Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.262
Filtrar
1.
J Hazard Mater ; 441: 129820, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36103762

RESUMO

It is difficult to dispose diethylhexyl phthalate-rich polyvinyl chloride (DEHP-rich PVC) waste due to the high level of chlorine and plasticizer. On the other hand, the denitrification of urine wastewater with high nitrogen content also faces great challenges. In this study, a synergistic treatment strategy was developed for the DEHP-rich PVC waste and urine wastewater by a subcritical water process. Subcritical urine wastewater (SUW) was used as a reaction medium in the synergistic treatment. PVC dechlorination, DEHP decomposition, and denitrification of urine wastewater were synchronously achieved in the one pot SUW. Under the optimal conditions (300 °C, 15 min, 1:5 g/mL), the PVC dechlorination ratio, urine wastewater denitrification ratio and DEHP decomposition ratio could reach 98.4%, 64.9%, and 99.2%, respectively. The decomposition of DEHP mainly included hydrolysis, nucleophilic substitution, and acylation. DEHP could be converted into phthalic acid crystal at 220 °C with a yield of 66.25% due to the efficient hydrolysis action of SUW. All the removed Cl was transferred from PVC matrix to aqueous phase. Hydroxyl nucleophilic substitution is the principal dechlorination path of PVC. The reactions between N-containing species and DEHP in SUW resulted in the high-efficiency denitrification of urine wastewater, and the N element was fixed in solid residue or transferred to oil phase as amides compounds. It is believed that the proposed SUW process is a promising technology for the synergistic treatment of DEHP-rich PVC waste and urine wastewater.


Assuntos
Dietilexilftalato , Plastificantes , Amidas , Cloro , Desnitrificação , Dietilexilftalato/química , Nitrogênio , Ácidos Ftálicos , Cloreto de Polivinila/química , Águas Residuárias , Água
2.
Chemosphere ; 310: 136730, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36209845

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used and toxic phthalate plasticizer that is widely reported in marine environments. Degradation of DEHP by bacteria from several environments have been studied, but little is known about marine sediment bacteria that can degrade DEHP and other phthalate plasticizers. Therefore, in this study, we enriched a bacterial consortium C10 that can degrade four phthalate plasticizers of varying alkyl chain lengths (DEHP, dibutyl phthalate, diethyl phthalate, and dimethyl phthalate) from marine sediment. The major bacterial genera in C10 during degradation of the phthalate plasticizers were Glutamicibacter, Ochrobactrum, Pseudomonas, Bacillus, Stenotrophomonas, and Methylophaga. Growth of C10 on DEHP intermediates (mono-ethylhexyl phthalate, 2-ethylhexanol, phthalic acid, and protocatechuic acid) was studied and these intermediates enhanced the Brevibacterium, Ochrobactrum, Achromobacter, Bacillus, Sporosarcina, and Microbacterium populations. Using a network-based approach, we predicted that Bacillus, Stenotrophomonas, and Microbacterium interacted cooperatively and were the main degraders of phthalate plasticizers. Through selective isolation techniques, we obtained twenty isolates belonging to Bacillus, Microbacterium, Sporosarcina, Micrococcus, Ochrobactrum, Stenotrophomonas, Alcaligenes, and Cytobacillus. The best DEHP-degraders were Stenotrophomonas acidaminiphila OR13, Microbacterium esteraromaticum OR16, Sporosarcina sp. OR19, and Cytobacillus firmus OR20 (83.68%, 59.1%, 43.4%, and 40.6% degradation of 100 mg/L DEHP in 8 d), which agrees with the prediction of key degraders. This is the first report of DEHP degradation by all four bacteria and, thus, our findings reveal as yet unknown PAE-degradation capabilities of marine sediment bacteria. This study provides insights into how bacterial communities adapt to degrade or resist the toxicities of different PAEs and demonstrates a simple approach for the prediction and isolation of potential pollutant degraders from complex and dynamic bacterial communities.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plastificantes , Dietilexilftalato/metabolismo , Ácidos Ftálicos/metabolismo , Dibutilftalato/metabolismo , Bactérias/metabolismo
3.
Sci Total Environ ; 856(Pt 1): 158779, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116658

RESUMO

In this study, brominated flame retardants (BFRs), phthalates, and organophosphate flame retardants (PFRs) were analyzed in indoor household dust collected during the COVID-19 related strict lockdown (April-July 2020) period. Floor dust samples were collected from 40 households in Jeddah, Saudi Arabia. The levels of most of the analyzed chemicals were visibly high and for certain chemicals multifold high in analyzed samples compared to earlier studies on indoor dust from Jeddah. Bis (2-ethylhexyl) phthalate (DEHP) was the primary chemical in these dust samples, with a median concentration of 769,500 ng/g of dust. Tris (2-butoxy ethyl) phosphate (TBEP) and Decabromodiphenyl ether (BDE 209) contributed the highest among PFRs and BFRs with median levels of 5990 and 940 ng/g of dust, respectively. The estimated daily exposure in the worst case scenario (23,700 ng/kg bw/day) for Saudi children was above the reference dose (20,000 ng/kg bw/day) for DEHP, and the hazardous index (HI) was also >1. The long-term carcinogenic risk was above the 1 × 10-5, indicating a risk to the health of Saudi young children from getting exposed to DEHP from indoor dust. This study draws attention to the increased indoor pollution during the lockdown period when all of the daily activities by adults and children were performed indoors, which negatively impacted human health, as suggested by the calculated risk. However, the current study has limitations and warrants more monitoring studies from different parts of the world to understand the phenomenon. At the same time, this study also highlights another side of COVID-19 related to our lives.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Dietilexilftalato , Retardadores de Chama , Criança , Adulto , Humanos , Pré-Escolar , Retardadores de Chama/análise , Poeira , Organofosfatos/análise , COVID-19/epidemiologia , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Controle de Doenças Transmissíveis , Éteres Difenil Halogenados/análise , Compostos Organofosforados/análise , Fosfatos
4.
Sci Total Environ ; 857(Pt 2): 159558, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265624

RESUMO

Nine traditional phthalate plasticizers and 33 novel non-phthalate plasticizers were determined in indoor dust from a typical e-waste recycling area. The median concentrations ranged from Dakeng > Baihetang > Shiding > Jieyang, which was consistent with the local e-waste dismantling activities and supported by polybrominated diphenyl ethers (PBDEs) levels. The correlations between chemical levels and the indicators indicated that most phthalates and non-phthalate plasticizers in the dust, might not be primarily influenced by e-waste emission sources. Additionally, the estimated median human exposures of phthalates and non-phthalates via dust ingestion were 30.6 and 1.82 ng/kg/day for adults, and 299 and 17.8 ng/kg/day for toddlers respectively, indicating negligible health risks.


Assuntos
Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Resíduo Eletrônico , Ácidos Ftálicos , Humanos , Adulto , Plastificantes/análise , Poeira , Ácidos Ftálicos/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-36368504

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is often used as a plasticizer for plastic products, and its excessive use can cause irreversible damage to aquatic animals and humans. Evodiamine (EVO) is an alkaloid component in the fruit of Evodia rutaecarpa, which has antioxidant and detoxification functions. To investigate the toxic mechanism of DEHP on grass carp (Ctenopharyngodon idellus) hepatocyte cell line (L8824) and the therapeutic effect of evodiamine, an experimental model of L8824 cells exposed to 800 µM DEHP and/or 10 µM EVO for 24 h was established. Flow cytometry, AO/EB fluorescence staining, real-time quantitative PCR, and western blot were used to detect the degree of cell injury, oxidative stress level, MAPK signaling pathway relative genes, and the expression of apoptosis-related molecules. The results showed that DEHP exposure could significantly increase the level of reactive oxygen species (ROS), inhibit the activities of antioxidant enzymes (CAT, SOD, GSH-Px), and cause the accumulation of MDA. DEHP also activated MAPK signaling pathway-related molecules (JNK, ERK, P38 MAPK), and then up-regulated the expression of pro-apoptotic factors Bcl-2-Associated X (Bax) and caspase 3, while inhibiting the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2). In addition, EVO can also promote the dissociation of nuclear factor-E2-related factor 2 (Nrf2) into the nucleus, reduce the level of ROS and the occurrence of oxidative stress in grass carp hepatocytes, down-regulate the MAPK pathway, alleviate DEHP-induced apoptosis, and restore the expression of antioxidant genes. These results indicated that evodiamine could block Nrf2/MAPK pathway to inhibit DEHP-induced apoptosis of grass carp hepatocytes.


Assuntos
Carpas , Dietilexilftalato , Animais , Humanos , Fator 2 Relacionado a NF-E2/genética , Dietilexilftalato/toxicidade , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Hepatócitos , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2
6.
Sci Total Environ ; 855: 158924, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152845

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP) is a metabolite of DEHP which is one of phthalic acid esters (PAEs) widely used in daily necessities. Moreover, MEHP has been proven to have stronger biological toxicity comparing to DEHP. In particular, several recent population-based studies have reported that intrauterine exposure to MEHP results in adverse pregnancy outcomes. To explore the mechanisms and metabolic biomarkers of MEHP exposure, we examined the metabolic status of HTR-8/Svneo cell lines exposed to different doses of MEHP (0, 1.25, 5.0, 20 µM). Global and dose-response metabolomics tools were used to identify metabolic perturbations and sensitive markers associated with MEHP. Only 22 metabolic features (accounted for <1 %) were significantly changed when exposed to 1.25 µM. However, when the exposure dose was increased to 5 or 20 µM, the number of significantly changed metabolic features exceeded 300 (approximately 10 %). In particular, amino acid metabolism, pyrimidine metabolism and glutathione metabolism were widely affected according to the enrich analysis of those significant altered metabolites, which has and have previously been reported to be closely related to fetal development. Moreover, 5'-UMP and N-acetylputrescine with the lowest effective concentrations (EC-10 = 0.1 µM and EC+10 = 0.11 µM, respectively) were identified as sensitive endogenous biomarkers of MEHP exposure.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Gravidez , Feminino , Humanos , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Trofoblastos/química , Trofoblastos/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Biomarcadores/análise
7.
Chemosphere ; 310: 136811, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220427

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plastics additive that growing evidence indicates as endocrine disruptor able to negatively affect various reproductive processes both in female and male animals, including humans. However, the precise molecular mechanism of such actions is not completely understood. In the present study, scRNA-seq was performed on the ovaries of offspring from mothers exposed to DEHP from 16.5 days post coitum to 3 days post-partum, when the primordial follicle (PF) stockpile is established. While the histological observations of the offspring ovaries from DEHP exposed mothers confirmed previous data about a distinct reduction of oocytes enclosed in PFs. Focusing on oocytes, scRNA-seq analyses showed that the genes that mostly changed by DEHP were enriched GO terms related to histone H3-K4 methylation. Moreover, we observed H3K4me3 level, an epigenetics modification of H3 that is crucial for chromatin transcription, decreased by 40.28% (P < 0.01) in DEHP-treated group compared with control. When the newborn ovaries were cultured in vitro, the DEHP effects were abolished by tamoxifen (an estrogen receptor antagonist) or overexpression of Smyd3 (one specific methyltransferase of H3K4me3), in particular, the percentage of oocyte enclosed in PF was increased by 15.39% in DEHP plus Smyd3 overexpression group than of DEHP group (P < 0.01), which was accompanied by the upregulation of H3K4me3. Collectively, the present results discover Smyd3-H3K4me3 as a novel target of the deleterious ER-mediated effect of DEHP on PF formation during early folliculogenesis in the mouse and highlight epigenetics changes as prominent targets of endocrine disruptors like DEHP.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Animais , Feminino , Masculino , Camundongos , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Histona-Lisina N-Metiltransferase , Histonas , Folículo Ovariano
8.
J Hazard Mater ; 443(Pt B): 130256, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327845

RESUMO

Phthalate acid esters (PAEs) are commonly used plastic additives, not chemically bound to the plastic that migrate into surrounding environments, posing a threat to environmental and human health. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are two common PAEs found in agricultural soils, where degradation is attributed to microbial decomposition. Yet the impact of the plastic matrix on PAE degradation rates is poorly understood. Using 14C-labelled DBP and DEHP we show that migration from the plastic matrix into soil represents a key rate limiting step in their bioavailability and subsequent degradation. Incorporating PAEs into plastic film decreased their degradation in soil, DBP (DEHP) from 79% to 21% (9% to <1%), over four months when compared to direct application of PAEs. Mimicking surface soil conditions, we demonstrated that exposure to ultraviolet radiation accelerated PAE mineralisation twofold. Turnover of PAE was promoted by the addition of biosolids, while the presence of plants and other organic residues failed to promote degradation. We conclude that PAEs persist in soil for longer than previously thought due to physical trapping within the plastic matrix, suggesting PAEs released from plastics over very long time periods lead to increasing levels of contamination.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes do Solo , Humanos , Solo/química , Plásticos/química , Ésteres/química , Raios Ultravioleta , Poluentes do Solo/metabolismo , Ácidos Ftálicos/química , Dibutilftalato/metabolismo , China
9.
Environ Res ; 216(Pt 3): 114656, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341791

RESUMO

The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 µg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.


Assuntos
Dietilexilftalato , Eichhornia , Ácidos Ftálicos , Poluentes Químicos da Água , Humanos , Eichhornia/metabolismo , Dietilexilftalato/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Sci Total Environ ; 857(Pt 1): 159099, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36181812

RESUMO

Plastic pollution in our oceans is of growing concern particularly due to the presence of toxic additives, such as plasticisers. Therefore, this work aims to develop a comprehensive understanding of the leaching properties of plasticisers from microplastics. This work investigates the leaching of phthalate acid ester (dioctyl terephthalate (DEHT) and diethylhexyl phthalate (DEHP)) and diphenol (bisphenol A (BPA) and bisphenol S (BPS)) plasticisers from polystyrene (PS) microplastics (mean diameter = 136 µm to 1.4 mm) under controlled aqueous conditions (temperature, agitation, pH and salinity). The leaching behaviours of plasticised polymers were quantified using gel permeation chromatography, high performance liquid chromatography and thermal gravimetric analysis, and the particle's plasticisation characterised using differential scanning calorimetry. Leaching rates of phthalate acid ester and diphenol plasticisers were modelled using a diffusion and boundary layer model, whereby these behaviours varied depending on their plasticisation efficiency of PS, the size of the microplastic particle and the surrounding abiotic conditions. Leaching behaviours of DEHT and DEHP were strongly influenced by the microplastic-surface water boundary layer properties, thus wave action (i.e., water agitation) increased the leaching rate of these plasticiser up to 66 % over 21-days, whereas BPA and BPS plasticisers displayed temperature- and size-dependent leaching and were limited by molecular diffusion throughout the bulk polymer (i.e., the microplastic). This information will improve predictions of plasticiser concentration (both that remain in the plastic and released into the surrounding water) at specific time points during the lifetime of a plastic, ultimately ensuring greater accuracy in the assessment of toxicity responses and environmental water quality.


Assuntos
Dietilexilftalato , Microplásticos , Plastificantes/química , Plásticos/análise , Poliestirenos/toxicidade , Dietilexilftalato/toxicidade , Polímeros/química , Ésteres
11.
Environ Res ; 216(Pt 1): 114447, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181890

RESUMO

OBJECTIVE: Women of reproductive age are exposed to ubiquitous chemicals such as phthalates, parabens, and per- and polyfluoroalkyl substances (PFAS), which have potential endocrine disrupting properties and might affect fertility. Our objective was to investigate associations between potential endocrine-disrupting chemicals (EDCs) and female fertility in two cohorts of women attending fertility clinics. METHODS: In a total population of 333 women in Sweden and Estonia, we studied the associations between chemicals and female fertility, evaluating ovarian sensitivity index (OSI) as an indicator of ovarian response, as well as clinical pregnancy and live birth from fresh and frozen embryo transfers. We measured 59 chemicals in follicular fluid samples and detected 3 phthalate metabolites, di-2-ethylhexyl phthalate (DEHP) metabolites, 1 paraben, and 6 PFAS in >90% of the women. Associations were evaluated using multivariable-adjusted linear or logistic regression, categorizing EDCs into quartiles of their distributions, as well as with Bayesian Kernel Machine Regression. RESULTS: We observed statistically significant lower OSI at higher concentrations of the sum of DEHP metabolites in the Swedish cohort (Q4 vs Q1, ß = -0.21, 95% CI: -0.38, -0.05) and methylparaben in the Estonian cohort (Q3 vs Q1, ß = -0.22, 95% CI: -0.44, -0.01). Signals of potential associations were also observed at higher concentrations of PFUnDA in both the combined population (Q2 vs. Q1, ß = -0.16, 95% CI -0.31, -0.02) and the Estonian population (Q2 vs. Q1, ß = -0.27, 95% CI -0.45, -0.08), and for PFOA in the Estonian population (Q4 vs. Q1, ß = -0.31, 95% CI -0.61, -0.01). Associations of chemicals with clinical pregnancy and live birth presented wide confidence intervals. CONCLUSIONS: Within a large chemical mixture, we observed significant inverse associations levels of DEHP metabolites and methylparaben, and possibly PFUnDA and PFOA, with OSI, suggesting that these chemicals may contribute to altered ovarian function and infertility in women.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Poluentes Ambientais , Fluorcarbonetos , Ácidos Ftálicos , Gravidez , Feminino , Humanos , Estônia/epidemiologia , Suécia/epidemiologia , Teorema de Bayes , Reprodução
12.
Environ Res ; 216(Pt 2): 114576, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252832

RESUMO

Midlife in women is an understudied time for environmental chemical exposures and menopausal outcomes. Recent cross-sectional research links phthalates with hot flashes, but little is known regarding such associations over time. Our objective was to estimate longitudinal associations between repeated measures of urinary phthalate metabolite concentrations and hot flash outcomes in midlife women. Using data from the Midlife Women's Health Study (MWHS), a prospective longitudinal study, we fit generalized linear mixed-effects models (GLMMs) and Cox proportional hazards regression models to repeated measures over a 4-year period. Recruitment occurred in Baltimore and surrounding counties, Maryland, USA between 2006 and 2015. Participants were premenopausal/perimenopausal women (n = 744) aged 45-54 years, who were not pregnant, not taking menopausal symptom medication or oral contraceptives, did not have hysterectomy/oophorectomy, and irrespective of hot flash experience. Baseline mean (SD) age was 48.4 (2.45), and 65% were premenopausal. Main outcome measures included adjusted odds ratios (ORs) for 4 self-reported hot flash outcomes (ever experienced, past 30 days experience, weekly/daily, and moderate/severe), and hazard ratios (HRs) for incident hot flashes. We observed mostly increased odds of certain hot flash outcomes with higher concentrations of metabolites of di (2-ethylhexyl) phthalate (DEHP), monoisobutyl phthalate (MiBP), and a molar summary measure of plasticizer phthalate metabolites (DEHP metabolites, mono-(3-carboxypropyl) phthalate (MCPP), monobenzyl phthalate (MBzP)). Some associations between exposures and outcomes indicated decreased odds. In conclusion, phthalate metabolites were associated with certain hot flash outcomes in midlife women. Midlife may be a sensitive period for higher phthalate metabolite concentrations with respect to menopausal symptoms.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Feminino , Humanos , Gravidez , Fogachos/epidemiologia , Poluentes Ambientais/urina , Estudos Prospectivos , Estudos Transversais , Estudos Longitudinais , Ácidos Ftálicos/urina , Exposição Ambiental , Saúde da Mulher
13.
J Hazard Mater ; 443(Pt B): 130330, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36372018

RESUMO

Biochar and earthworms can accelerate di-(2-ethylhexyl) phthalate (DEHP) degradation in soils. However, little is known regarding the effect of biochar-assisted vermicomposting on soil DEHP degradation and the underlying mechanisms. Therefore, the present study investigated DEHP degradation performance and bacterial community changes in farmland soils using earthworms, biochar, or their combination. Biochar-assisted vermicomposting significantly improved DEHP degradation through initial physical adsorption on biochar and subsequent rapid biodegradation in the soil, earthworm gut, and charosphere. Burkholderiaceae, Pseudomonadaceae, and Flavobacteriaceae were the potential DEHP degraders and were enriched in biochar-assisted vermicomposting. In particularly, Burkholderiaceae and Sphingomonadaceae were enriched in the earthworm gut and charosphere, possibly explaining the mechanism of accelerated DEHP degradation in biochar-assisted vermicomposting. Soil pH, soil organic matter, and humus (humic acid, fulvic acid, and humin) increased by earthworms or biochar enhanced DEHP degradation. These findings imply that biochar-assisted vermicomposting enhances DEHP removal not only through rapid physical sorption but also through the improvement of soil physicochemical characteristics and promotion of degraders in the soil, earthworm gut, and charosphere. Overall, biochar-assisted vermicomposting is a suitable method for the remediation of organic-contaminated farmland soils.


Assuntos
Dietilexilftalato , Oligoquetos , Poluentes do Solo , Animais , Solo , Dietilexilftalato/metabolismo , Poluentes do Solo/metabolismo , Fazendas , Biodegradação Ambiental , Oligoquetos/metabolismo
14.
Waste Manag ; 155: 292-301, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410146

RESUMO

The hypothesis of this study is that the complex organic load of landfill leachate could be reduced by supercritical water oxidation (SCWO) in a single stage, but this operation could lead to the formation of some undesired by-products of phthalate esters (PAEs). In this context, the fate of selected PAEs, butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), was investigated during the oxidation of leachate under subcritical and supercritical conditions. Experiments were conducted at various temperatures (250-500 °C), pressures (10-35 MPa), residence times (2-18 min) and dimensionless oxidant doses (DOD: 0.2-2.3). The SCWO process decreased the leachate's chemical oxygen demand (COD) from 34,400 mg/L to 1,120 mg/L (97%). Removal efficiencies of DEHP and DNOP with longer chains were higher than BBP. The DEHP, DNOP and BBP compounds were removed in the range of -35 to 100%, -18 to 92%, and 28 to 36%, respectively, by the SCWO process. Many non-target PAEs were qualitatively detected in the raw leachate apart from the selected PAEs. Besides, 97% of total PAEs including both target and non-target PAEs was mineralized at 15 MPa, 300 °C and 5 min. Although PAEs were highly mineralized during SCWO of the leachate, aldehyde, ester, amide and amine-based phthalic substances were frequently detected as by-products. These by-products have transformed into higher molecular weight by-products with binding reactions as a result of complex SCWO process chemistry. It has also been determined that some non-target PAEs such as 1,2-benzenedicarboxylic acid bis(2-methylpropyl)ester and bis(2-ethylhexyl) isophthalate can transform to the DEHP. Therefore, the suggested pathway in this study for PAEs degradation during the SCWO of the leachate includes substitution and binding reactions as well as an oxidation reaction.


Assuntos
Dietilexilftalato , Poluentes Químicos da Água , Ésteres
15.
Water Sci Technol ; 86(9): 2124-2137, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36378170

RESUMO

Phthalic acid esters (PAEs) can enter environment media by secondary effluent discharge from wastewater treatment plants (WWTP) into receiving rivers, thus posing a threat to ecosystem health. A level III fugacity model was established to simulate the fate and transfer of four PAEs in a study area in Tianjin, China, and to evaluate the influence of WWTP discharge on PAEs levels in the receiving river. The results show that the logarithmic residuals of most simulated and measured values of PAEs are within one order of magnitude with a good agreement. PAEs in the study area were mainly distributed in soil and sediment phases, which accounted for 84.66%, 50.26%, 71.96% and 99.09% for dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), respectively. The upstream advection accounted for 77.90%, 93.20%, 90.21% and 90.93% of the total source of DMP, DEP, DBP and DEHP in the river water, respectively, while the contribution of secondary effluent discharge was much lower. Sensitivity analysis shows that emission and inflow parameters have greater influences on the multimedia distributions of PAEs than physicochemical and environmental parameters. Monte Carlo analysis quantifies the uncertainties and verifies the reliability of the simulation results.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Purificação da Água , Rios , Dietilexilftalato/análise , Multimídia , Ecossistema , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Ésteres/análise , Ácidos Ftálicos/análise , Dibutilftalato , China
16.
Environ Toxicol Pharmacol ; 96: 104007, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36341965

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP) can influence the expression of estrogen receptors (ERs) and induce thyroid injury. The expression of ERs can be related to thyroid disease and abnormal expression of ERs has been associated with activation of endoplasmic reticulum stress. This study aimed to clarify the role of ERs in MEHP-induced thyroid damage via endoplasmic reticulum stress. We exposed Nthy-ori 3-1 cells to different doses of MEHP. We found that after the exposure, the cell viability and the expression levels of thyroid hormone metabolism-related proteins decreased, while the apoptosis level and the expression levels of ERs (ERα and GPR30) increased. Three endoplasmic reticulum stress-related signaling pathways were activated by MEHP. After ERα and GPR30 were knocked down, these three pathways were inhibited and the thyroid toxicity was alleviated. Taken together, our results indicate that MEHP can induce thyroid toxicity by upregulating the expression of ERs, further activating endoplasmic reticulum stress.


Assuntos
Dietilexilftalato , Estresse do Retículo Endoplasmático , Receptores de Estrogênio/genética , Glândula Tireoide/metabolismo , Receptor alfa de Estrogênio/genética , Dietilexilftalato/toxicidade
17.
Indoor Air ; 32(11): e13176, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437652

RESUMO

As a group of typical endocrine disrupters, phthalates are simultaneously present in a variety of environmental media and enter human body through multiple exposure pathways. In this study, field monitoring data were used to characterize the skin-air (Klg ), dust-air (Kd ), and PM2.5 -air (Kp ) partition coefficients of DiBP, DnBP, and DEHP. The median values of log(Klg ) in the summer and winter were 7.654 and 7.932, 7.265 and 7.902, 9.419 and 9.015 for DiBP, DnBP, and DEHP, respectively, and Klg was significantly higher in the winter. The median Kd (m3 /mg) in the summer (0.036-0.151 for DiBP, 0.021-0.036 for DnBP and 1.479-4.069 for DEHP) were significantly higher than the counterparts in the winter (0.027-0.065 for DiBP, 0.022-0.245 for DnBP, and 0.140-3.250 for DEHP). In addition, Kd was associated with material of surface and residence time of dust. The Kp values (m3 /µg) of DiBP, DnBP, and DEHP in the summer (0.053, 0.015, and 0.021) were also significantly higher than the counterparts in the winter (0.011, 0.004, and 0.025). The partition of phthalates was influenced by built environment, such as temperature, humidity, ventilation, indoor chemistry, smoking, and building age. Except Klg , there was substantial discrepancy between the estimates of K with empirical equations and the values of K based on field monitoring data in our study.


Assuntos
Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Humanos , Poeira , Dietilexilftalato/análise
18.
Environ Toxicol Pharmacol ; 96: 104012, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36372389

RESUMO

As a plasticizer, di-2-ethylhexyl phthalate (DEHP) has been listed as a potential endocrine disruptor by The World Health Organization. The toxicity of DEHP has been widely studied, but its toxicity on the digestive tract of birds has not been clarified. Female quail were treated by gavage with DEHP (250, 500, 750 mg/kg), with the blank and vehicle control groups reserved. The result showed that DEHP raised the damage severity grade, and decreased the ratio of villus length to crypt depth. The content and activity of cytochrome P450 system (CYP450s) were increased by DEHP. DEHP interfered with the transcription of nuclear xenobiotic receptors (NXRs), CYP isoforms, and the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. This study revealed DEHP could cause the imbalance in CYP450s mediated by NXRs, and then promote Nrf2 mediated antioxidant defense. This study provided new evidence about the mechanisms of DEHP-induced toxic effects on digestive tract.


Assuntos
Coturnix , Dietilexilftalato , Animais , Feminino , Coturnix/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Codorniz/metabolismo , Dietilexilftalato/toxicidade , Xenobióticos , Jejuno/metabolismo , Receptores Citoplasmáticos e Nucleares , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
19.
Hum Exp Toxicol ; 41: 9603271221139444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36356568

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is one of the most common organic pollutants and is added to various plastic products as a plasticizer. DEHP oxidative metabolite content in the human body is associated with DNA damage in sperm and decreased testosterone levels in blood. In this study, a DEHP-induced sperm DNA damage mouse model was replicated and improved, and the transcriptomic and proteomic characteristics of the model were observed. Male mice in the two groups were exposed to DEHP 1 g/kg/d or the same amount of normal saline for 60 days, and the sperm DNA fragmentation index (DFI) was detected by a sperm chromatin structure assay (SCSA). The mRNA and protein expression profiles of the testis were detected by RNA-seq and data-independent acquisition (DIA). The sperm DFI of the DEHP group was significantly increased. Compared with the control group, 111 differentially expressed genes (DEGs) and 2147 differentially expressed proteins (DEPs), such as Lamb2, Ahnak, Tkt, Dnah8 and Tbl2, were found in the DEHP group. These genes were mainly enriched in metabolic pathways, pathways in cancer and the PI3K-Akt signaling pathway. Our results showed that DEHP 1 g/kg/d can induce sperm DNA damage in a male mouse model after 60 days of intragastric administration. The reproductive toxicity of DEHP may be related to metabolic pathways in cancer and the PI3K-Akt signaling pathway.


Assuntos
Dietilexilftalato , Masculino , Camundongos , Humanos , Animais , Dietilexilftalato/toxicidade , Transcriptoma , Proteômica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Dano ao DNA
20.
Proc Natl Acad Sci U S A ; 119(47): e2208886119, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375056

RESUMO

Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Leiomioma , Ácidos Ftálicos , Humanos , Feminino , Dietilexilftalato/toxicidade , Dietilexilftalato/urina , Cinurenina , Triptofano , Sobrevivência Celular , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes , Exposição Ambiental/efeitos adversos , Leiomioma/induzido quimicamente , Leiomioma/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...