RESUMO
Introgressive hybridization is widespread in wild plants and has important consequences. However, frequent hybridization between species makes the estimation of the species' phylogeny challenging, and little is known about the genomic landscape of introgression as it results from complex interactions of multiple evolutionary processes. Here, we reconstructed the phylogeny of ten wild diploid strawberries with whole genome resequencing data and then investigated the influence of recombination rate variation on phylogeny and introgression. We found that genomic regions with low recombination showed reduced levels of incomplete lineage sorting and introgression, and concentrated phylogenetic signals, thus contributing to the most likely species tree of wild diploid strawberries. We revealed complex and widespread introgression across the genus Fragaria, with an average proportion of approximately 4.1% of the extant genome. Introgression tends to be retained in the regions with high recombination rates and low gene density. Furthermore, we identified four SLF genes under selective sweeps that may play potential roles in the possible regain of self-incompatibility by ancient introgression. Altogether, our study yielded novel insights into the evolutionary history and genomic characteristics of introgression in wild diploid strawberries and provides evidence for the role of introgression in plant mating system transitions.
Assuntos
Fragaria , Filogenia , Fragaria/genética , Diploide , Genoma , Hibridização Genética , Recombinação GenéticaRESUMO
Polyploidy, i.e. the occurrence of multiple sets of chromosomes, is regarded as an important phenomenon in plant ecology and evolution, with all flowering plants likely having a polyploid ancestry. Owing to genome shock, minority cytotype exclusion and reduced fertility, polyploids emerging in diploid populations are expected to face significant challenges to successful establishment. Their establishment and persistence are often explained by possible fitness or niche differences that would relieve the competitive pressure with diploid progenitors. Experimental evidence for such advantages is, however, not unambiguous, and considerable niche overlap exists among most polyploid species and their diploid counterparts. Here, we develop a neutral spatially explicit eco-evolutionary model to understand whether neutral processes can explain the eco-evolutionary patterns of polyploids. We present a general mechanism for polyploid establishment by showing that sexually reproducing organisms assemble in space in an iterative manner, reducing frequency-dependent mating disadvantages and overcoming potential reduced fertility issues. Moreover, we construct a mechanistic theoretical framework that allows us to understand the long-term evolution of mixed-ploidy populations and show that our model is remarkably consistent with recent phylogenomic estimates of species extinctions in the Brassicaceae family.
Assuntos
Diploide , Ploidias , Humanos , Poliploidia , Cromossomos , ReproduçãoRESUMO
Grass carp Ctenopharyngodon idella, is an herbivorous fish originally brought to North America from Asia in 1963 to control nuisance aquatic vegetation. Since their arrival, detrimental alterations to aquatic ecosystems have sometimes occurred in waterways where they were initially stocked and into which they have escaped. The movements of grass carp from lentic systems into tributaries required for spawning is poorly understood, and understanding environmental conditions associated with upstream migrations may aid in management of the species. We stocked 43 fertile diploid and 43 sterile triploid grass carp implanted with acoustic transmitters into Truman Reservoir, Missouri, USA between January 2017 and October 2018 to characterize movements during spring and summer when spawning conditions occur. Twenty fish (11 diploid/9 triploid) exhibited upstream migration behavior in the Osage River, a major tributary, in 2018 and 2019. Migration primarily occurred in April and May, during high discharge events associated with increasing river stage when water temperatures were between 15 and 28°C. Observed migrations ranged from 3.0-108 river km in length, and six individuals were observed making multiple upstream migrations in one season. Eleven fish initiated upstream migrations while in the lentic main body of the reservoir. These findings provide some evidence for upstream migrations by diploid and triploid grass carp as well both lake and river residents. Evidence of similar upstream migration behavior by both diploid and triploid grass carp suggests that triploids may be suitable surrogates for diploids for study of movement ecology. Removal efforts in tributaries targeting periods of increasing river stage during spring may provide the best opportunity of encountering large concentrations of grass carp.
Assuntos
Carpas , Diploide , Animais , Carpas/genética , Ecossistema , Triploidia , EcologiaRESUMO
The advance of CRISPR/Cas9 technology has enabled us easily to generate gene knockout cell lines by introducing insertion-deletion mutations (indels) at the target site via the error-prone non-homologous end joining repair system. Frameshift-promoting indels can disrupt gene functions by generation of a premature stop codon. However, there is growing evidence that targeted genes are not always knocked out by the indel-based gene disruption. Here, we established a pipeline of CRISPR-del, which induces a large chromosomal deletion by cutting two different target sites, to perform 'complete' gene knockout efficiently in human diploid cells. Quantitative analyses show that the frequency of gene deletion with this approach is much higher than that of conventional CRISPR-del methods. The lengths of the deleted genomic regions demonstrated in this study are longer than those of 95% of the human protein-coding genes. Furthermore, the pipeline enabled the generation of a model cell line having a bi-allelic cancer-associated chromosomal deletion. Overall, these data lead us to propose that the CRISPR-del pipeline is an efficient and practical approach for producing 'complete' gene knockout cell lines in human diploid cells.
Assuntos
Sistemas CRISPR-Cas , Diploide , Humanos , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas/genética , Mutação INDEL/genética , Linhagem Celular , Edição de Genes/métodosRESUMO
MAIN CONCLUSION: The polyploidization of Hippeastrum papilio influences its primary and secondary metabolism including the biosynthesis of bioactive alkaloids. Hippeastrum papilio is an ornamental plant that has advantages in comparison to the currently used plants for the extraction of galanthamine, a natural compound used for the cognitive treatment of Alzheimer's disease. In the present study, an autotetraploid line of H. papilio was induced for the first time, after treatment with 0.05% colchicine for 48 h. The chromosome number in diploids was found to be 2n = 2x = 22 and for autotetraploids 2n = 4x = 44. The flow cytometric analyses detected a DNA C-value of 14.88 ± 0.03 pg (1C) in diploids and 26.57 ± 0.12 pg in autotetraploids. The morphological, cytological, and phytochemical studies showed significant differences between diploids and autotetraploids. The length and width of stomata in autotetraploids were 22.47% and 17.94%, respectively, larger than those observed in the diploid leaves. The biomass of one-year-old autotetraploid H. papilio plants was reduced by 53.99% for plants' fresh weight, 56.53% for leaves' fresh weight, and 21.70% for bulb diameter. The GC-MS analysis of methanol extracts from one-year-old diploid and autotetraploid H. papilio plants revealed over 60 primary and secondary metabolites including alkaloids, phenolic acids, sterols, saccharides, and alcohols, among others. Principal component analysis of the metabolite profiles indicates a divergence of the metabolism between diploid and autotetraploid plants. The content of galanthamine and haemanthamine was found to be 49.73% and 80.10%, respectively, higher in the leaves of autotetraploids, compared to the diploid ones. The biosynthesis of the saccharides shows a tendency to be upregulated in tetraploid plants, while that of phenolic acids was downregulated. Polyploidization of H. papilio creates possibilities for further crop improvement aimed at high-galanthamine-producing genotypes.
Assuntos
Alcaloides , Diploide , Galantamina , Plantas , Tetraploidia , Compostos FitoquímicosRESUMO
The nine Viola pilosa Blume populations studied from Pir Panjal contained 20 chromosomes. This count is not reported so far in Indian populations. Currently, comparison of tapetal and meiotic cells revealed the existence of synchrony in different developmental phases. Young tapetal cells at prometaphase co-occurred with the pollen mother cells (PMCs) at diakinesis to metaphase, mature tapetal cells with disintegrated chromatin material co-occurred with tetrads and no tapetal cells were found at mature pollen stage. Cytological studies in young tapetal cells revealed most of these to be endopolyploid, with each having 40 chromosomes. While outnumbering somatic cells contained clear 40 chromosomes which seemed to be the outcome of endomitosis, a sizeable number of cells possessed 40 sticky chromosomes at metaphase. Later chromosomes are likely to form restitution nucleus. Mature tapetal cells, occurring singly/cytomictically connected (3.2-26.31%) or showing coalescence (10.5-22.8%), did not contain recognizable chromosomes. Instead, they were characterized by disintegrated nuclear content. Further, meiotic studies revealed that the present population contained all/outnumbering euploid cells (2n=20); many of which exhibited nearly regular behaviour. However, 6.5-26.9% meiocytes of eight populations and 47% cells of P-Khe population depicted aneuploidy/contained quadri-octavalents, with per cent pollen viabilities of these ranging from 38.6 to 49.9. Going by the normal tapetal development in V. pilosa, existence of various chromosomal anomalies seems to have accounted for the reduction in gametic fertility of this taxon.
Assuntos
Transtornos Cromossômicos , Viola , Metáfase , Diploide , Reprodução , MeioseRESUMO
Tartary buckwheat (TB) sprout is a kind of novel nutritional vegetable, but its consumption was limited by low biomass and thin hypocotyl. The tetraploid TB sprouts was considered to be able to solve this issue. However, the nutritional quality of tetraploid TB sprouts and differences between conventional (diploid) and tetraploid TB sprouts remain unclear. In this study, the morphological traits, nutrient compositions and metabolome changes of diploid and tetraploid TB sprouts were analyzed. The water, pigments and minerals contents of TB sprouts increased during sprouting, while the contents of total soluble protein, reducing sugar, cellulose, and total phenol decreased. Compared with diploid sprouts, tetraploid sprouts had higher biomass and thicker hypocotyl. Tetraploid sprouts had higher ash and carotenoid contents, but had lower phenol and flavonoid accumulation. 677 metabolites were identified in TB sprouts by UPLC-MS analysis, including 62 diseases-resistance metabolites and 43 key active ingredients. Some key bioactive metabolites, such as rimonabant, quinapril, 1-deoxynojirimycin and miglitol, were identified. 562 differential expressed metabolites (DEMs) were identified during sprouting with seven accumulation patterns, and five hormones were found to be involved in sprout development. Additionally, 209 DEMs between diploid and tetraploid sprouts were found, and some key bioactive metabolites were induced by chromosome doubling such as mesoridazine, amaralin, atractyloside A, rhamnetin and Qing Hau Sau. This work lays a basis for the development and utilization of TB sprouts and provides evidence for the selection of tetraploid varieties to produce sprouts with high biomass and quality.
Assuntos
Fagopyrum , Fagopyrum/genética , Diploide , Cromatografia Líquida , Tetraploidia , Espectrometria de Massas em Tandem , Metabolômica , NutrientesRESUMO
Variations and adaptations of chromosome ends play an important role in eukaryotic karyotype evolution. Traditional experimental studies of the adaptations of chromosome ends mainly rely on the strategy of introducing defects; thus, the adaptation methods of survivors may vary depending on the initial defects. Here, using the SCRaMbLE strategy, we obtained a library of haploid and diploid synthetic strains with variations in chromosome ends. Analysis of the SCRaMbLEd survivors revealed four routes of adaptation: homologous recombination between nonhomologous chromosome arms (haploids) or homologous chromosome arms (diploids), site-specific recombination between intra- or interchromosomal ends, circularization of chromosomes, and loss of whole chromosomes (diploids). We also found that circularization of synthetic chromosomes can be generated by SCRaMbLE. Our study of various adaptation routes of chromosome ends provides insight into eukaryotic karyotype evolution from the viewpoint of synthetic genomics.
Assuntos
Cromossomos , Diploide , Haploidia , Cromossomos/genética , Saccharomyces cerevisiae/genética , Adaptação FisiológicaRESUMO
Polyploidization results in significant changes in the morphology and physiology of plants, with increased growth rate and genetic gains as the number of chromosomes increases. In this study, the leaf functional traits, photosynthetic characteristics, leaf cell structure and transcriptome of Camellia sinensis were analyzed. The results showed that triploid tea had a significant growth advantage over diploid tea, the leaf area was 59.81% larger, and the photosynthetic capacity was greater. The morphological structure of triploid leaves was significantly different, the xylem of the veins was more developed, the cell gap between the palisade tissue and the sponge tissue was larger and the stomata of the triploid leaves were also larger. Transcriptome sequencing analysis revealed that in triploid tea, the changes in leaf morphology and physiological characteristics were affected by the expression of certain key regulatory genes. We identified a large number of genes that may play important roles in leaf development, especially genes involved in photosynthesis, cell division, hormone synthesis and stomata development. This research will enhance our understanding of the molecular mechanism underlying tea and stomata development and provide a basis for molecular breeding of high-quality and high-yield tea varieties.
Assuntos
Camellia sinensis , Transcriptoma , Camellia sinensis/metabolismo , Diploide , Triploidia , Chá/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few reports about PRC2 are available in plant species with large and complicated genomes, like cotton. RESULTS: Here, we performed a genome-wide identification and comprehensive analysis of cotton PRC2 core components, especially in upland cotton (Gossypium hirsutum). Firstly, a total of 8 and 16 PRC2 core components were identified in diploid and tetraploid cotton species, respectively. These components were classified into four groups, E(z), Su(z)12, ESC and p55, and the members in the same group displayed good collinearity, similar gene structure and domain organization. Next, we cloned G. hirsutum PRC2 (GhPRC2) core components, and found that most of GhPRC2 proteins were localized in the nucleus, and interacted with each other to form multi-subunit complexes. Moreover, we analyzed the expression profile of GhPRC2 genes. The transcriptome data and quantitative real-time PCR (qRT-PCR) assays indicated that GhPRC2 genes were ubiquitously but differentially expressed in various tissues, with high expression levels in reproductive organs like petals, stamens and pistils. And the expressions of several GhPRC2 genes, especially E(z) group genes, were responsive to various abiotic and biotic stresses, including drought, salinity, extreme temperature, and Verticillium dahliae (Vd) infection. CONCLUSION: We identified PRC2 core components in upland cotton, and systematically investigated their classifications, phylogenetic and synteny relationships, gene structures, domain organizations, subcellular localizations, protein interactions, tissue-specific and stresses-responsive expression patterns. Our results will provide insights into the evolution and composition of cotton PRC2, and lay the foundation for further investigation of their biological functions and regulatory mechanisms.
Assuntos
Núcleo Celular , Gossypium , Gossypium/genética , Filogenia , Diploide , SecasRESUMO
The most commercialized kiwifruit, Actinidia chinensis var. deliciosa (Acd), is an allohexaploid (2n = 6x = 174), making high-quality assemblage genome challenging. We previously discovered a rare naturally occurring diploid Acd plant. Here, chromosome-level de novo genome assembly for this diploid Acd was reported, reaching approximately 621.98 Mb in length with contig and scaffold N50 values of 10.08 and 21.09 Mb, respectively, 99.66% of the bases anchored to 29 pseudochromosomes, and 38,990 protein-coding genes and 42.29% repetitive elements annotated. The divergence time of A. chinensis cv. 'Red5' and 'Hongyang' (11.1-27.7 mya) was more recent compared with the divergence time of them and Acd (19.9-41.2 mya), with the divergence time of A. eriantha cv. 'White' being the earliest (22.9-45.7 mya) among that of the four Actinidia species. The 4DTv distance distribution highlighted three recent whole-genome duplication events in Acd. This is the first high-quality diploid Acd genome, which lays an important foundation for not only kiwifruit functional genomics studies but also further elucidating genome evolution of allohexaploid Acd.
Assuntos
Actinidia , Genoma de Planta , Actinidia/genética , Diploide , Frutas/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos de PlantasRESUMO
PREMISE: Whole-genome duplication is considered a major mechanism of sympatric speciation due to the creation of strong and instantaneous reproductive barriers. Although postzygotic reproductive isolation between diploids and polyploids is often expected, the extent of reproductive incompatibility must be empirically determined and compared to patterns of genetic isolation to fully characterize the reproductive dynamics between cytotypes. METHODS: We investigated reproductive compatibility between diploid and tetraploid Lycium australe in two mixed-cytotype populations using (1) controlled crossing experiments to evaluate fruit and seed production and (2) germination trials to test seed viability following homoploid and heteroploid crosses. We contrast these experiments with a single-nucleotide polymorphism (SNP) data set to measure genetic isolation between cytotypes and explore whether cytotype or population origin better explains patterns of genetic variation. Finally, we explore mating patterns using the observed germination rates of naturally produced seeds in each population. RESULTS: Although homoploid and heteroploid crosses resulted in similar fruit and seed production, reproductive isolation between co-occurring diploids and tetraploids was nearly complete, due to low seed viability following heteroploid crosses. Of 191,182 total SNPs, 21,679 were present in ≥90% of individuals and replicate runs using unlinked SNPs revealed strong clustering by cytotype and differentiation of tetraploids based on population origin. CONCLUSIONS: As often reported, diploid and tetraploid L. australe experience strong postzygotic isolation via hybrid seed inviability. Consistent with this result, cytotype explained a greater amount of variation in the SNP data set than population origin, despite some evidence of historical introgression.
Assuntos
Diploide , Lycium , Tetraploidia , Isolamento Reprodutivo , PoliploidiaRESUMO
Synthetic biology has been represented by the creation of artificial life forms at the genomic scale. In this work, a CRISPR-based chromosome-doubling technique is designed to first construct an artificial diploid Escherichia coli cell. The stable single-cell diploid E. coli is isolated by both maximal dilution plating and flow cytometry, and confirmed with quantitative PCR, fluorescent in situ hybridization, and third-generation genome sequencing. The diploid E. coli has a greatly reduced growth rate and elongated cells at 4-5 µm. It is robust against radiation, and the survival rate after exposure to UV increased 40-fold relative to WT. As a novel life form, the artificial diploid E. coli is an ideal substrate for research fundamental questions in life science concerning polyploidy. And this technique may be applied to other bacteria.
Assuntos
Diploide , Escherichia coli , Escherichia coli/genética , Hibridização in Situ Fluorescente , Poliploidia , Cromossomos de PlantasRESUMO
Whole-genome sequence data have revealed that numerous eukaryotic organisms derive from distant polyploid ancestors, even when these same organisms are genetically and karyotypically diploid. Such ancient whole-genome duplications (WGDs) have been important for long-term genome evolution and are often speculatively associated with important evolutionary events such as key innovations, adaptive radiations, or survival after mass extinctions. Clearly, reliable methods for unveiling ancient WGDs are key toward furthering understanding of the long-term evolutionary significance of polyploidy. In this chapter, we describe a set of basic established comparative genomics approaches for the inference of ancient WGDs from genomic data based on empirical age distributions and collinearity analyses, explain the principles on which they are based, and illustrate a basic workflow using the software "wgd," geared toward a typical exploratory analysis of a newly obtained genome sequence.
Assuntos
Diploide , Genômica , Humanos , Eucariotos , Extinção Biológica , PoliploidiaRESUMO
Analyzing autopolyploid genetic data still presents numerous challenges due to, e.g., missing dosage information of genotypes and the presence of multiple ploidy levels within species or populations, but also because the choice of software is limited when compared to what is available for diploid data. However, over the last years, the number of software programs that can deal with polyploid data is slowly increasing. The software GENODIVE is one of the most widely used programs for the analysis of polyploid genetic data, presenting a wide array of different methods. In this chapter, I outline several frequently used types of population genetic analyses and explain how these apply to polyploid data, including possible pitfalls and biases. I then explain how GENODIVE approaches these analyses and whether and how it can overcome possible biases. Specifically, I focus on analyses of genetic diversity, Hardy-Weinberg equilibrium, quantifying population differentiation, clustering, and calculation of genetic distances. GENODIVE can be downloaded freely from http://www.patrickmeirmans.com/software .
Assuntos
Diploide , Ploidias , Humanos , Análise por Conglomerados , Genótipo , PoliploidiaRESUMO
This chapter outlines an empirical analysis of genome-wide single-nucleotide polymorphism (SNP) variation and its underlying drivers among multiple natural populations within a diploid-autopolyploid species. The aim is to reconstruct the genetic structure among natural populations of varying ploidy and infer footprints of selection in these populations, framed around specific questions that are typically encountered when analyzing a mixed-ploidy data set,e.g., addressing the relevance of natural whole-genome duplication for speciation and adaptation. We briefly review the options for the analysis of polyploid population genomic data involving variant calling, population structure, demographic history inference, and selection scanning approaches. Further, we provide suggestions for methods and associated software, possible caveats, and examples of their application to mixed-ploidy and autopolyploid data sets.
Assuntos
Diploide , Metagenômica , Genômica , Ploidias , AclimataçãoRESUMO
Despite their advantages, biotechnological and omic techniques have not been applied often to characterize phytotoxicity in depth. Here, we show the distribution of phytotoxicity and glycoalkaloid content in a diploid potato population and try to clarify the source of variability of phytotoxicity among plants whose leaf extracts have a high glycoalkaloid content against the test plant species, mustard. Six glycoalkaloids were recognized in the potato leaf extracts: solasonine, solamargine, α-solanine, α-chaconine, leptinine I, and leptine II. The glycoalkaloid profiles of the progeny of the group with high phytotoxicity differed from those of the progeny of the group with low phytotoxicity, which stimulated mustard growth. RNA sequencing analysis revealed that the upregulated flavonol synthase/flavonone 3-hydroxylase-like gene was expressed in the progeny of the low phytotoxicity group, stimulating plant growth. We concluded that the metabolic shift among potato progeny may be a source of different physiological responses in mustard. The composition of glycoalkaloids, rather than the total glycoalkaloid content itself, in potato leaf extracts, may be a driving force of phytotoxicity. We suggest that, in addition to glycoalkaloids, other metabolites may shape phytotoxicity, and we assume that these metabolites may be flavonoids.
Assuntos
Flavonoides , Extratos Vegetais , Solanum tuberosum , Alcaloides/análise , Alcaloides/toxicidade , Diploide , Flavonoides/análise , Flavonoides/toxicidade , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Extratos Vegetais/toxicidade , Folhas de Planta/químicaRESUMO
Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is known about how triploidization and microbiome affect the immune response and disease resistance in the fish host. Therefore, this study aims to identify the relationship between intestinal microbiota composition, transcriptome changes, and disease resistance in triploid Carassius auratus (3nCC). In China's central Dongting lake water system, diploid (2nCC) and triploid Carassius auratus were collected, then 16S rRNA and mRNA sequencing were used to examine the microbes and gene expression in the intestines. 16S rRNA sequencing demonstrated that triploidization altered intestinal richness, as well as the diversity of commensal bacteria in 3nCC. In addition, the abundance of the genus Vibrio in 3nCC was increased compared to 2nCC (P < 0.05). Furthermore, differential expression analysis of 3nCC revealed profound up-regulation of 293 transcripts, while 324 were down-regulated. Several differentially expressed transcripts were related to the immune response pathway in 3nCC, including NLRP3, LY9, PNMA1, MR1, PELI1, NOTCH2, NFIL3, and NLRC4. Taken together, triploidization can alter bacteria composition and abundance, which can in turn result in changes in expression of genes. This study offers an opportunity for deciphering the molecular mechanism underlying disease resistance after triploidization.
Assuntos
Microbioma Gastrointestinal , Carpa Dourada , Animais , Carpa Dourada/genética , Triploidia , Diploide , RNA Ribossômico 16S/genética , Transcriptoma , Microbioma Gastrointestinal/genética , Resistência à DoençaAssuntos
Diploide , Miócitos Cardíacos , Humanos , Fatores de Transcrição E2F , Infarto , Regeneração , Proliferação de CélulasRESUMO
This study aimed to evaluate the ploidy and survival of larvae resulting from crosses between tetraploid females and diploid males of yellowtail tetra Astyanax altiparanae, both females (three diploids and three tetraploids) and males (n = 3 diploids). Breeders were subjected to hormonal induction with pituitary gland extract from common carp fish (Cyprinus carpio). Females received two doses at concentrations of 0.3 and 3.0 mg/kg -1 body weight and at intervals of 6 h. Males were induced with a single dose of 3.0 mg/kg -1 applied simultaneously with the second dose in females. Oocytes from each diploid and tetraploid female were fertilized with semen from the same male, resulting in two crosses: cross 1 (diploid male and diploid female) and cross 2 (diploid male and tetraploid female). The procedures were performed with separate females (diploid and tetraploid) and diploid males for each repetition (n = 3). For ploidy determination, 60 larvae from each treatment were analyzed using flow cytometry and cytogenetic analyses. As expected, flow cytometry analysis showed that progenies from crosses 1 and 2 presented diploid and triploid individuals, respectively, with a 100% success rate. The same results were confirmed in the cytogenetic analysis, in which the larvae resulting from cross 1 had 50 metaphase chromosomes and those from cross 2 had 75 chromosomes. The oocytes have a slightly ovoid shape at the time of extrusion. Diploid oocytes had a size of 559 ± 20.62 µm and tetraploid of 1025.33 ± 30.91 µm. Statistical differences were observed between eggs from crosses 1 and 2 (P = 0.0130). No significant differences between treatments were observed for survival at the 2-cell stage (P = 0.6174), blastula (P = 0.9717), gastrula (P = 0.5301), somite (P = 0.3811), and hatching (P = 0.0984) stages. In conclusion, our results showed that tetraploid females of the yellowtail tetra A. altiparanae are fertile, present viable gametes after stripping and fertilization using the 'dry method', and may be used for mass production of triploids. This is the first report of these procedures within neotropical characins, and which can be applied in other related species of economic importance.