Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.095
Filtrar
1.
Life Sci ; 284: 119935, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508760

RESUMO

OBJECTIVE: Atherosclerotic vascular disease remains the principal cause of death and disability among patients with type 2 diabetes. Unfortunately, the problem is not adequately resolved by therapeutic strategies with currently available drugs or approaches that solely focus on optimal glycemic control. To identify the key contributors and better understand the mechanism of diabetic atherosclerotic vascular disease, we aimed to elucidate the key genetic characteristics and pathological pathways in atherosclerotic vascular disease through nonbiased bioinformatics analysis and subsequent experimental demonstration and exploration in diabetic atherosclerotic vascular disease. METHODS AND RESULTS: Sixty-eight upregulated and 23 downregulated genes were identified from the analysis of gene expression profiles (GSE30169 and GSE6584). A comprehensive bioinformatic assay further identified that ferroptosis, a new type of programmed cell death and HMOX1 (a gene that encodes heme oxygenase), were vital factors in atherosclerotic vascular disease. We further demonstrated that diabetes significantly increased ferroptosis and HMOX1 levels compared to normal controls. Importantly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated diabetic atherosclerosis, suggesting the causative role of ferroptosis in diabetic atherosclerosis development. At the cellular level, Fer-1 ameliorated high glucose high lipid-induced lipid peroxidation and downregulated ROS production. More importantly, HMOX1 knockdown attenuated Fe2+ overload, reduced iron content and ROS, and alleviated lipid peroxidation, which led to a reduction in ferroptosis in diabetic human endothelial cells. CONCLUSIONS: We demonstrated that HMOX1 upregulation is responsible for the increased ferroptosis in diabetic atherosclerosis development, suggesting that HMOX1 may serve as a potential therapeutic or drug development target for diabetic atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/genética , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Ferroptose , Heme Oxigenase-1/genética , Regulação para Cima , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/complicações , Aterosclerose/patologia , Cicloexilaminas/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Progressão da Doença , Comportamento Alimentar , Feminino , Ferroptose/efeitos dos fármacos , Perfilação da Expressão Gênica , Glutationa/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sobrecarga de Ferro/complicações , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Knockout , NADP/metabolismo , Fenilenodiaminas/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
2.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360761

RESUMO

Regulated/activated protein kinase (PRAK) plays a crucial role in modulating biological function. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high-fat diet (HFD). Wild-type and PRAK-/- mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance tests and insulin tolerance tests were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Western blot was employed to determine cellular signaling pathway. HFD-induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared with wild-type littermates. As compared with wild-type mice, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high-fat diet intervention. High-fat diet intervention displayed a decline in fractional shortening and ejection fraction. However, deletion of PRAK exacerbated the decline in cardiac function as compared with wild-type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and ßMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared with wild-type controls. Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


Assuntos
Cardiomegalia/enzimologia , Diabetes Mellitus Experimental/enzimologia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Volume Sistólico , Remodelação Ventricular
3.
Arterioscler Thromb Vasc Biol ; 41(9): 2469-2482, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320834

RESUMO

Objective: Critical limb ischemia is a major complication of diabetes characterized by insufficient collateral vessel development and proper growth factor signaling unresponsiveness. Although mainly deactivated by hypoxia, phosphatases are important players in the deregulation of proangiogenetic pathways. Previously, SHP-1 (Scr homology 2-containing phosphatase-1) was found to be associated with the downregulation of growth factor actions in the diabetic muscle. Thus, we aimed to gain further understanding of the impact of SHP-1 on smooth muscle cell (SMC) function under hypoxic and diabetic conditions. Approach and Results: Despite being inactivated under hypoxic conditions, high glucose level exposure sustained SHP-1 phosphatase activity in SMC and increased its interaction with PDGFR (platelet-derived growth factor receptor)-ß, thus reducing PDGF proangiogenic actions. Overexpression of an inactive form of SHP-1 fully restored PDGF-induced proliferation, migration, and signaling pathways in SMC exposed to high glucose and hypoxia. Nondiabetic and diabetic mice with deletion of SHP-1 specifically in SMC were generated. Ligation of the femoral artery was performed, and blood flow was measured for 4 weeks. Blood flow reperfusion, vascular density and maturation, and limb survival were all improved while vascular apoptosis was attenuated in diabetic SMC-specific SHP-1 null mice as compared to diabetic mice. Conclusions: Diabetes and high glucose level exposure maintained SHP-1 activity preventing hypoxia-induced PDGF actions in SMC. Specific deletion of SHP-1 in SMC partially restored blood flow reperfusion in the diabetic ischemic limb. Therefore, local modulation of SHP-1 activity in SMC could represent a potential therapeutic avenue to improve the proangiogenic properties of SMC under ischemia and diabetes.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus Experimental/enzimologia , Angiopatias Diabéticas/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Bovinos , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Transdução de Sinais
4.
Int J Biol Macromol ; 184: 289-296, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119546

RESUMO

Inhibiting the activity of the intestinal enzyme α-amylase that catalyzes the degradation of starch into glucose can control blood glucose and provide an essential way for the treatment of Type-II diabetes mellitus (T2DM). Here, we compared the structural information of chondroitin sulfate (CS) from different origins and the effects on activity of α-amylase and blood glucose have been investigated. The inhibitory effects of shark and porcine CSs against α-amylase activity is obvious with IC50 values of 11.97 and 14.42 mg/ml, respectively, but the bovine CS almost no effect. From the data of fluorescence spectroscopic analyses, CSs from shark and pig quench Try fluorescence intensity of the enzyme, whereas bovine CS induces an increase. In vivo, oral administration of shark and porcine CSs efficiently suppresses postprandial blood glucose levels in normal and diabetic mice. Our study found that CSs from different sources showed different biological functions even if both molecular weight and disaccharide subunit composition are almost the same, and demonstrated that the CSs from shark and pig as α-amylase inhibitors could be regarded as a novel functional food ingredient in T2DM management.


Assuntos
Sulfatos de Condroitina/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , alfa-Amilases/antagonistas & inibidores , Administração Oral , Animais , Glicemia/efeitos dos fármacos , Bovinos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/enzimologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Masculino , Camundongos , Tubarões , Especificidade da Espécie , Estreptozocina , Suínos , Resultado do Tratamento
5.
Oxid Med Cell Longev ; 2021: 6657529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986917

RESUMO

The cardioprotective effect of sevoflurane postconditioning (SPostC) is lost in diabetes that is associated with cardiac phosphatase and tensin homologue on chromosome 10 (PTEN) activation and phosphoinositide 3-kinase (PI3K)/Akt inactivation. T-LAK cell-originated protein kinase (TOPK), a mitogen-activated protein kinase- (MAPKK-) like serine/threonine kinase, has been shown to inactivate PTEN (phosphorylated status), which in turn activates the PI3K/Akt signaling (phosphorylated status). However, the functions of TOPK and molecular mechanism underlying SPostC cardioprotection in nondiabetes but not in diabetes remain unknown. We presumed that SPostC exerts cardioprotective effects by activating PTEN/PI3K/Akt through TOPK in nondiabetes and that impairment of TOPK/PTEN/Akt blocks diabetic heart sensitivity to SPostC. We found that in the nondiabetic C57BL/6 mice, SPostC significantly attenuated postischemic infarct size, oxidative stress, and myocardial apoptosis that was accompanied with enhanced p-TOPK, p-PTEN, and p-Akt. These beneficial effects of SPostC were abolished by either TOPK kinase inhibitor HI-TOPK-032 or PI3K/Akt inhibitor LY294002. Similarly, SPostC remarkably attenuated hypoxia/reoxygenation-induced cardiomyocyte damage and oxidative stress accompanied with increased p-TOPK, p-PTEN, and p-Akt in H9c2 cells exposed to normal glucose, which were canceled by either TOPK inhibition or Akt inhibition. However, either in streptozotocin-induced diabetic mice or in H9c2 cells exposed to high glucose, the cardioprotective effect of SPostC was canceled, accompanied by increased oxidative stress, decreased TOPK phosphorylation, and impaired PTEN/PI3K/Akt signaling. In addition, TOPK overexpression restored posthypoxic p-PTEN and p-Akt and decreased cell death and oxidative stress in H9c2 cells exposed to high glucose, which was blocked by PI3K/Akt inhibition. In summary, SPostC prevented myocardial ischemia/reperfusion injury possibly through TOPK-mediated PTEN/PI3K/Akt activation and impaired activation of this signaling pathway may be responsible for the loss of SPostC cardioprotection by SPostC in diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hiperglicemia/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sevoflurano/farmacologia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/enzimologia , Coração/efeitos dos fármacos , Humanos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Inibidores da Agregação Plaquetária/farmacologia , Distribuição Aleatória , Ratos , Transdução de Sinais/efeitos dos fármacos
6.
Exp Eye Res ; 207: 108559, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848522

RESUMO

Diabetic retinopathy is a multifactorial microvascular complication, and its pathogenesis hasn't been fully elucidated. The irreversible oxidation of cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) was increased in the type 1 diabetic retinal vasculature. SERCA2 C674S knock-in (SKI) mouse line that half of C674 was replaced by serine 674 (S674) was used to study the effect of C674 inactivation on retinopathy. Compared with wild type (WT) mice, SKI mice had increased number of acellular capillaries and pericyte loss similar to those in type 1 diabetic WT mice. In the retina of SKI mice, pro-apoptotic proteins and intracellular Ca2+-dependent signaling pathways increased, while anti-apoptotic proteins and vessel density decreased. In endothelial cells, C674 inactivation increased the expression of pro-apoptotic proteins, damaged mitochondria, and induced cell apoptosis. These results suggest that a possible mechanism of retinopathy induced by type 1 diabetes is the interruption of calcium homeostasis in the retina by oxidation of C674. C674 is a key to maintain retinal health. Its inactivation can cause retinopathy similar to type 1 diabetes by promoting apoptosis. SERCA2 might be a potential target for the prevention and treatment of diabetic retinopathy.


Assuntos
Cisteína/genética , Retinopatia Diabética/enzimologia , Retículo Endoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/enzimologia , Adenoviridae , Animais , Apoptose , Western Blotting , Calcineurina/metabolismo , Capilares/enzimologia , Capilares/patologia , Cisteína/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/genética , Retinopatia Diabética/patologia , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Introdução de Genes , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Vasos Retinianos/enzimologia , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina
7.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802826

RESUMO

Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO's effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Frutas/química , Hiperglicemia/dietoterapia , Hipoglicemiantes/farmacologia , Opuntia/química , Extratos Vegetais/farmacologia , Sementes/química , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/enzimologia , Hiperglicemia/metabolismo , Concentração Inibidora 50 , Cinética , Camundongos , Marrocos , alfa-Amilases Pancreáticas/metabolismo , Extratos Vegetais/toxicidade , Plantas Medicinais/química , Ratos , Ratos Wistar , Transportador 1 de Glucose-Sódio/metabolismo , alfa-Glucosidases/metabolismo
8.
Toxicol Appl Pharmacol ; 421: 115533, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848515

RESUMO

Decreased activity of AMP-activated protein kinase (AMPK) is implicated in the pathogenesis of diabetic cardiomyopathy (DCM). Recent evidence suggests a crosstalk between cinacalcet and AMPK activation. This study investigated the effects of cinacalcet on cardiac remodeling and dysfunction in type 2 diabetic rats (T2DM). High fat diet for 4 weeks combined with single intraperitoneal injection of streptozotocin (30 mg/kg) was used to induce type 2 diabetes in rats. Diabetic rats were either orally treated with vehicle, 5 or 10 mg/kg cinacalcet for 4 weeks. Control rats were fed standard chow diet and intraperitoneally injected with citrate buffer. T2DM rats showed lower body weight (BW), hyperglycemia and dyslipidemia, along with increased heart weight (HW) and HW/BW ratio. Masson's trichrome stained cardiac sections revealed massive fibrosis in T2DM rats. There were increased TGF-ß1 and hydroxyproline levels, coupled with up-regulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in hearts of T2DM rats. These alterations were associated with redox imbalance and impaired cardiac functions. Decreased phosphorylation of AMPK at threonine172 residue was found in T2DM hearts. Cinacalcet for 4 weeks significantly activated AMPK and alleviated cardiac remodeling and dysfunction in a dose-dependent manner, without affecting blood glucose, serum calcium and phosphorus levels. Cinacalcet increased the mitochondrial DNA content, and expressions of PGC-1α, UCP-3, beclin-1 and LC3-II/LC3-I ratio. Cinacalcet decreased the pro-apoptotic Bax, while increased the anti-apoptotic Bcl-2 in cardiac tissue of T2DM rats. These findings might highlight cinacalcet as an alternative therapy to combat the development and progression of DCM.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cinacalcete/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Fibrose , Hemodinâmica/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais , Estreptozocina
9.
BMC Cardiovasc Disord ; 21(1): 142, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731005

RESUMO

BACKGROUND: The aim of the present study was to investigate whether the disappearance of ischemic post-processing (IPO) in the myocardium of diabetes mellitus (DM) is associated with the increase of succinate dehydrogenase-flavin protein (SDHA). METHODS: A total of 50 Sprague Dawley rats, weighing 300-400 g, were divided into 5 groups according to the random number table method, each with 10 rats. After DM rats were fed a high-fat and -sugar diet for 4 weeks, they were injected with Streptozotocin to establish the diabetic rat model. Normal rats were fed the same regular diet for the same number of weeks. Next, the above rats were taken to establish a cardiopulmonary bypass (CPB) model. Intraperitoneal glucose tolerance test (IPGTT) and oral glucose tolerance test (OGTT) were used to detect whether the DM rat model was established successfully. Taking blood from the femoral artery to collect the blood-gas analysis indicators, and judged whether the CPB model is established. After perfusion was performed according to the experimental strategy, the area of myocardial infarction (MI), and serum creatine kinase isoenzyme (CK-MB) and cardiac troponin (CTnI) levels were measured. Finally, the relative mRNA and protein expression of SDHA was detected. RESULTS: The OGTT and IPGTT suggested that the DM rat model was successfully established. The arterial blood gas analysis indicated that the CPB model was successfully established. As compared with the N group, the heart function of the IR group was significantly reduced, the levels of myocardial enzyme markers, the area of MI, as well as the relative mRNA and protein expression of SDHA, were all increased. As compared with the IR group, the CK-MB and CTnI levels in the IPO group, the MI area, relative mRNA and protein expression of SDHA decreased. As compared with the IPO group, the myocardial enzyme content in the DM + IPO group, the MI area and the relative mRNA and protein expression of SDHA increased. As compared with the DM + IPO group, in the DM + IPO + dme group, the myocardial enzyme content, area of MI and relative mRNA and protein expression were all decreased. CONCLUSION: IPO can inhibit the expression of SDHA, reduce MIRI and exert a cardioprotective effect in the normal rats. However, the protective effect of IPO disappears in the diabetic rats. The inhibitor dme combined with IPO can increase the expression of SDHA and restore the protective effect of IPO in DM myocardia.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Complexo II de Transporte de Elétrons/metabolismo , Pós-Condicionamento Isquêmico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/genética , Inibidores Enzimáticos/farmacologia , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos Sprague-Dawley , Regulação para Cima
10.
Diab Vasc Dis Res ; 18(2): 1479164121999033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33722087

RESUMO

AIMS: Peripheral artery disease is a complication of diabetes leading to critical hindlimb ischemia. Diabetes-induced inhibition of VEGF actions is associated with the activation of protein kinase Cδ (PKCδ). We aim to specifically investigate the role of PKCδ in endothelial cell (EC) function and VEGF signaling. METHODS: Nondiabetic and diabetic mice, with (ec-Prkcd-/-) or without (ec-Prkcdf/f) endothelial deletion of PKCδ, underwent femoral artery ligation. Blood flow reperfusion was assessed up to 4 weeks post-surgery. Capillary density, EC apoptosis and VEGF signaling were evaluated in the ischemic muscle. Src homology region 2 domain-containing phosphatase-1 (SHP-1) phosphatase activity was assessed in vitro using primary ECs. RESULTS: Ischemic muscle of diabetic ec-Prkcdf/f mice exhibited reduced blood flow reperfusion and capillary density while apoptosis increased as compared to nondiabetic ec-Prkcdf/f mice. In contrast, blood flow reperfusion and capillary density were significantly improved in diabetic ec-Prkcd-/- mice. VEGF signaling pathway was restored in diabetic ec-Prkcd-/- mice. The deletion of PKCδ in ECs prevented diabetes-induced VEGF unresponsiveness through a reduction of SHP-1 phosphatase activity. CONCLUSIONS: Our data provide new highlights in mechanisms by which PKCδ activation in EC contributed to poor collateral vessel formation, thus, offering novel therapeutic targets to improve angiogenesis in the diabetic limb.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Células Endoteliais/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Neovascularização Fisiológica , Proteína Quinase C-delta/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Bovinos , Células Cultivadas , Circulação Colateral , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/patologia , Isquemia/genética , Isquemia/fisiopatologia , Camundongos Knockout , Densidade Microvascular , Proteína Quinase C-delta/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais
11.
Mol Cell Biochem ; 476(7): 2675-2684, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666828

RESUMO

Inhibition of succinate dehydrogenase (SDH) by Dimethyl Malonate (DiMal) reduces cardiac ischemia-reperfusion (IR) injury. We investigated the cardioprotective effect of DiMal in a rat model during advancing type 2 diabetes. Zucker Diabetic Fatty rats and lean controls were investigated corresponding to prediabetes, onset and mature diabetes. Hearts were mounted in an isolated perfused model, and subjected to IR for investigation of infarct size (IS) and mitochondrial respiratory control ratio (RCR). DiMal was administered for 10 min before ischemia. Compared with age-matched non-diabetic rats, prediabetic rats had larger IS (49 ± 4% vs. 36 ± 2%, p = 0.007), rats with onset diabetes smaller IS (51 ± 3% vs. 62 ± 3%, p = 0.05) and rats with mature diabetes had larger IS (79 ± 3% vs. 69 ± 2%, p = 0.06). At the prediabetic stage DiMal did not alter IS. At onset of diabetes DiMal 0.6 mM increased IS in diabetic but not in non-diabetic control rats (72 ± 4% vs. 51 ± 3%, p = 0.003). At mature diabetes DiMal 0.1 and 0.6 mM reduced IS (68 ± 3% vs. 79 ± 3% and 64 ± 5% vs. 79 ± 3%, p = 0.1 and p = 0.01), respectively. DiMal 0.1 mM alone reduced IS in age-matched non-diabetic animals (55 ± 3% vs. 69 ± 2% p = 0.01). RCR was reduced at mature diabetes but not modulated by DiMal. Modulation of SDH activity results in variable infarct size reduction depending on presence and the stage of diabetes. Modulation of SDH activity may be an unpredictable cardioprotective approach.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão Miocárdica , Miocárdio , Succinato Desidrogenase , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Masculino , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Ratos , Ratos Zucker , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo
12.
Oxid Med Cell Longev ; 2021: 3109294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623633

RESUMO

Diabetes mellitus contributes to macro- and microvascular complications, leading to adverse cardiovascular events. This study examined the effects of vitamin D deficiency on the vascular function and tissue oxidative status in the microcirculation of diabetic rats and to determine whether these effects can be reversed with calcitriol (active vitamin D metabolite) supplementation. Streptozotocin-induced diabetic rats were fed for 10 weeks with control diet (DC) or vitamin D-deficient diet without (DD) or with oral calcitriol supplementation (0.15 µg/kg) in the last four weeks (DDS) (10 rats each group). A nondiabetic rat group that received control diet was also included (NR). After 10 weeks, rats were sacrificed; mesenteric arterial rings with and without endothelium were studied using wire myograph. Western blotting of the mesenteric arterial tissue was performed to determine the protein expression of endothelial nitric oxide synthase (eNOS) enzyme. Antioxidant enzyme superoxide dismutase (SOD) activity and oxidative stress marker malondialdehyde (MDA) levels in the mesenteric arterial tissue were also measured. The DC group had significantly lower acetylcholine-induced relaxation and augmented endothelium-dependent contraction, with reduced eNOS expression, compared to NR rats. In mesenteric arteries of DD, acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent relaxations were lower than those in DC. Calcitriol supplementation in DDS restored endothelium-dependent relaxation. Mesenteric artery endothelium-dependent contraction of DD was greater than DC; it was not affected by calcitriol supplementation. The eNOS protein expression and SOD activity were significantly lower while MDA levels were greater in DD compared to DC; these effects were not observed in DDS that received calcitriol supplementation. In conclusion, vitamin D deficiency causes eNOS downregulation and oxidative stress, thereby impairing the vascular function and posing an additional risk for microvascular complications in diabetes. Calcitriol supplementation to diabetics with vitamin D deficiency could potentially be useful in the management of or as an adjunct to diabetes-related cardiovascular complications.


Assuntos
Calcitriol/farmacologia , Diabetes Mellitus Experimental/enzimologia , Endotélio Vascular/fisiopatologia , Microvasos/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Regulação para Cima , Deficiência de Vitamina D/complicações , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Suplementos Nutricionais , Endotélio Vascular/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Microvasos/efeitos dos fármacos , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
13.
J Tradit Chin Med ; 41(1): 107-116, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522203

RESUMO

OBJECTIVE: To observe the therapeutic effect of Shenzhu Tiaopi granule (, STG) on insulin resistance (IR) in the liver of diabetic Goto-Kakizaki (GK) rat and investigate underlying mechanisms. METHODS: Ten 12-week-old male Wistar rats were assigned as normal control (NC) group, while 40 12-week-old male specific-pathogen-free GK rats were randomly divided into four experimental groups, 10 diabetic rats each. Animals were fed with a normal diet. Fasting blood glucose (FBG), water intake, and body weight were recorded during 6 weeks of daily single-dose treatment: STG low-dose group, 4.5 g/kg (STG-L); STG high-dose group,9 g/kg (STG-H); metformin group, 0.1 g/kg (MET); model control (MC) and NC groups, equal volume of 0.9% NaCl solution. The serum fasting insulin (FINS), C-Peptide and IR index (HOMA-IR) were detected every 2 weeks during treatment and glucose tolerance was measured in the 3rd day before the material was taken. After the 6-week STG treatment, Liver tissues were processed for hematoxylin-eosin staining to perform light microscopy analysis and for assessing expression and distribution of insulin receptor substrates (IRS-1) and glucose transporter (GLUT-4) by immunohistochemistry analysis. Expression levels of liver kinase B1 (LKB1) / adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway proteins, including LKB1, phospho-AMPK (p-AMPK)/AMPK, phospho-mTOR (p-mTOR)/mTOR, and ribosomal protein S6 kinase polypeptide 1 (S6K1),were detected by Western blotting. RESULTS: STG significantly reduced the FBG level and liver fat deposition in diabetic GK rats. After STG treatment completion, FINS, HOMA-IR, C-Peptide and area under blood glucose curve (AUC) were lower in STG groups than in the MC group, indicating that IR was reduced and liver fat lesions were resolved. In liver tissues, STG groups displayed significantly higher IRS-1 and GLUT-4 expression than the MC group, along with increasedLKB1 and p-AMPK/AMPK expression and decreased p-mTOR/mTOR and phospho-S6K1expression, suggesting that STG stimulatedLKB1 activation of AMPK and suppressed them TOR/S6K1 downstream pathway. CONCLUSION: Growing GK rats developed hepatic IR, but STG treatment significantly improved hyperglycemia and IR and resolved hepatic fatty lesions. Interestingly, STG treatment stimulated the expression of IRS-1 and GLUT-4 in the liver of diabetic GK rats, indicating a potential involvement in the regulation of theLKB1/AMPK/mTOR signaling pathway.


Assuntos
Monofosfato de Adenosina/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Resistência à Insulina , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Endogâmicos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
14.
Biochimie ; 184: 52-62, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581194

RESUMO

Diabetes mellitus (DM) is a global health burden, affecting about 463 million of the adult population worldwide. Approximately 94% of diabetic male individuals develop varying degrees of testicular disorders (TDs), which usually result in hypogonadism, hypotestosteronemia and defective spermatogenesis and steroidogenesis. Short chain fatty acids (SCFAs) have shown potential benefits in metabolic health. However, its effect on TD associated with DM is not clear. Howbeit, the present study investigated the hypothesis that SCFAs, acetate would ameliorate TD accompanying DM, possibly by suppressing proprotein convertase subtilisin/kexin type 9 (PCSK9). Male Wistar rats (210-240 g) were allotted into groups (n = 6/group): control (vehicle; po), DM with/without 200 mg/kg (po) of sodium acetate (SAc). Diabetes was induced by streptozotocin 65 mg/kg (iv) after a dose of nicotinamide (110 mg/kg). Semen/biochemical and histological analyses were performed with appropriate methods. In addition to hyperglycemia, hyperinsulinemia and reduced insulin sensitivity, DM led to increased serum and testicular triglyceride or total cholesterol/high-density lipoprotein cholesterol ratio, low-density lipoprotein cholesterol, malondialdehyde, TNF-α, IL-6 and PCSK9 as well as reduced high-density lipoprotein cholesterol and glutathione. Moreover, DM caused TD which is characterized by altered sperm parameters, disrupted tissue architecture, atrophied seminiferous tubules, deleterious spermatogonia, disappearance of lumen and cellular degeneration as well as decreased luteinizing hormone and testosterone. However, the administration of SAc attenuated these alterations. The study demonstrates that DM-induced TD is accompanied by elevated PCSK9. The results however suggest that SAc rescues testicular disorder/dysfunction associated with DM by suppression of PCSK9 and improvement of insulin sensitivity.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Pró-Proteína Convertase 9/metabolismo , Acetato de Sódio/farmacologia , Doenças Testiculares/enzimologia , Testículo/enzimologia , Animais , Diabetes Mellitus Experimental/patologia , Masculino , Ratos , Ratos Wistar , Doenças Testiculares/patologia , Testículo/patologia
15.
Biomed Pharmacother ; 135: 111176, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33401224

RESUMO

We intended to examine the molecular mechanism of action of isorhamnetin (IHN) to regulate the pathway of insulin signaling. Molecular analysis, immunofluorescence, and histopathological examination were used to assess the anti-hyperglycemic and insulin resistance lowering effects of IHN in streptozotocin /high fat diet-induced type 2 diabetes using Wistar rats. At the microscopic level, treatment with IHN resulted in the restoration of myofibrils uniform arrangement and adipose tissue normal architecture. At the molecular level, treatment with IHN at three different doses showed a significant decrease in m-TOR, IGF1-R & LncRNA-RP11-773H22.4. expression and it up-regulated the expression of AKT2 mRNA, miR-1, and miR-3163 in both skeletal muscle and adipose tissue. At the protein level, IHN treated group showed a discrete spread with a moderate faint expression of m-TOR in skeletal muscles as well as adipose tissues. We concluded that IHN could be used in the in ameliorating insulin resistance associated with type 2 diabetes mellitus.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Resistência à Insulina , Insulina/sangue , Miofibrilas/efeitos dos fármacos , Quercetina/análogos & derivados , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Miofibrilas/metabolismo , Miofibrilas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos Wistar , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
16.
Mol Cell Biochem ; 476(5): 2099-2109, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515385

RESUMO

NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.


Assuntos
Acetofenonas/farmacologia , Diabetes Mellitus Experimental/enzimologia , Retinopatia Diabética/enzimologia , Células Ependimogliais/enzimologia , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Retina/enzimologia , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Células Ependimogliais/patologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Retina/patologia
17.
Clin Sci (Lond) ; 135(1): 19-34, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33399849

RESUMO

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic ß-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1ß protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1ß secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Adulto , Animais , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Gravidez , Transdução de Sinais , Estreptozocina
18.
Molecules ; 26(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430115

RESUMO

Withania frutescens L. is a wild perennial woody plant used by the local population for diverse therapeutic purposes. This work aims to study for the first time the potential inhibitory effect of this plant hydroethanolic extract on α-amylase and α-glucosidase activities using in vitro methods and its antidiabetic and antihyperglycemic activities using alloxan-induced diabetic mice as a model for experimental diabetes. Two doses were selected for the in vivo study (200 and 400 mg/kg) and glibenclamide, a well-known antidiabetic drug (positive control) in a subacute study (28 days) where the antihyperglycemic activity was also assessed over a period of 12 h on diabetic mice. The continuous treatment of diabetic mice with the extract of Withania frutescens for 4 weeks succeeded to slowly manage their high fasting blood glucose levels (after two weeks), while the antihyperglycemic test result revealed that the extract of this plant did not control hyperglycemia in the short term. No toxicity signs or death were noted for the groups treated with the plant extract, and it shows a protective effect on the liver and kidney. The in vitro assays demonstrated that the inhibition of alpha-amylase and alpha-glucosidase might be one of the mechanisms of action exhibited by the extract of this plant to control and prevent postprandial hyperglycemia. This work indicates that W. frutescens have an important long term antidiabetic effect that can be well established to treat diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Extratos Vegetais , Folhas de Planta/química , Withania/química , alfa-Amilases/antagonistas & inibidores , Animais , Diabetes Mellitus Experimental/enzimologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
19.
J Sci Food Agric ; 101(4): 1530-1537, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32869314

RESUMO

BACKGROUND: Cycas circinalis leaves are used to treat diabetes mellitus in local medicinal systems without any scientifically proved information on their medicinal potential and phytochemicals. In this study, the total phenolic contents, total flavonoid contents, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and inhibitory effects on α-glucosidase and α-amylase were determined for optimized hydroethanolic leaf extracts. Secondary metabolites were identified using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS). In vivo studies on diabetic albino mice were also carried out to evaluate the impact of the most active extract on their blood glucose levels. RESULTS: The 60% ethanolic extract showed the highest extract yield (209.70 ± 0.20 g kg-1 ) and total phenolic (154.24 ± 3.28 mg gallic acid equivalent) and flavonoid (78.52 ± 1.65 mg rutin equivalent per gram dried extract) contents and exhibited the maximum DPPH scavenging activity (IC50 = 59.68 ± 2.82 µg mL-1 ). The IC50 values for inhibition of α-glucosidase (58.42 ± 2.22 µg mL-1 ) and α-amylase (74.11 ± 1.70 µg mL-1 ) were also significant for the 60% ethanolic extract. The untargeted UHPLC-QTOF-MS/MS-based metabolite profiling confirmed the presence of iridoid glucoside, gibberellin A4, O-ß-d-glucosyl-4-hydroxy-cinnamate, 3-methoxy-2-phyenyl-4H-furo[2,3-h]chromen-4-one, kaempferol, withaferin A, amentoflavone, quercitin-3-O-(6″-malonyl glucoside), ellagic acid, and gallic acid. Plant extract at a dose of 500 mg kg-1 body weight reduced the blood glucose level by a considerable extent and also improved the lipid profile of diabetic mice after a 28-day trial. CONCLUSION: The findings revealed the medicinal potential of C. circinalis leaves to treat diabetes mellitus and provided the nutraceutical leads for functional food development. © 2020 Society of Chemical Industry.


Assuntos
Cycas/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Animais , Glicemia/metabolismo , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Feminino , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hipoglicemiantes/química , Masculino , Espectrometria de Massas , Camundongos , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 41(1): e46-e62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176446

RESUMO

OBJECTIVE: Diabetic retinopathy, one of retinal vasculopathy, is characterized by retinal inflammation, vascular leakage, blood-retinal barrier breakdown, and neovascularization. However, the molecular mechanisms that contribute to diabetic retinopathy progression remain unclear. Approach and Results: Tpl2 (tumor progression locus 2) is a protein kinase implicated in inflammation and pathological vascular angiogenesis. Nε-carboxymethyllysine (CML) and inflammatory cytokines levels in human sera and in several diabetic murine models were detected by ELISA, whereas liquid chromatography-tandem mass spectrometry analysis was used for whole eye tissues. The CML and p-Tpl2 expressions on the human retinal pigment epithelium (RPE) cells were determined by immunofluorescence. Intravitreal injection of pharmacological inhibitor or NA (neutralizing antibody) was used in a diabetic rat model. Retinal leukostasis, optical coherence tomography, and H&E staining were used to observe pathological features. Sera of diabetic retinopathy patients had significantly increased CML levels that positively correlated with diabetic retinopathy severity and foveal thickness. CML and p-Tpl2 expressions also significantly increased in the RPE of both T1DM and T2DM diabetes animal models. Mechanistic studies on RPE revealed that CML-induced Tpl2 activation and NADPH oxidase, and inflammasome complex activation were all effectively attenuated by Tpl2 inhibition. Tpl2 inhibition by NA also effectively reduced inflammatory/angiogenic factors, retinal leukostasis in streptozotocin-induced diabetic rats, and RPE secretion of inflammatory cytokines. The attenuated release of angiogenic factors led to inhibited vascular abnormalities in the diabetic animal model. CONCLUSIONS: The inhibition of Tpl2 can block the inflammasome signaling pathway in RPE and has potential clinical and therapeutic implications in diabetes-associated retinal microvascular dysfunction.


Assuntos
Inibidores da Angiogênese/farmacologia , Retinopatia Diabética/prevenção & controle , Inflamassomos/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Neovascularização Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/efeitos dos fármacos , Idoso , Animais , Células Cultivadas , Estudos Transversais , Bases de Dados Factuais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/enzimologia , Retinopatia Diabética/enzimologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Feminino , Humanos , Inflamassomos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Gravidez , Estudos Prospectivos , Proteínas Proto-Oncogênicas/metabolismo , Neovascularização Retiniana/enzimologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...