [NO2], sulfur dioxide [SO2], ozone [O3], and carbon monoxide [CO]) in hospital outpatients with CS in Xinxiang, China. Then, an over-dispersed Poisson generalized additive model was utilized to analyzed the relationships. In total, 183,943 hospital outpatient cases of CS were identified during the study period. We found that a 10 µg/m3 increase in PM2.5, PM10, SO2, NO2, and CO corresponded to 0.48% (95% confidence interval: 0.22-0.74%), 0.33% (0.16-0.50%), 0.88% (0.13-1.62%), 1.98% (1.31-2.64%), and 0.05% (0.03-0.07%) increments, respectively, in CS outpatients on the current day. The young group (<15 years of age) was more susceptible than the adult or elderly groups. These results suggested that outdoor air pollutants might increase CS outpatient, especially among youth in Xinxiang. Precautions and protective measures should be strengthened to reduce the air pollution level in the future.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Exposição por Inalação/estatística & dados numéricos , Sinusite/epidemiologia , Adolescente , Adulto , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Monóxido de Carbono/análise , China/epidemiologia , Doença Crônica , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Pacientes Ambulatoriais , Ozônio/análise , Material Particulado/análise , Sinusite/induzido quimicamente , Dióxido de Enxofre/análise , Adulto Jovem
10.
Environ Pollut ; 266(Pt 3): 115266, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32745901

RESUMO

Urban environments are characterized by multiple exposures that may influence body mass index (BMI) growth in early life. Previous studies are few, with inconsistent results and no evaluation of simultaneous exposures. Thus, this study aimed to assess the associations between exposure to air pollution, green spaces and built environment characteristics, and BMI growth trajectories from 0 to 5 years. This longitudinal study used data from an electronic primary care health record database in Catalonia (Spain), including 79,992 children born between January 01, 2011 and December 31, 2012 in urban areas and followed until 5 years of age. Height and weight were measured frequently during childhood and BMI (kg/m2) was calculated. Urban exposures were estimated at census tract level and included: air pollution (nitrogen dioxide (NO2), particulate matter <10 µm (PM10) and <2.5 µm (PM2.5)), green spaces (Normalized Difference Vegetation Index (NDVI) and % green space) and built environment (population density, street connectivity, land use mix, walkability index). Individual BMI trajectories were estimated using linear spline multilevel models with several knot points. In single exposure models, NO2, PM10, PM2.5, and population density were associated with small increases in BMI growth (e.g. ß per IQR PM10 increase = 0.023 kg/m2, 95%CI: 0.013, 0.033), and NDVI, % of green spaces and land use mix with small reductions in BMI growth (e.g. ß per IQR % green spaces increase = -0.015 kg/m2, 95%CI: -0.026, -0.005). These associations were strongest during the first two months of life. In multiple exposure models, most associations were attenuated, with only those for PM10 and land use mix remaining statistically significant. This large longitudinal study suggests that early life exposure to air pollution, green space and built environment characteristics may be associated with small changes in BMI growth trajectories during the first years of life, and that it is important to account for multiple exposures in urban settings.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Índice de Massa Corporal , Ambiente Construído , Criança , Pré-Escolar , Exposição Ambiental/análise , Humanos , Estudos Longitudinais , Dióxido de Nitrogênio/análise , Material Particulado/análise , Espanha
11.
PLoS One ; 15(8): e0236331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756613

RESUMO

This paper investigates event extraction and early event classification in contiguous spatio-temporal data streams, where events need to be classified using partial information, i.e. while the event is ongoing. The framework incorporates an event extraction algorithm and an early event classification algorithm. We apply this framework to synthetic and real problems and demonstrate its reliability and broad applicability. The algorithms and data are available in the R package eventstream, and other code in the supplementary material.


Assuntos
Algoritmos , Mineração de Dados/métodos , Big Data , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Tecnologia de Fibra Óptica/métodos , Dióxido de Nitrogênio/análise
12.
Ecotoxicol Environ Saf ; 204: 111035, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32768746

RESUMO

Coronavirus disease 2019 (COVID-19) was first detected in December 2019 in Wuhan, China, with 11,669,259 positive cases and 539,906 deaths globally as of July 8, 2020. The objective of the present study was to determine whether meteorological parameters and air quality affect the transmission of COVID-19, analogous to SARS. We captured data from 29 provinces, including numbers of COVID-19 cases, meteorological parameters, air quality and population flow data, between Jan 21, 2020 and Apr 3, 2020. To evaluate the transmissibility of COVID-19, the basic reproductive ratio (R0) was calculated with the maximum likelihood "removal" method, which is based on chain-binomial model, and the association between COVID-19 and air pollutants or meteorological parameters was estimated by correlation analyses. The mean estimated value of R0 was 1.79 ± 0.31 in 29 provinces, ranging from 1.08 to 2.45. The correlation between R0 and the mean relative humidity was positive, with coefficient of 0.370. In provinces with high flow, indicators such as carbon monoxide (CO) and 24-h average concentration of carbon monoxide (CO_24 h) were positively correlated with R0, while nitrogen dioxide (NO2), 24-h average concentration of nitrogen dioxide (NO2_24 h) and daily maximum temperature were inversely correlated to R0, with coefficients of 0.644, 0.661, -0.636, -0.657, -0.645, respectively. In provinces with medium flow, only the weather factors were correlated with R0, including mean/maximum/minimum air pressure and mean wind speed, with coefficients of -0.697, -0.697, -0.697 and -0.841, respectively. There was no correlation with R0 and meteorological parameters or air pollutants in provinces with low flow. Our findings suggest that higher ambient CO concentration is a risk factor for increased transmissibility of the novel coronavirus, while higher temperature and air pressure, and efficient ventilation reduce its transmissibility. The effect of meteorological parameters and air pollutants varies in different regions, and requires that these issues be considered in future modeling disease transmissibility.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Poluição do Ar/análise , Betacoronavirus , Monóxido de Carbono/análise , China/epidemiologia , Coronavirus , Humanos , Dióxido de Nitrogênio/análise , Pandemias , Material Particulado/análise , Temperatura , Tempo (Meteorologia)
13.
Sci Total Environ ; 745: 141023, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738690

RESUMO

We study the variation of tropospheric NO2 vertical column densities (TropNO2VCDs) over East China during the 2005-2020 lunar new year (LNY) holiday seasons to understand factors on the reduction of tropospheric NO2 during the outbreak of COVID-19 in East China using Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) observations. TropNO2VCDs from OMI and TROPOMI reveal sharp reductions of 33%-72% during 2020 LNY holiday season and the co-occurring outbreak of COVID-19 relative to the climatological mean of 2005-2019 LNY holiday seasons, and 22%-67% reduction relative to the 2019 LNY holiday season. These reductions of TropNO2VCD occur majorly over highly polluted metropolitan areas with condensed industrial and transportation emission sources. COVID-19 control measures including lockdowns and shelter-in-place regulations are the primary reason for these tropospheric NO2 reductions over most areas of East China in 2020 LNY holiday season relative to the 2019 LNY holiday season, as COVID-19 control measures may explain ~87%-90% of tropospheric NO2 reduction in Wuhan as well as ~62%-89% in Beijing, Yangtze River Delta (YRD) and Sichuan Basin areas. The clean air regulation of China also contributes significantly to reductions of tropospheric NO2 simultaneously and is the primary factor in the Pearl River Delta (PRD) area, by explaining ~56%-63% of the tropospheric NO2 reduction there.


Assuntos
Poluentes Atmosféricos/análise , Infecções por Coronavirus , Ozônio/análise , Pandemias , Pneumonia Viral , Pequim , Betacoronavirus , China/epidemiologia , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio/análise , Estações do Ano
14.
Sci Total Environ ; 746: 140915, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745847

RESUMO

Growing evidence suggests air pollutants may harm the central nervous system, potentially impacting mental health. However, such impacts of air pollutants on mental health and the sub-populations most affected remain poorly understood, especially in California. We examined the relationship between short-term ambient carbon monoxide (CO), nitrogen dioxide (NO2), and mental health-related emergency department (ED) visits in California from 2005 to 2013. Daily mean concentrations of the pollutants were acquired from the U.S. Environmental Protection Agency Air Quality System Data Mart ground monitoring data. Moving averages of pollutant concentrations were linked to counts of ED visits obtained from the California Office of Statewide Health Planning and Development. Seven mental health outcomes, defined by International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes, were studied: all mental disorders, bipolar disorder, depression, schizophrenia, substance abuse, homicide/inflicted injury, and suicide/self-harm. Monitor-level associations were estimated with quasi-Poisson regression models and combined using random-effects meta-analysis. CO and NO2 were found to be positively associated with ED visits due to homicide/inflicted injury, with the warm season (May-October) driving the CO association. An interquartile range (IQR) (0.28 ppm) increase in two-day average CO during the warm season was associated with a 3.13% (95% confidence interval (CI): 1.43, 4.84) elevation in risk of an ED visit due to homicide/inflicted injury (n = 122,749 ED visits). An IQR (10.79 ppb) increase in two-day average NO2 was associated with a 2.60% (95% CI: 1.17, 4.05) elevation in risk of an ED visit due to homicide/inflicted injury (n = 206,919 ED visits). Subgroup analyses indicated children, Hispanics, and males were particularly vulnerable. Except for an inverse relationship between NO2 and substance abuse, neither pollutant was robustly associated with visits due to other mental health morbidities. Our results suggest short-term elevations in CO and NO2 may promote violent behavior. Further investigation in other populations and ranges of air pollution exposure is warranted.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , California/epidemiologia , Monóxido de Carbono/análise , Criança , Serviço Hospitalar de Emergência , Humanos , Masculino , Saúde Mental , Óxido Nítrico , Dióxido de Nitrogênio/análise , Material Particulado/análise , Estados Unidos
15.
Sci Total Environ ; 747: 141321, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771791

RESUMO

The outbreak of COVID-19 has now created the largest pandemic and the World health organization (WHO) has declared social distancing as the key precaution to confront such type of infections. Most of the countries have taken protective measures by the nationwide lockdown. The purpose of this study is to understand the effect of lockdown on air pollutants and to analyze pre-monsoon (April and May) cloud-to-ground and inter-cloud lightning activity in relation to air pollutants i.e. suspended Particulate matter (PM10), Nitrogen dioxides (NO2) Sulfur dioxide (SO2), Ozone (O3) and Aerosol concentration (AC) in a polluted tropical urban megacities like Kolkata. After the strict lockdown the pollutants rate has reduced by more than 40% from the pre-lockdown period in the Kolkata megacity. So, decreases of PM10, NO2, SO2, O3 and AC have a greater effect on cloud lightning flashes in the pre-monsoon period. In the previous year (2019), the pre-monsoon average result shows a strong positive relation between the lightning and air pollutants; PM10 (R2 = 0.63), NO2 (R2 = 0.63), SO2 (R2 = 0.76), O3 (R2 = 0.68) and AC (R2 = 0.83). The association was relatively low during the lock-down period (pre-monsoon 2020) and the R2 values were 0.62, 0.60, 0.71, 0.64 and 0.80 respectively. Another thing is that the pre-monsoon (2020) lightning strikes decreased by 49.16% compared to the average of previous years (2010 to 2019). The overall study shows that the reduction of surface pollution in the thunderstorm environment is strongly related to the reduction of lightning activity where PM10 and AC are the key pollutants in the Kolkata megacity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infecções por Coronavirus , Relâmpago , Ozônio , Pandemias , Pneumonia Viral , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Betacoronavirus , Humanos , Índia , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Dióxido de Enxofre/análise
16.
Environ Pollut ; 266(Pt 1): 115369, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32810816

RESUMO

Long-term air pollution exposure has been suggested to increase the risk of attention-deficit/hyperactivity disorder (ADHD). However, the association between short-term air pollution exposure and ADHD-related outcomes is still unknown. We investigated the associations between short-term exposure to particulate matter with an aerodynamic diameter ≤10 µm (PM10), nitrogen oxide (NO2), and sulfur dioxide (SO2) and hospital admissions with a principal diagnosis of ADHD among adolescents (age 10-19 years) in 16 regions of the Republic of Korea from 2013 to 2015. We estimated the region-specific relative risks (RRs) and 95% confidence intervals (CIs) from quasi-Poisson regressions adjusted for potential confounders, considering single-day and moving average lag. Consequently, we performed meta-analyses to pool the region-specific estimates. The risks of ADHD-related hospital admissions were increased in the single-day and moving average lag models for PM10 (largest association for lag 1 in the single-day lag model, RR = 1.12, 95% CI: 1.05, 1.20; lag 0-2 in the moving average lag model, RR = 1.17, 95% CI: 1.07, 1.27), NO2 (lag 3, RR = 1.47, 95% CI: 1.25, 1.73; lag 1-3, RR = 1.68, 95% CI: 1.38, 2.04), and SO2 (lag 1, RR = 1.27, 95% CI: 1.14, 1.41; lag 1-3, RR = 1.29, 95% CI: 1.12, 1.49). The associations were similar between boys and girls, but they were stronger among adolescents aged 15-19 years than those aged 10-14 years for NO2 and SO2. In conclusion, the results indicate that short-term exposure to PM10, NO2, and SO2 may be a risk factor for the exacerbation of ADHD symptoms, leading to hospitalization.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Adulto , Criança , Exposição Ambiental/análise , Feminino , Hospitalização , Humanos , Masculino , Dióxido de Nitrogênio/análise , Material Particulado/análise , República da Coreia , Dióxido de Enxofre/análise , Fatores de Tempo , Adulto Jovem
17.
Environ Pollut ; 266(Pt 3): 115422, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829032

RESUMO

Few studies have explored the links of air pollution and childhood lipid profiles and dyslipidemias. We aimed to explore this topic in Chinese children and adolescents. This study included 12,814 children aged 7-18 years who participated in a national survey in 2013. Satellite-based spatial-temporal model was used to predict 3-y (2011-2013) average particles with diameters ≤ 1.0 µm (PM1), ≤2.5 µm (PM2.5), ≤10 µm (PM10), and nitrogen dioxide (NO2) concentrations. Generalized linear mixed models were employed to evaluate the relationships of air pollution and total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and dyslipidemias. Every 10 µg/m3 increase in PM1, PM2.5, PM10, and NO2 was related to increases of 6.20% [95% confidence interval (CI): 2.44, 10.10], 5.31% (95%CI: 0.41, 10.44), 3.49% (95%CI: 0.97, 6.08), and 5.25% (95%CI: 1.56, 9.07) in TC, respectively. The odds ratio of hypercholesterolemia associated with a 10 µg/m3 increase in PM1, PM2.5, and NO2 was 2.15 (95%CI: 1.27, 3.65), 1.70 (95%CI: 1.12, 2.60), and 1.43 (95%CI: 1.05, 1.93), respectively. No associations were found for air pollution and other blood lipids. Long-term PM1, PM2.5, PM10, and NO2 exposures were positively associated with TC levels and risk of hypercholesterolemia in children and adolescents.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Adolescente , Criança , China , Exposição Ambiental/análise , Humanos , Lipídeos , Dióxido de Nitrogênio/análise , Material Particulado/análise
18.
Sci Total Environ ; 742: 140516, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629257

RESUMO

In March of 2020, the province of Ontario declared a State of Emergency (SOE) to reduce the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease (COVID-19). This disruption to the economy provided an opportunity to measure change in air pollution when the population spends more time at home with fewer trips. Hourly air pollution observations were obtained for fine particulate matter, nitrogen dioxide, nitrogen oxides and ozone from the Ontario air monitoring network for 2020 and the previous five years. The analysis is focused on a five-week period during the SOE with a previous five-week period used as a control. Fine particulate matter did not show any significant reductions during the SOE. Ozone concentrations at 12 of the 32 monitors were lower than any of the previous five-years; however, four locations were above average. Average ozone concentrations were 1 ppb lower during the SOE, but this ranged at individual monitors from 1.5 ppb above to 4.2 ppb below long-term conditions. Nitrogen dioxide and nitrogen oxides demonstrated a reduction across Ontario, and both pollutants displayed their lowest concentrations for 22 of 29 monitors. Individual monitors ranged from 1 ppb (nitrogen dioxide) and 5 ppb (nitrogen oxides) above average to 4.5 (nitrogen dioxide) and 7.1 ppb (nitrogen oxides) below average. Overall, both nitrogen dioxide and nitrogen oxides demonstrated a reduction across Ontario in response to the COVID-19 SOE, ozone concentrations suggested a possible reduction, and fine particulate matter has not varied from historic concentrations.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Infecções por Coronavirus , Coronavirus , Ozônio/análise , Pandemias , Pneumonia Viral , Betacoronavirus , Humanos , Dióxido de Nitrogênio/análise , Ontário , Material Particulado/análise
19.
Bull Environ Contam Toxicol ; 105(2): 198-204, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32671411

RESUMO

The corona virus-2019 (COVID-19) is ravaging the whole world. Scientists have been trying to acquire more knowledge on different aspects of COVID-19. This study attempts to determine the effects of COVID-19, on a large population, which has already been persistently exposed to various atmospheric pollutants in different parts of India. Atmospheric pollutants and COVID-19 data, obtained from online resources, were used in this study. This study has shown strong positive correlation between the concentration of atmospheric nitrogen dioxide (NO2) and both the absolute number of COVID-19 deaths (r = 0.79, p < 0.05) and case fatality rate (r = 0.74, p < 0.05) in India. Statistical analysis of the amount of annual fossil fuels consumption in transportation, and the annual average concentration of the atmospheric PM2.5, PM10, NO2, in the different states of India, suggest that one of the main sources of atmospheric NO2 is from fossil fuels combustion in transportation. It is suggested that homeless, poverty-stricken Indians, hawkers, roadside vendors, and many others who are regularly exposed to vehicular exhaust, may be at a higher risk in the COVID-19 pandemic.


Assuntos
Poluentes Atmosféricos/análise , Infecções por Coronavirus/epidemiologia , Dióxido de Nitrogênio/análise , Pneumonia Viral/epidemiologia , Emissões de Veículos/análise , Poluição do Ar/análise , Infecções por Coronavirus/mortalidade , Humanos , Índia/epidemiologia , Pandemias , Material Particulado/análise , Pneumonia Viral/mortalidade
20.
Artigo em Inglês | MEDLINE | ID: mdl-32679925

RESUMO

Statistical methods such as multiple linear regression (MLR) and classification and regression tree (CART) analysis were used to build prediction models for the levels of pollutant concentrations in Macao using meteorological and air quality historical data to three periods: (i) from 2013 to 2016, (ii) from 2015 to 2018, and (iii) from 2013 to 2018. The variables retained by the models were identical for nitrogen dioxide (NO2), particulate matter (PM10), PM2.5, but not for ozone (O3) Air pollution data from 2019 was used for validation purposes. The model for the 2013 to 2018 period was the one that performed best in prediction of the next-day concentrations levels in 2019, with high coefficient of determination (R2), between predicted and observed daily average concentrations (between 0.78 and 0.89 for all pollutants), and low root mean square error (RMSE), mean absolute error (MAE), and biases (BIAS). To understand if the prediction model was robust to extreme variations in pollutants concentration, a test was performed under the circumstances of a high pollution episode for PM2.5 and O3 during 2019, and the low pollution episode during the period of implementation of the preventive measures for COVID-19 pandemic. Regarding the high pollution episode, the period of the Chinese National Holiday of 2019 was selected, in which high concentration levels were identified for PM2.5 and O3, with peaks of daily concentration exceeding 55 µg/m3 and 400 µg/m3, respectively. The 2013 to 2018 model successfully predicted this high pollution episode with high coefficients of determination (of 0.92 for PM2.5 and 0.82 for O3). The low pollution episode for PM2.5 and O3 was identified during the 2020 COVID-19 pandemic period, with a low record of daily concentration for PM2.5 levels at 2 µg/m3 and O3 levels at 50 µg/m3, respectively. The 2013 to 2018 model successfully predicted the low pollution episode for PM2.5 and O3 with a high coefficient of determination (0.86 and 0.84, respectively). Overall, the results demonstrate that the statistical forecast model is robust and able to correctly reproduce extreme air pollution events of both high and low concentration levels.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Férias e Feriados , Material Particulado/análise , Pneumonia Viral/epidemiologia , Infecções por Coronavirus/virologia , Previsões , Humanos , Macau , Modelos Estatísticos , Dióxido de Nitrogênio/análise , Ozônio/análise , Pandemias , Pneumonia Viral/virologia , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA