Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.398
Filtrar
1.
Ecotoxicol Environ Saf ; 205: 111316, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007600

RESUMO

The interaction between multi-walled carbon nanotubes (MWCNTs) and soil heavy metals was rarely studied. With the convenience of detecting multiple metal elements by ICP-AES, this paper examined the potential effectiveness of MWCNTs on extractability of antimony (Sb) and cadmium (Cd) in contaminated soil. Three-step sequential extraction procedure, toxicity characteristic leaching procedure, bioaccessibility and CaCl2 single extraction were employed to evaluate Sb and Cd speciations and their extractabilities. According to our results, only at low Sb content level of 100 mg/kg, antimony bioavailability reduced with MWCNTs addition of 0.3% and 0.9% by 22.97% and 20.74%, respectively, which might due to the increase of adsorption point, nevertheless, the excess Sb(OH)6- was not adsorbed more efficiently. Secondly, due to the difference in effective specific surface area, only under the condition of high content level and MWCNTs addition of 0.1%, the mild acid-soluble fraction increased at most by 15.40% for Sb and 9.40% for Cd, respectively. However, in terms of TCLP-extractable Sb and Cd and CaCl2-extractable Sb and Cd, no significant, continuous, regular extractability pattern were found. Overall, MWCNTs were selective on extractability of soil heavy metals due to mechanisms of physical adsorption. This paper provides data reference for the interaction between MWCNTs and soil heavy metals extractability.


Assuntos
Cádmio/química , Nanotubos de Carbono/química , Poluentes do Solo/química , Adsorção , Antimônio , Disponibilidade Biológica , Poluição Ambiental , Metais Pesados , Solo
2.
J Environ Sci (China) ; 97: 169-179, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933732

RESUMO

Total contents of metals in soil and sediments on the Tibetan Plateau of China have been widely analyzed, but existing information is insufficient to effectively evaluate metal ecological risk because of a lack of metal bioavailability data. In this study, distribution, potential risk, mobility and bioavailability of metals in sediments of Lake Yamdrok Basin in Tibet of China were explored by combined use of total digestion, sequential extraction and the diffusive gradient in thin-films (DGT). Average concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb in surface sediments were 31.25, 30.31, 22.00, 45.04, 31.32, 0.13 and 13.39 mg/kg, respectively. Higher levels of metals were found near the inflowing rivers. Residual form was dominant in Cr, Ni, Zn, Cd and Pb, and reducible form was dominant in As and Cd. Metals in surface sediments showed a low enrichment degree overall, but Cd and As had higher ecological risk levels than the other metals. Furthermore, there was a larger average proportion of exchangeable form of As (20.4%) and Cd (9.0%) than the other metals (1.7%-3.3%), implying their higher mobility and release risk. Average DGT-labile concentrations of Cr, Ni, Cu, Zn, As, Cd and Pb were 0.5, 4.5, 0.7, 25.1, 60.0, 0.22 and 1.0 µg/L, respectively. The DGT-labile As was significantly correlated with extractable As forms (p< 0.01), suggesting that extractable As in sediments acts as a "mobile pool" for bioavailable As. These results suggest potential risks of As and Cd, especially As, deserve further attention in Lake Yamdrok Basin.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Disponibilidade Biológica , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Medição de Risco , Tibet
3.
Environ Monit Assess ; 192(10): 639, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929590

RESUMO

Soil and the dominant plant species in the vicinity of Khatoon Abad copper smelter in Kerman province of Iran are examined to determine contamination, bioavailability, and ecological-health risk of potentially toxic elements (PTEs) based on 23 collected soil samples and 13 Artemisia siebri plant species. Cu, Mo, As, and Sb display a significant level of enrichment in soil. Ecological risk assessment shows that Cu, As, and Cd pose the highest ecological risk. The results of PTEs fractionation reveal that, on average, Cu, As, Cd, Pb, Zn, and Mo are mostly distributed between non-residual fractions reflecting higher mobility and potential ecological risk, while Cr, Ni, and Co are significantly distributed within the residual fraction, and do not pose a serious ecological risk. Mobility factor suggests high bioavailability of Cu for plants followed by As, Cd, Pb, Mo, Co, Ni, and Cr. Biological accumulation coefficient displays higher phytoavailability of Mo and Cd. PTEs transfer within plant follows the order of Mo > As > Pb > Zn > Cu > Ni > Co > Cr > Cd. The results of phytoavailability indicate the high tendency of Cd to bioaccumulate in Artemisia's root, while Mo, As, and Pb tend to translocate towards Artemisia's shoot. Calculated hazard index and incremental lifetime cancer risk revealed that As poses the highest non-carcinogenic health risk, and As and Pb pose the greatest carcinogenic health risk in both adults and children.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Disponibilidade Biológica , Criança , Cobre , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Medição de Risco , Solo
4.
Chemosphere ; 254: 126904, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957297

RESUMO

Estimating bioaccessible content of mercury in soils is essential in evaluating risks that contaminated soils pose. In this study, soil samples spiked with HgCl2 through adsorption were used to test the effects of liming, soil organic matter, soil depth, and Hg concentration on the following bioaccessibility tests: dilute nitric acid at room temperature, dilute nitric acid at body temperature, Simplified Bioaccessibility Extraction Test (SBET) method, and gastric phase of the In vitro Gastrointestinal (IVG) protocol. Soil and sediment samples from Descoberto, Minas Gerais (Brazil), a city with a well-known record of Hg contamination from artisanal mining, were subjected to these bioaccessibility tests for the first time, and the different methods of estimating bioaccessible content were compared. Bioaccessible fractions in spiked samples ranged from 10% to 60%, and this high bioaccessibility was due to the highly soluble species of Hg and the short time under adsorption. In general, clay and organic matter decreased bioaccessible content. Although the soil in Descoberto is undoubtedly polluted, mercury bioaccessibility in that area is low. In general, dilute nitric acid estimated higher bioaccessible content in soil samples, whereas the SBET method estimated higher bioaccessible content in sediment samples. In multivariate analysis, two groups of bioaccessibility tests arise: one with the two nitric acid tests, and the other with SBET and the gastric phase of the IVG protocol. The addition of pepsin and glycine in the last two tests suggests a more reliable test for assessing mercury bioaccessibility.


Assuntos
Argila/química , Substâncias Húmicas/análise , Mercúrio/análise , Mineração , Poluentes do Solo/análise , Solo/química , Adsorção , Disponibilidade Biológica , Brasil , Cidades , Mucosa Gástrica/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mercúrio/metabolismo , Modelos Biológicos , Ácido Nítrico/química , Poluentes do Solo/metabolismo
5.
Ecotoxicol Environ Saf ; 205: 111347, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961489

RESUMO

The soil cadmium (Cd) contamination is a ubiquitous environmental problem that has resulted from intense irrigation with wastewater. This pot trial was conducted with aim to produce safe food with Cd tolerant wheat cultivar in wastewater irrigated soils. For this purpose, two wheat cultivars NARC-2011 (Cd tolerant) and Shafaq-2006 (Cd sensitive) were screened out and selected, after conducting a pilot trial of twelve local wheat cultivars against Cd stress. Both cultivars were grown in naturally contaminated soils with Cd concentrations (4.18, 3.23, 2.29 and 1.25 mg kg-1). After harvesting, NARC-2011 showed significant photosynthetic attributes, grain biochemical parameters and yield. Additionally, Cd concentrations in edible grains of NARC-2011 cultivars were found within standard limits (200 mg kg-1), in all contaminated soils. Furthermore, a marked decrease in Cd bioavailability was noted with cultivar NARC-2011, where contribution of mobile Cd fractions (exchangeable and reducible) percentage was decreased, while immobile Cd fractions percentage increased (oxidizable and residual). Fourier transform infrared (FTIR) spectroscopy reflects the maturity and stability of humic and fulvic like acid fractions and revealed that humification of these compounds after prolonged sludge enriched wastewater irrigation lowered the Cd availability. The wheat cultivar NARC-2011 (Cd tolerant) could be opted to grow on soils irrigated with wastewater for a long time, as Cd bioavailability decreased with ageing due to stabilized humic substances and varietal tolerance.


Assuntos
Irrigação Agrícola , Cádmio/análise , Poluentes do Solo/análise , Triticum/química , Benzopiranos , Disponibilidade Biológica , Grão Comestível/química , Substâncias Húmicas/análise , Esgotos/análise , Solo/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química
6.
Ecotoxicol Environ Saf ; 205: 111346, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977285

RESUMO

It is a daunting challenge to predict toxicity and accumulation of rare earth metals (REMs) in different exposure scenarios (e.g., varying water chemistry and metal combinations). Herein, we investigated the toxicity and uptake of La and Ce in the presence of various levels of Ca, Mg, Na, K, and at different pH values, as well as the combined effects of La and Ce in wheat Triticum aestivum. Major cations (Ca2+ and Mg2+) significantly mitigated the toxicity and accumulation of La3+/Ce3+. Toxicity and uptake of La, Ce, and La-Ce mixtures could be well quantified by the multi-metal biotic ligand model (BLM) and by the Langmuir-type uptake model with the consideration of the competitive effects of Ca2+ and Mg2+, with more than 85.1% of variations explained. The derived binding constants of Ca, Mg, La, and Ce to wheat root were respectively 3.87, 3.59, 6.97, and 6.48 on the basis of toxicity data, and 3.23, 2.84, 6.07, and 5.27 on the basis of uptake data. The use of the alternative WHAM-Ftox approach, requiring fewer model parameters than the BLM but with similar Akaike information criterion (AIC) values, successfully predicted the toxicity and accumulation of La/Ce as well as toxicity of La-Ce mixtures, with at least 76.4% of variations explained. However, caution should be taken when using this approach to explain the uptake of La-Ce mixtures. Our results provided promising tools for delineating REMs toxicity/uptake in the presence of other toxicity-modifying factors or in mixture scenarios.


Assuntos
Metais Terras Raras/toxicidade , Triticum/fisiologia , Disponibilidade Biológica , Cátions/farmacologia , Ligantes , Metais/farmacologia , Modelos Biológicos , Sódio , Triticum/efeitos dos fármacos
7.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3565-3574, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893545

RESUMO

Quercetin is a kind of typical flavonoid, mainly found in various vegetables, fruits and Chinese herbs that are consumed daily, with the functions of anti-oxidation, anti-tumor, prevention and treatment of cardiovascular and cerebrovascular diseases. Quercetin is a natural compound with defined anti-tumor activity. Due to its low bioavailability and poor water solubility, quercetin has limitations in clinical application. The quercetin derivatives with good solubility, high bioavailability, metabolic stability, and low toxicity have been obtained through modification of quercetin structure. In recent years, a large number of quercetin ethers, esters, complexes, C-4 carbonyloxy substituted derivatives, A,B-ring modified compounds and other derivatives have been synthesized and tested for in vitro anticancer activity. The quercetin derivatives with anti-tumor activity synthesized in the last 5 years were reviewed in this paper.


Assuntos
Neoplasias , Quercetina , Disponibilidade Biológica , Humanos , Oxirredução , Solubilidade
8.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3672-3680, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893557

RESUMO

In order to improve the supersaturation and maintenance time of drug dispersion in curcumin self-nanoemulsion(CUR-SNEDDS), precipitation inhibitors(PPIs) were introduced to prepare curcumin supersaturated self-emulsion(CUR-SSNEDDS). The composition of CUR-SNEDDS prescriptions was selected through the solubility test, the compatibility of oil phase and surfactant, the investigation of the emulsifying ability of the surfactant and the drawing of the pseudo-ternary phase diagram. Analytic hierarchy process was used in combination with central composite design-response surface method to optimize the prescription. The type and dosage of precipitation inhibitors(PPIs) were selected to maintain the supersaturated concentration and duration of CUR in artificial gastrointestinal fluids. At the same time, polarizing microscope was used to evaluate the crystallization inhibition effect and the quality and in vitro release behavior of CUR-SSNEDDS. The prepared CUR-SSNEDDS prescription was capryol 90-kolliphor RH40-transcutol HP-Soluplus(7.93∶66.71∶25.36∶5), with the drug loading of(65.12±1.25) mg·g~(-1). CUR-SSNEDDS was transparent yellow, and the nanoemulsion droplets were spherical with uniform distribution. The emulsification time was(21.02±0.13) s, the average particle size was(57.03±0.35) nm, the polydispersity index(PDI) was(0.23 ± 0.01), and the Zeta potential was(-18.10±1.30) mV. CUR-SSNEDDS significantly inhibited the generation and growth of crystals after in vitro dilution. The supersaturation could be maintained above 10 within 2 h, and the dissolution rate and degree of CUR in artificial gastrointestinal fluid were significantly increased. Soluplus could effectively maintain the supersaturated state of CUR and enhance CUR dissolution in vitro.


Assuntos
Curcumina , Nanopartículas , Disponibilidade Biológica , Emulsões , Tamanho da Partícula , Solubilidade , Tensoativos
9.
Int J Nanomedicine ; 15: 6503-6518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922013

RESUMO

Objective: A non-lipolysis nanoemulsion (NNE) was designed to reduce the first-pass metabolism of raloxifene (RAL) by intestinal UDP-glucuronosyltransferases (UGTs) for increasing the oral absorption of RAL, coupled with in vitro and in vivo studies. Methods: In vitro stability of NNE was evaluated by lipolysis and the UGT metabolism system. The oral bioavailability of NNE was studied in rats and pigs. Finally, the absorption mechanisms of NNE were investigated by in situ single-pass intestinal perfusion (SPIP) in rats, Madin-Darby canine kidney (MDCK) cells model, and lymphatic blocking model. Results: The pre-NNE consisted of isopropyl palmitate, linoleic acid, Cremophor RH40, and ethanol in a weight ratio of 3.33:1.67:3:2. Compared to lipolysis nanoemulsion of RAL (RAL-LNE), the RAL-NNE was more stable in in vitro gastrointestinal buffers, lipolysis, and UGT metabolism system (p < 0.05). The oral bioavailability was significantly improved by the NNE (203.30%) and the LNE (205.89%) relative to the suspension group in rats. However, 541.28% relative bioavailability was achieved in pigs after oral NNE intake compared to the suspension and had two-fold greater bioavailability than the LNE (p < 0.05). The RAL-NNE was mainly absorbed in the jejunum and had high permeability at the intestine of rats. The results of both SPIP and MDCK cell models demonstrated that the RAL-NNE was absorbed via endocytosis mediated by caveolin and clathrin. The other absorption route, the lymphatic transport (cycloheximide as blocking agent), was significantly improved by the NNE compared with the LNE (p < 0.05). Conclusion: A NNE was successfully developed to reduce the first-pass metabolism of RAL in the intestine and enhance its lymphatic transport, thereby improving the oral bioavailability. Altogether, NNE is a promising carrier for the oral delivery of drugs with significant first-pass metabolism.


Assuntos
Absorção Fisico-Química , Emulsões/química , Lipólise , Nanopartículas/química , Cloridrato de Raloxifeno/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Sobrevivência Celular , Cães , Emulsões/administração & dosagem , Feminino , Intestinos/fisiologia , Linfa/metabolismo , Células Madin Darby de Rim Canino , Masculino , Polietilenoglicóis , Ratos Sprague-Dawley , Tensoativos/química , Suínos
10.
Mar Pollut Bull ; 159: 111480, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738639

RESUMO

Batch experiments were conducted to study the migration behavior of arsenic (As) and iron (bivalent, trivalent, and total Fe) of the presence of the low molecular weight organic acids (LMWOAs) citric acid, malic acid, and oxalic acid in As-enriched mangrove sediments. The results for supernatant As/Fe species were significant according to each LMWOA treatment. Significant non-linear correlations were found among As level, pH, and acid dose based on our predictive model. The capacity of LMWOAs to mobilize As/Fe species followed the order of citric acid > malic acid/oxalic acid. The supernatant As correlated positively with the LMWOAs dose and negatively correlated with the pH. As migration was affected by acid strength, the number of carboxyl groups, the pH and levels of Fe compounds in the sediments. The results indicate that LMWOAs can potentially attenuate As contamination from mangrove sediment, allowing for a better understanding of As/Fe behavior in the rhizosphere.


Assuntos
Arsênico , Disponibilidade Biológica , Concentração de Íons de Hidrogênio , Peso Molecular , Compostos Orgânicos , Ácido Oxálico
11.
Aging (Albany NY) ; 12(15): 15784-15796, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805728

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an epidemic disease characterized by rapid infection and a high death toll. The clinical diagnosis of patients with COVID-19 has risen sharply, especially in Western countries. Globally, an effective treatment for COVID-19 is still limited. Vitamin A (VA) exhibits pharmacological activity in the management of pneumonia. Thus, we reason that VA may potentially serve as an anti-SARS-CoV-2 regimen. In this study, bioinformatics analysis and computation assays using a network pharmacology method were conducted to explore and uncover the therapeutic targets and mechanisms of VA for treating COVID-19. We identified candidate targets, pharmacological functions, and therapeutic pathways of VA against SARS-CoV-2. Bioinformatics findings indicate that the mechanisms of action of VA against SARS-CoV-2 include enrichment of immunoreaction, inhibition of inflammatory reaction, and biological processes related to reactive oxygen species. Furthermore, seven core targets of VA against COVID-19, including MAPK1, IL10, EGFR, ICAM1, MAPK14, CAT, and PRKCB were identified. With this bioinformatics-based report, we reveal, for the first time, the anti-SARS-CoV-2 functions and mechanisms of VA and suggest that VA may act as a potent treatment option for COVID-19, a deadly global epidemic.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Imunidade/efeitos dos fármacos , Inflamação , Pandemias , Pneumonia Viral , Vitamina A , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Betacoronavirus/fisiologia , Disponibilidade Biológica , Biologia Computacional/métodos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Ontologia Genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/imunologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Transdução de Sinais/efeitos dos fármacos , Vitamina A/farmacocinética , Vitamina A/uso terapêutico , Vitaminas/farmacocinética , Vitaminas/uso terapêutico
12.
J Environ Manage ; 272: 111086, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32854890

RESUMO

The present study deals with bioavailability of trace metals in the Doce river continental shelf, southeast of Brazil. The bottom sediments of the study area were firstly sampled a few weeks before the biggest environmental disaster of Brazil, the collapse of the Fundão dam in November of 2015. The disaster released around 40 Mm3 of iron ore tailings into Doce river basin and an estimate of 10 Mm3 reached the river delta, having the adjacent continental shelf as the final destination. One year and a half later, on April of 2017, the continental shelf was sampled again. A total of 48 stations were evaluated concerning concentrations of trace metals (Zn, Cu, Pb, Ni, Cr) and other ancillary variables before and after the accident. Trace metals were determined through fractionation in order to assess mobility and establish the ecological risk through RAC index. Before the accident, trace metals mobility was Pb > Ni > Cu > Zn > Cr, with Pb Cu, Ni and posing high ecological risk (RAC>30%) in many stations. Differences in concentrations of metal from pre to post accident were significant, and the increase of trace metals was observed. The mobility order after the accident changed to: Cu > Pb > Ni > Zn > Cr. Metal fractionation showed remarkable changes after the accident, with elements such as Cu, Ni and Zn highly associated with reducible fractions originated from the tailings composition. Despite the decrease of RAC to medium risk after the accident in most stations, the bioavilability of Cu, Pb, Ni and Zn increased as show by their higher accumulation in the bioavailable fractions.


Assuntos
Desastres , Metais Pesados/análise , Poluentes Químicos da Água/análise , Disponibilidade Biológica , Brasil , Monitoramento Ambiental , Sedimentos Geológicos , Medição de Risco , Rios
13.
Bull Environ Contam Toxicol ; 105(2): 283-290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32734360

RESUMO

The current study investigated the efficiency of sepiolite (SE), sodium humate (HS), microbial fertilizer (JF) and SE combined with JF/HS in a ratio of 2:1 (w/w) (JF-2SE and HS-2SE) on Cd, Pb and As bioavailability in field trials with rice (Oryza sativa L.). The results showed that all the amendments remarkably decreased (p < 0.05) the contents of available Cd and available Pb in soil. Only JF-2SE treatment reduced available As concentration in soil. All the amendments were found to effectively reduce (p < 0.05) the contents of As in brown rice. Both JF-2SE and HS-2SE co-applications reduced the concentrations of Cd in brown rice to 0.108 and 0.135 mg kg-1, and that of Pb reduced to 0.2 and 0.175 mg kg-1, which met the national standard limit of China. Thus, the co-application of JF/HS-2SE can be a promising remediation strategy in Cd, Pb and As co-contaminated paddy soil.


Assuntos
Cádmio/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/química , Disponibilidade Biológica , Cádmio/análise , China , Poluição Ambiental , Fertilizantes , Chumbo/análise , Silicatos de Magnésio , Oryza , Solo/química , Poluentes do Solo/análise
14.
Anim Sci J ; 91(1): e13352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32783336

RESUMO

Vitamin E is an essential nontoxic fat-soluble micronutrient whose effects on livestock performance and products can be attributed to its antioxidant and nonantioxidant properties. Although it is needed in small quantity in the diet, its roles in livestock production are indispensable as it is required in boosting performance, nutritional qualities, and yield of animal and animal products. The dietary or oral supplementation of vitamin E is essential in reducing lipid oxidation in muscle, egg, and dairy products as well as lowering cholesterol concentrations and improving antioxidant status of livestock. Evidence has shown that bioavailability of vitamin E-enriched animal products could serve as an invaluable nutritional benefit to consumers; especially those in regions of limited resources where vitamin E deficiencies pose a risk that may be detrimental to some cellular activities of the body and on human health. It is therefore important to redirect research on the impact of vitamin E supplementation as antioxidant on livestock performance and animal products.


Assuntos
Ração Animal , Dieta/veterinária , Gado , Vitamina E , Animais , Antioxidantes , Disponibilidade Biológica , Suplementos Nutricionais , Diterpenos , Vitamina E/metabolismo , Deficiência de Vitamina E
15.
Ecotoxicol Environ Saf ; 202: 110908, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800243

RESUMO

Chinese milk vetch is an efficient approach to reduce Cd accumulation in rice, nevertheless, its reduction mechanism is not well understood. In this study, we investigated the rice grain Cd, soil properties and microbial community in a Cd-polluted paddy field amended with milk vetch residue (MV) or without (CK) during rice growth period. We found that milk vetch residue averagely decreased the Cd content in rice grain by 45%. Decrease of Cd in rice mainly attributed to the inhibition of Cd activation by milk vetch residue at heading stage probably by the formation of HA-Cd (Humic Acid) and CdS. Increased pH and organic matter (OM) promoted the reduction of available Cd. In addition, nonmetric multidimensional scaling (NMDS) analysis revealed that microbial community structure was significantly different between MV and CK treatment (r = 0.187, p = 0.002), and the core functions of differentially abundant genera were mainly associated with N-cycling, organic matter degradation and sulfate-reducing. The application of milk vetch residue increased the abundance of sulfate-reducing bacteria (SRB) by 8-112% during the rice growth period, which may involve in promoting the transformation of Cd to a more stably residual Cd (CdS). Canonical correspondence analysis (CCA) and mantel test analysis indicated that available K (p = 0.004) and available N (p = 0.005) were the key environmental factors of shaping the SRB. Altogether, changes in soil properties affected microbial structure and functional characteristics, especially the response of SRB in MV treatment would provide valuable insights into reducing the bioavailability of Cd in soil.


Assuntos
Astrágalo (Planta)/metabolismo , Cádmio/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Animais , Astrágalo (Planta)/microbiologia , Disponibilidade Biológica , Grão Comestível/química , Substâncias Húmicas/análise , Resíduos Industriais , Microbiota , Leite , Solo/química , Poluentes do Solo/análise
16.
Water Res ; 185: 116259, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798889

RESUMO

Passive sampling and bioaccumulation assessments were used to evaluate the performance of activated carbon (AC) remediation of polychlorinated biphenyl (PCB) contaminated sediment offshore in Parcel F of the former Hunters Point Naval Shipyard (HPNS) (San Francisco, California). Two different composite AC materials, AquaGate+PAC™ (86 tons) and SediMite™ (24 tons) were placed on the sediment surface covering an area of 3200 m2. PCB tissue concentrations in the clam Macoma nasuta were reduced 75 to 80% in pilot amendment areas after 8 months and 84-87% in non-lipid normalized tissues after 14 months during in situ monitoring, confirming the effectiveness of the AC at reducing bioavailability of the PCBs. Polydimethylsiloxane (PDMS) passive samplers were applied to evaluate and monitor freely dissolved concentrations (Cfree) of PCBs in sediment porewater before AC placement (i.e., during baseline) and at 8 months, 14 months and 26 months following placement. Although AC composite materials were placed only at the surface, 80% reductions were observed to a depth of 16 cm after 8 months and up to 26 cm after 26 months in AquaGate+PAC treatment area. Total PCB porewater concentrations in surface sediments (1-6 cm) were reduced 89 and 91% in the AquaGate+PAC and SediMite areas during final sampling. Ex situ passive sampling showed porewater concentrations 2-5 times larger than in situ measurements due to the absence of hyporheic exchange in laboratory measurements and near equilibration between sediment and porewater. Estimated post placement ex situ porewater concentrations were more consistent with a model of bioaccumulation using the octanol-water partition coefficient (KOW) as a bioaccumulation factor leading to a hypothesis that the bioaccumulation factor in the deposit feeding clam is better estimated by equilibrium ex situ porewater measurements.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Carvão Vegetal , Monitoramento Ambiental , Sedimentos Geológicos , Bifenilos Policlorados/análise , São Francisco , Poluentes Químicos da Água/análise
17.
Ecotoxicol Environ Saf ; 205: 111110, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810646

RESUMO

ZIF-8 nanoparticles (NPs) has been demonstrated with good potential in drug delivery, which causes an increasing attention on relevant toxicity study. In this work, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide), glutathione (GSH), reactive oxygen species (ROS), stain analysis and gene detection assays were performed on ZIF-8 (50, 90 and 200 nm) incubated HepG2 cells. Moreover, time-resolved inductively coupled plasma mass spectrometry (TRA-ICP-MS) was applied for single cell analysis; the variation in cellular zinc amount and the proportion of zinc up-taken cells was investigated as a function of NPs size, incubation concentration/time and elimination. Smaller size of ZIF-8 NPs would lead to higher zinc accumulation and toxicity. The function of ZIF-8 on cells is assumed to be mainly related to zinc intracellular accumulation. The possible action path is presented as high accumulation of zinc in ZIF-8 incubated cells lead to high ROS level and cellular inflammation, ultimately inducing necrocytosis. For better understanding of the bio-effect of ZIF-8, ZnO NPs and Zn2+ incubated HepG2 cells were evaluated in the same way. Higher accumulation of zinc in larger part of the cell population was found in ZIF-8 incubated cells than that in ZnO NPs incubated cells. It demonstrated higher bioavailability for ZIF-8 over ZnO NPs. While, in drug delivery application, the possible risk of the remained intracellular ZIF-8 cannot be ignored.


Assuntos
Imidazóis/química , Estruturas Metalorgânicas/toxicidade , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Zinco/química , Bioensaio , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/farmacologia , Células Hep G2 , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/metabolismo , Nanopartículas/química , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Óxido de Zinco/química
18.
Int J Nanomedicine ; 15: 5217-5226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801687

RESUMO

Aim: Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs) is commonly associated with gastric irritation and gastric ulceration. Therefore, the aim of study was to develop a novel oral drug delivery system with minimum gastric effects and improved dissolution rate for aceclofenac (ACF), a model BCS class-II drug. Methods: Self-emulsifying drug delivery systems (SEDDS) were formulated to increase the solubility and ultimately the oral bioavailability of ACF. Oleic acid was used as an oil phase, Tween 80 (T80) and Kolliphor EL (KEL) were used as surfactants, whereas, polyethylene glycol 400 (PEG 400) and propylene glycol (PG) were employed as co-surfactants. Optimized formulations (F1, F2, F3 and F4) were analyzed for droplet size, poly dispersity index (PDI), cell viability studies, in vitro dissolution in both simulated gastric fluid and simulated intestinal fluid, ex vivo permeation studies and thermodynamic stability. Results: The optimized formulations showed mean droplet sizes in the range of 111.3 ± 3.2 nm and 470.9 ± 12.52 nm, PDI from 244.6 nm to 389.4 ± 6.51 and zeta-potential from -33 ± 4.86 mV to -38.5 ± 5.15 mV. Cell viability studies support the safety profile of all formulations for oral administration. The in vitro dissolution studies and ex vivo permeation analysis revealed significantly improved drug release ranging from 95.68 ± 0.02% to 98.15 ± 0.71% when compared with control. The thermodynamic stability studies confirmed that all formulations remain active and stable for a longer period. Conclusion: In conclusion, development of oral SEDDS might be a promising tool to improve the dissolution of BCS class-II drugs along with significantly reduced exposure to gastric mucosa.


Assuntos
Diclofenaco/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Disponibilidade Biológica , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Diclofenaco/administração & dosagem , Diclofenaco/farmacocinética , Liberação Controlada de Fármacos , Emulsões/administração & dosagem , Excipientes/química , Humanos , Masculino , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Polietilenoglicóis/química , Polissorbatos/química , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacocinética , Ratos Sprague-Dawley , Solubilidade , Tensoativos/química
19.
Int J Nanomedicine ; 15: 5253-5264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801690

RESUMO

Background and Aim: Flibanserin (FLB) is a multifunctional serotonergic agent used for treating hypoactive sexual desire disorder in premenopausal women via oral administration. FLB has a reported limited oral bioavailability of 33% that could be attributed to the drug's first-pass metabolism. In addition, FLB has a pH-dependent solubility that could be a challenging factor for drug dissolution in the body neutral fluid, and consequently, absorption via mucosal barriers. Thus, this work aims at investigating the potential of utilizing nanostructured lipid carriers (NLCs) to overcome the aforementioned drawbacks and to enhance nose-to-brain drug delivery. Methods: Box-Behnken design was applied to explore the impact of solid lipid % (SL%, X 1), liquid lipid % (LL%, X 2), and sonication time (ST, X 3) on particle size. The optimized NLC formulation was characterized and incorporated into gellan gum in situ gel. The prepared gel was subjected to in vitro drug release, in vivo pharmacokinetic performance, and histopathological assessment in rats. Results: Statistical analysis revealed a significant negative effect for both SL% and ST on NLCs size. In contrast, a significant positive effect was observed for the LL%. The optimized formulation showed spherical shape with vesicular size of 114.63 nm. The optimized FLB-NLC in situ gel exhibited adequate stability and enhanced in vitro release compared to raw FLB control gel. The plasma and brain concentrations of the drug after nasal administration in rats increased by more than 3-6-fold, respectively, compared to raw FLB in situ gel. In addition, the histopathological studies revealed the absence of any pathological signs. Conclusion: The aforementioned results highlight the safety of FLB-NLC in situ nasal gel and its potential to improve the drug bioavailability and brain delivery.


Assuntos
Benzimidazóis/administração & dosagem , Encéfalo/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Nanoestruturas/administração & dosagem , Administração Intranasal , Animais , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Géis , Lipídeos/administração & dosagem , Lipídeos/química , Masculino , Nanoestruturas/química , Tamanho da Partícula , Polissacarídeos Bacterianos/química , Ratos Wistar , Solubilidade
20.
Aquat Toxicol ; 227: 105604, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32846286

RESUMO

River sediment is the ultimate sink for heavy metal pollution. Copper (Cu) and zinc (Zn) are consistently found at environmentally significant levels in sediments worldwide. We hypothesized that the bioavailability and potential ecological risk of Cu and Zn in river sediments may be affected by seasonal variations and spatial distribution. In this study, we tested our hypothesis using highly industrialized river sediments (Laojie River) as an example. The concentration of heavy metals, pollution indexes, and risk indexes were evaluated and multivariate statistical analyses were performed. We found that seasonal variations affect heavy metal contamination, pollution indexes, and potential ecological risk in sediments and this effect was more severe in the dry season. In addition, higher levels of metal contamination, pollution indexes, and potential ecological risk were observed midstream and downstream of the Laojie River. We found that Cu and Zn were the primary contaminants in Laojie River sediments and may originate from common anthropogenic sources. Analysis of the chemical fractions further revealed that Cu and Zn exhibited high mobility and potential bioavailability risk. In addition, a high percentage and amount of Cu and Zn were found in exchangeable fractions, suggesting they pose a great risk to aquatic organisms. Our results indicate that seasonal variations and spatial distribution affect the bioavailability and potential ecological risk of Cu and Zn in river sediments. These findings suggest that seasonal variations and spatial distribution are important parameters to consider for environmental monitoring and environmental management in aquatic environments.


Assuntos
Cobre/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Zinco/análise , Disponibilidade Biológica , China , Poluição Ambiental/análise , Sedimentos Geológicos/química , Metais Pesados/análise , Medição de Risco , Rios/química , Estações do Ano , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA