Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86.927
Filtrar
1.
Bull Environ Contam Toxicol ; 105(4): 546-552, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32870331

RESUMO

The heavy metals were studied in water, sediments, algae, and various tissues of Glyptosternon reticulatum and Cyprinus carpio from River Swat, Pakistan, using flame atomic absorption spectrophotometer. The Zn, Cu, Pb and Ni were higher in water at sewage site compared to upstream and downstream sites. In sediments, the Ni and Cd were not detected whereas Cu, Pb and Zn were higher at downstream followed by sewage and upstream sites. The Ni and Zn in algae were higher at upstream and sewage sites compared to downstream site whereas Pb and Cd were higher at upstream site compared to sewage and downstream sites and Cu was found same at all the three sites. The heavy metals (Zn > Cu > Pb and Ni) in tissues (liver > gills > skin > muscles) of G. reticulatum was higher than in C. carpio. This study recommends the proper monitoring of River Swat in order to save its water and inhabitant aquatic life.


Assuntos
Carpas/metabolismo , Peixes-Gato/metabolismo , Sedimentos Geológicos/análise , Metais Pesados/metabolismo , Rios/química , Spirogyra/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Metais Pesados/análise , Paquistão , Especificidade da Espécie , Distribuição Tecidual , Poluentes Químicos da Água/análise
2.
PLoS One ; 15(9): e0238397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966285

RESUMO

The development of drugs targeting the brain still faces a high failure rate. One of the reasons is a lack of quantitative understanding of the complex processes that govern the pharmacokinetics (PK) of a drug within the brain. While a number of models on drug distribution into and within the brain is available, none of these addresses the combination of factors that affect local drug concentrations in brain extracellular fluid (brain ECF). Here, we develop a 3D brain unit model, which builds on our previous proof-of-concept 2D brain unit model, to understand the factors that govern local unbound and bound drug PK within the brain. The 3D brain unit is a cube, in which the brain capillaries surround the brain ECF. Drug concentration-time profiles are described in both a blood-plasma-domain and a brain-ECF-domain by a set of differential equations. The model includes descriptions of blood plasma PK, transport through the blood-brain barrier (BBB), by passive transport via paracellular and transcellular routes, and by active transport, and drug binding kinetics. The impact of all these factors on ultimate local brain ECF unbound and bound drug concentrations is assessed. In this article we show that all the above mentioned factors affect brain ECF PK in an interdependent manner. This indicates that for a quantitative understanding of local drug concentrations within the brain ECF, interdependencies of all transport and binding processes should be understood. To that end, the 3D brain unit model is an excellent tool, and can be used to build a larger network of 3D brain units, in which the properties for each unit can be defined independently to reflect local differences in characteristics of the brain.


Assuntos
Encéfalo/metabolismo , Modelos Neurológicos , Preparações Farmacêuticas/metabolismo , Animais , Transporte Biológico Ativo , Velocidade do Fluxo Sanguíneo , Barreira Hematoencefálica/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Líquido Extracelular/metabolismo , Humanos , Conceitos Matemáticos , Preparações Farmacêuticas/sangue , Farmacocinética , Ratos , Distribuição Tecidual
3.
PLoS Negl Trop Dis ; 14(9): e0008365, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898130

RESUMO

Insecticide resistance poses a significant threat to the control of arthropods that transmit disease agents. Nanoparticle carriers offer exciting opportunities to expand the armamentarium of insecticides available for public health and other pests. Most chemical insecticides are delivered by contact or feeding, and from there must penetrate various biological membranes to reach target organs and kill the pest organism. Nanoparticles have been shown to improve bioactive compound navigation of such barriers in vertebrates, but have not been well-explored in arthropods. In this study, we explored the potential of polyanhydride micro- and nanoparticles (250 nm- 3 µm), labeled with rhodamine B to associate with and/or transit across insect biological barriers, including the cuticle, epithelium, midgut and ovaries, in female Ae. aeygpti mosquitoes. Mosquitoes were exposed using conditions to mimic surface contact with a residual spray or paint, topical exposure to mimic contact with aerosolized insecticide, or per os in a sugar meal. In surface contact experiments, microparticles were sometimes observed in association with the exterior of the insect cuticle. Nanoparticles were more uniformly distributed across exterior tissues and present at higher concentrations. Furthermore, by surface contact, topical exposure, or per os, particles were detected in internal organs. In every experiment, amphiphilic polyanhydride nanoparticles associated with internal tissues to a higher degree than hydrophobic nanoparticles. In vitro, nanoparticles associated with Aedes aegypti Aag2 cells within two hours of exposure, and particles were evident in the cytoplasm. Further studies demonstrated that particle uptake is dependent on caveolae-mediated endocytosis. The propensity of these nanoparticles to cross biological barriers including the cuticle, to localize in target tissue sites of interest, and to reach the cytoplasm of cells, provides great promise for targeted delivery of insecticidal candidates that cannot otherwise reach these cellular and subcellular locations.


Assuntos
Aedes/fisiologia , Nanopartículas , Polianidridos , Aedes/citologia , Animais , Linhagem Celular , Endocitose , Feminino , Controle de Mosquitos/métodos , Rodaminas/química , Distribuição Tecidual
4.
PLoS Negl Trop Dis ; 14(9): e0008527, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898136

RESUMO

BACKGROUND: Zika virus (ZIKV) emerged in the Pacific Ocean and subsequently caused a dramatic Pan-American epidemic after its first appearance in the Northeast region of Brazil in 2015. The virus is transmitted by Aedes mosquitoes. We evaluated the role of temperature and infectious doses of ZIKV in vector competence of Brazilian populations of Ae. aegypti and Ae. albopictus. METHODOLOGY/PRINCIPAL FINDINGS: Two Ae. aegypti (Rio de Janeiro and Natal) and two Ae. albopictus (Rio de Janeiro and Manaus) populations were orally challenged with five viral doses (102 to 106 PFU / ml) of a ZIKV strain (Asian genotype) isolated in Northeastern Brazil, and incubated for 14 and 21 days in temperatures mimicking the spring-summer (28°C) and winter-autumn (22°C) mean values in Brazil. Detection of viral particles in the body, head and saliva samples was done by plaque assays in cell culture for determining the infection, dissemination and transmission rates, respectively. Compared with 28°C, at 22°C, transmission rates were significantly lower for both Ae. aegypti populations, and Ae. albopictus were not able to transmit the virus. Ae. albopictus showed low transmission rates even when challenged with the highest viral dose, while both Ae. aegypti populations presented higher of infection, dissemination and transmission rates than Ae. albopictus. Ae. aegypti showed higher transmission efficiency when taking virus doses of 105 and 106 PFU/mL following incubation at 28°C; both Ae. aegypti and Ae. albopictus were unable to transmit ZIKV with virus doses of 102 and 103 PFU/mL, regardless the incubation temperature. CONCLUSIONS/SIGNIFICANCE: The ingested viral dose and incubation temperature were significant predictors of the proportion of mosquito's biting becoming infectious. Ae. aegypti and Ae. albopictus have the ability to transmit ZIKV when incubated at 28°C. However Brazilian populations of Ae. aegypti exhibit a much higher transmission potential for ZIKV than Ae. albopictus regardless the combination of infection dose and incubation temperature.


Assuntos
Aedes/virologia , Saliva/virologia , Infecção por Zika virus/transmissão , Animais , Brasil , Mordeduras e Picadas de Insetos/virologia , Mosquitos Vetores/virologia , Estações do Ano , Temperatura , Distribuição Tecidual , Carga Viral , Zika virus
5.
Int J Nanomedicine ; 15: 6385-6399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922007

RESUMO

Purpose: The mononuclear phagocyte system (MPS) presents a formidable obstacle that hampers the delivery of various nanopreparations to tumors. Therefore, there is an urgent need to improve the off-MPS targeting ability of nanomedicines. In the present study, we present a novel preconditioning strategy to substantially increase the circulation times and tumor targeting of nanoparticles by regulating nanocarrier-MPS interactions. Methods: In vitro, the effect of different vacuolar H+-ATPase inhibitors on macrophage uptake of targeted or nontargeted lipid vesicles was evaluated. Specifically, the clinically approved proton-pump inhibitor esomeprazole (ESO) was selected as a preconditioning agent. Then, we further investigated the blocking effect of ESO on the macrophage endocytosis of nanocarriers. In vivo, ESO was first intravenously administered into A549-tumor-bearing nude mice, and 24 h later, the c(RGDm7)-modified vesicles co-loaded with doxorubicin and gefitinib were intravenously injected. Results: In vitro, ESO was found to reduce the interactions between macrophages and c(RGDm7)-modified vesicles by interfering with the latter's lysosomal trafficking. Studies conducted in vivo confirmed that ESO pretreatment greatly decreased the liver and spleen distribution of the targeted vesicles, enhanced their tumor accumulation, and improved the therapeutic outcome of the drug-loaded nanomedicines. Conclusion: Our findings indicate that ESO can regulate the nanoparticle-MPS interaction, which provides a feasible option for enhancing the off-MPS targeting of nanomedicines.


Assuntos
Portadores de Fármacos/química , Esomeprazol/farmacologia , Sistema Fagocitário Mononuclear/citologia , Nanopartículas/química , Células A549 , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transporte Biológico , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Endocitose , Esomeprazol/farmacocinética , Esomeprazol/uso terapêutico , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células MCF-7 , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Células RAW 264.7 , Distribuição Tecidual/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
Free Radic Res ; 54(7): 525-534, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32873097

RESUMO

Slc7a11 (xCT) and Slc3a1 (rBAT) are cystine uptake transporters that maintain intracellular concentrations of cysteine, the rate-limiting amino acid in glutathione synthesis. This study was conducted to first determine the tissue distribution of the two transporters in male and female mice. Because Slc3a1 was the primary cystine transporter in liver, its sex-divergent expression, ontogeny, diurnal rhythm and whether its mRNA expression is altered by transcription factors (AhR, CAR, PXR, PPARα, and Nrf2) was also investigated. Slc7a11 was expressed highest in brain and gonads. Slc3a1 was expressed highest in kidney and intestine, followed by liver. Duodenal and hepatic Slc3a1 was higher in females than males. Hepatic Slc3a1 was high during darkness and low during daytime. Hepatic Scl3a1 was lowest pre-birth, increased to near maximal levels at birth, decreased back to pre-birth levels between Days 3-10, and then returned to peak levels by Day 45. Except for CAR, activation of transcription factors did not increase hepatic mRNA expression of Slc3a1. Chemical activation of CAR significantly induced Slc3a1 1.4-fold in wild-type but not CAR-null mice. Slc3a1 mRNA was higher in livers of AhR- and Nrf2-null mice compared to wild-type mice. High doses of diquat but not acetaminophen induced Slc3a1, suggesting Slc3a1 may respond to oxidative stress but not necessarily to GSH depletion. Overall, Slc7a11 is mainly expressed in brain and gonads, whereas Slc3a1 is mainly expressed in kidney, small intestine and liver, and its hepatic expression is regulated by diurnal rhythm and certain xenobiotic treatments.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/biossíntese , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/biossíntese , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
7.
J Biomed Nanotechnol ; 16(5): 689-701, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919488

RESUMO

Developments in the design of lanthanide oxide nanoparticles (NPs) have unleashed a wide variety of biomedical applications. Several types of hepatic cancer cells overexpress two proteins: the gastrin-releasing peptide receptor (GRPr), which specifically recognizes the bombesin (BN) peptide, and the prostate-specific membrane antigen (PSMA), which specifically binds to several peptides that inhibit its activity (iPSMA). This research synthesized and physicochemically characterized Sm2O3 nanoparticles functionalized with the iPSMA-BN heterodimeric peptide and studied the effects on their structural, biochemical and preclinical properties after activation by neutron irradiation for possible use in molecular dual-targeted radiotherapy of hepatocellular carcinoma. The Sm2O3 NPs were synthesized by the precipitation-calcination method and functionalized with iPSMA-BN peptide using the DOTA macrocycle as a linking agent. Analysis of physicochemical characterization via TEM, EDS, XRD, UV-Vis, FT-IR, DSL, and zeta potential results showed the formation of Sm2O3-iPSMA-BN NPs (94.23 ± 5.98 nm), and their physicochemical properties were not affected after neutron activation. The nanosystem showed a high affinity with respect to PSMA and GRPr in HepG2 cells ( Kd = 6.6 ± 1.6 nM) and GRPr in PC3 cells ( Kd = 10.6 ± 1.9 nM). 153Sm2O3-iPSMA-BN NPs exhibited radioluminescent properties, making possible in vivo optical imaging of their biodistribution in mice. The results obtained from this research support further preclinical studies designed to evaluate the dosimetry and therapeutic efficacy of 153Sm2O3-iPSMA-BN nanoparticles for in vivo imaging and molecular dual-targeted radiotherapy of liver tumors overexpressing PSMA and/or GRPr proteins.


Assuntos
Nanopartículas Metálicas , Animais , Bombesina , Linhagem Celular Tumoral , Humanos , Camundongos , Óxidos , Radioisótopos , Samário , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual
8.
J Toxicol Sci ; 45(8): 411-422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741894

RESUMO

Lanthanum oxide (La2O3) nanoparticles (NPs) have been widely used in photoelectric and catalytic applications. However, their exposure and reproductive toxicity is unknown. In this study, the effect of the intragastric administration of two different-sized La2O3 particles in the testes of mice for 60 days was investigated. Although the body weight of mice treated or not treated with La2O3 NPs was not different and La2O3 NPs were distributed in the organs including the testis, liver, kidney, spleen, heart and brain. La2O3 NPs accumulate more than micro-sized La2O3 (MPs) in mice testes. The histopathological evaluation showed that moderate reproductive toxicity induced by La2O3 NPs in the testicle tissues. Furthermore, increased MDA, 8-OHdG levels and decreased SOD activities were detected in the La2O3 NP-treated groups. Moreover, qRT-PCR and western blotting data indicated that La2O3 NPs affecting the blood-testis barrier (BTB)-related genes in mice testes. Taken together, these findings suggested that La2O3 NPs activated inflammation responses and cross the BTB in the murine testes. This study provided useful information for risk analysis and regulation of La2O3 NPs by administrative agencies.


Assuntos
Lantânio/administração & dosagem , Lantânio/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos/administração & dosagem , Óxidos/toxicidade , Tamanho da Partícula , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Administração Oral , Animais , Barreira Hematotesticular/metabolismo , Desoxiadenosinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Inflamação , Lantânio/metabolismo , Masculino , Malondialdeído/metabolismo , Nanopartículas Metálicas/administração & dosagem , Camundongos , Óxidos/metabolismo , Superóxido Dismutase/metabolismo , Testículo/metabolismo , Distribuição Tecidual
9.
Int J Nanomedicine ; 15: 3851-3868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764919

RESUMO

Purpose: The aim of this study was to develop a means of improving the bioavailability and anticancer activity of urushiol by developing an urushiol-loaded novel tumor-targeted micelle delivery system based on amphiphilic block copolymer poly(ethylene glycol)-b-poly-(ß-amino ester) (mPEG-PBAE). Materials and Methods: We synthesized four different mPEG-PBAE copolymers using mPEG-NH2 with different molecular weights or hydrophobicity levels. Of these, we selected the mPEG5000-PBAE-C12 polymer and used it to develop an optimized means of preparing urushiol-loaded micelles. Response surface methodology was used to optimize this formulation process. The micellar properties, including particle size, pH sensitivity, drug release dynamics, and critical micelle concentrations, were characterized. We further used the MCF-7 human breast cancer cell line to explore the cytotoxicity of these micelles in vitro and assessed their pharmacokinetics, tissue distribution, and antitumor activity in vivo. Results: The resulting micelles had a mean particle size of 160.1 nm, a DL value of 23.45%, and an EE value of 80.68%. These micelles were found to release their contents in a pH-sensitive manner in vitro, with drug release being significantly accelerated at pH 5.0 (98.74% in 72 h) without any associated burst release. We found that urushiol-loaded micelles were significantly better at inducing MCF-7 cell cytotoxicity compared with free urushiol, with an IC50 of 1.21 mg/L. When these micelles were administered to tumor model animals in vivo, pharmacokinetic analysis revealed that the total AUC and MRT of these micelles were 2.28- and 2.53-fold higher than that of free urushiol, respectively. Tissue distribution analyses further revealed these micelles to mediate significantly enhanced tumor urushiol accumulation. Conclusion: The pH-responsive urushiol-loaded micelles described in this study may be ideally suited for clinical use for the treatment of breast cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Catecóis/química , Catecóis/farmacologia , Micelas , Polietilenoglicóis/química , Polímeros/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Catecóis/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Tamanho da Partícula , Distribuição Tecidual
10.
Nat Commun ; 11(1): 3920, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764605

RESUMO

How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development.


Assuntos
Deficiências do Desenvolvimento/genética , Epigênese Genética , Organogênese/genética , Animais , Animais Geneticamente Modificados , Bases de Dados Genéticas , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas/genética , Humanos , Modelos Genéticos , Mutação , Organogênese/fisiologia , Regiões Promotoras Genéticas , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
11.
Int J Nanomedicine ; 15: 4825-4845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753868

RESUMO

Background: Nanosized drug delivery systems (NDDSs) have shown excellent prospects in tumor therapy. However, insufficient penetration of NDDSs has significantly impeded their development due to physiological instability and low passive penetration efficiency. Methods: Herein, we prepared a core cross-linked pullulan-modified nanosized system, fabricated by visible-light-induced diselenide bond cross-linked method for transporting ß-Lapachone and doxorubicin prodrug (boronate-DOX, BDOX), to improve the physiological stability of the NDDSs for efficient passive accumulation in tumor blood vessels (ß-Lapachone/BDOX-CCS). Additionally, ultrasound (US) was utilized to transfer ß-Lapachone/BDOX-CCS around the tumor vessel in a relay style to penetrate the tumor interstitium. Subsequently, ß-Lapachone enhanced ROS levels by overexpressing NQO1, resulting in the transformation of BDOX into DOX. DOX, together with abundant levels of ROS, achieved synergistic tumor therapy. Results: In vivo experiments demonstrated that ultrasound (US) + cross-linked nanosized drug delivery systems (ß-Lapachone/BDOX-CCS) group showed ten times higher DOX accumulation in the tumor interstitium than the non-cross-linked (ß-Lapachone/BDOX-NCS) group. Conclusion: Thus, this strategy could be a promising method to achieve deep penetration of NDDSs into the tumor.


Assuntos
Doxorrubicina/uso terapêutico , Nanopartículas/química , Naftoquinonas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Ultrassonografia , Animais , Ácidos Borônicos/química , Permeabilidade Capilar/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Reagentes para Ligações Cruzadas/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Feminino , Glucanos/química , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Naftoquinonas/farmacocinética , Tamanho da Partícula , Pró-Fármacos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual/efeitos dos fármacos
12.
Int J Nanomedicine ; 15: 5687-5700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821097

RESUMO

Background and Purpose: Sonodynamic therapy (SDT) has been widely used for the noninvasive treatment of solid tumors, but the hypoxic tumor microenvironment limits its therapeutic effect. The current methods of reoxygenation to enhance SDT have limitations, prompting reconsideration of the design of therapeutic approaches. Here, we developed a tumor microenvironment-responsive nanoplatform by reducing oxygen consumption to overcome hypoxia-induced resistance to cancer therapy. Methods: A pH-responsive drug-loaded liposome (MI-PEOz-lip) was prepared and used to reduce oxygen consumption, attenuating hypoxia-induced resistance to SDT and thereby improving therapeutic efficiency. Photoacoustic imaging (PAI) and fluorescence imaging (FI) of MI-PEOz-lip were evaluated in vitro and in breast xenograft tumor models. The pH-sensitive functionality of MI-PEOz-lip was applied for pH-triggered cargo release, and its capacity was evaluated. The MI-PEOz-lip-mediated SDT effect was compared with other treatments in vivo. Results: MI-PEOz-lip was demonstrated to specifically accumulate in tumors. Metformin molecules in liposomes selectively accumulate in tumors by pH-responsive drug release to inhibit the mitochondrial respiratory chain while releasing IR780 to the tumor area. These pH-responsive liposomes demonstrated PAI and FI imaging capabilities in vitro and in vivo, providing potential for treatment guidance and monitoring. In particular, the prepared MI-PEOz-lip combined with ultrasound irradiation effectively inhibited breast tumors by producing toxic reactive singlet oxygen species (ROS), while the introduction of metformin inhibited mitochondrial respiration and reduced tumor oxygen consumption, resulting in excellent sonodynamic therapy performance compared with other treatments. Conclusion: In this study, we present a novel strategy to achieve high therapeutic efficacy of SDT by the rational design of multifunctional nanoplatforms. This work provides a new strategy that can solve the current problems of inefficient oxygen delivery strategies and weaken resistance to various oxygen-dependent therapies.


Assuntos
Mitocôndrias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Hipóxia Tumoral , Terapia por Ultrassom , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lipossomos , Metformina/farmacologia , Camundongos , Oxigênio/metabolismo , Técnicas Fotoacústicas , Distribuição Tecidual/efeitos dos fármacos , Microambiente Tumoral
13.
Int J Nanomedicine ; 15: 5333-5344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801692

RESUMO

Purpose: Cabazitaxel (CBZ) is a new taxane-based antitumor drug approved by the FDA for the treatment of prostate cancer, especially for patients with advanced prostate cancer for whom docetaxel is ineffective or causes aggravation. However, Tween 80 injection can cause serious allergic reactions, and CBZ itself has strong toxicity, adverse reactions, and poor tumor selectivity, which greatly limits its clinical applications. Therefore, the CBZ-loaded bovine serum albumin nanoparticles (CBZ-BSA-Gd-NPs) were developed to overcome the allergenic response of Tween 80 and realize the integration of diagnosis and treatment. Methods: CBZ-BSA-Gd-NPs were prepared by the biomineralization method. The characterization, magnetic resonance imaging (MRI), safety, and antitumor activity of the nanoparticles were evaluated in vitro and in vivo. Results: The prepared nanoparticles were uniform in size (166 nm), with good MRI performance and stability over 24 h. Compared with CBZ-Tween 80 injection, CBZ-BSA-Gd-NPs showed much lower hemolysis, similar tumor inhibition, and enhanced cellular uptake in vitro. The pharmacokinetic behavior of CBZ-BSA-Gd-NPs in rats showed that the retention time of the nanoparticles was prolonged, the clearance rate decreased, and the area under the drug-time curve increased. The distribution of CBZ-BSA-Gd-NPs in nude mice was characterized by UPLC-MS/MS and MRI, and the results showed that CBZ-BSA-Gd-NPs could effectively target tumor tissues with reduced distribution in the heart, liver, spleen, lungs, and kidneys compared with CBZ-Tween 80, which indicated that CBZ-BSA-Gd-NPs not only had a passive targeting effect on tumor tissue but also achieved the integration of diagnosis and treatment. In vivo, CBZ-BSA-Gd-NPs showed improved tumor inhibitory effect with a safer profile. Conclusion: In summary, CBZ-BSA-Gd-NPs can serve as an effective therapeutic drug carrier to deliver CBZ into prostate cancer, and realize the integration of diagnosis and therapy.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Soroalbumina Bovina/administração & dosagem , Taxoides/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cromatografia Líquida , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Docetaxel , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Imagem por Ressonância Magnética , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neoplasias da Próstata/diagnóstico por imagem , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacocinética , Espectrometria de Massas em Tandem , Taxoides/farmacocinética , Distribuição Tecidual
14.
Int J Nanomedicine ; 15: 5361-5376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801694

RESUMO

Background and Aim: Polymeric nanoparticles (NPs) have received much attention as promising carrier systems in lung cancer and brain metastases. Methods: Here, for the first time, we investigated the feasibility of using inhaled cholesterol-PEG co-modified poly (n-butyl) cyanoacrylate NPs (CLS-PEG NPs) of docetaxel (DTX) for sustained pulmonary drug delivery in cancer metastasis. Results: Spray-dried or freeze-dried NPs yielded sustained drug release in vitro. In vitro inhalation evaluation data indicated that the inhalation formulation had better inhalability. Compared with intravenous (IV) administration, pharmacokinetic data suggested that the inhalation formulation prolonged plasma concentration of DTX for greater than 24 h and is more quickly and completely absorbed into the rat lung after intratracheal (IT) administration. Furthermore, freeze-dried powders were found to increase the t1/2 and area under curve (AUC) by 2.3 and 6.5 fold compared to the free drug after IT administration, and spray-dried powders were found to increase the t1/2 and AUC by 3.4 and 8.8 fold, respectively. After pulmonary administration of the inhalation formulation, DTX appeared to prolong the pulmonary absorption time. In addition, the inhalation formulation was distributed to the brain in a sustained release manner. Conclusion: These experimental results demonstrated that freeze- and spray-dried powders have the potential for pulmonary sustained release, and they also have the potential to be used as a novel treatment for the delivery of drugs that pass through the air-blood barrier and enter the brain and are efficient carriers for the treatment of brain metastasis.


Assuntos
Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Células A549 , Administração por Inalação , Animais , Encéfalo/efeitos dos fármacos , Colesterol/química , Preparações de Ação Retardada , Docetaxel/farmacocinética , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Embucrilato/química , Feminino , Liofilização , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Pós/química , Ratos Wistar , Distribuição Tecidual
15.
Aquat Toxicol ; 226: 105567, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32745893

RESUMO

The increasing contamination of water bodies with mercury (Hg) raises concerns about the possible effects of this metal on native fish species. Our current understanding of its dynamics in fish organs remains limited. In this study, adult individuals of the native species Astyanax eigenmanniorum were exposed to three environmentally relevant HgCl2 concentrations (5, 100, and 170 µg L-1) for 96 h. To evaluate total Hg (THg) elimination, new individuals were exposed to 100 µg L-1 of HgCl2 (96 h), and at the end of the exposure period, half of the fish were placed in tanks with clean water for 168 h. In both assays, the organs were removed, and THg levels were measured using ICP-MS. The uptake of IHg in A. eigenmanniorum showed a differential accumulation in the organs. Gills, intestine, and brain were the tissues with the highest THg levels. Finally, no elimination of THg in the water was observed, but intestine and gills significantly removed the THg accumulated. Probably a Hg redistribution through the tissues could take place.


Assuntos
Characidae/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Adulto , Animais , Bioacumulação , Encéfalo/metabolismo , Characidae/sangue , Monitoramento Ambiental , Brânquias/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mercúrio/análise , Mercúrio/toxicidade , Taxa de Depuração Metabólica , Distribuição Tecidual , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Eur J Pharmacol ; 886: 173448, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768503

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is distinctly infective and there is an ongoing effort to find a cure for this pandemic. Flavonoids exist in many diets as well as in traditional medicine, and their modern subset, indole-chalcones, are effective in fighting various diseases. Hence, these flavonoids and structurally similar indole chalcones derivatives were studied in silico for their pharmacokinetic properties including absorption, distribution, metabolism, excretion, toxicity (ADMET) and anti-SARS-CoV-2 properties against their proteins, namely, RNA dependent RNA polymerase (rdrp), main protease (Mpro) and Spike (S) protein via homology modelling and docking. Interactions were studied with respect to biology and function of SARS-CoV-2 proteins for activity. Functional/structural roles of amino acid residues of SARS-CoV-2 proteins and, the effect of flavonoid and indole chalcone interactions which may cause disease suppression are discussed. The results reveal that out of 23 natural flavonoids and 25 synthetic indole chalcones, 30 compounds are capable of Mpro deactivation as well as potentially lowering the efficiency of Mpro function. Cyanidin may inhibit RNA polymerase function and, Quercetin is found to block interaction sites on the viral spike. These results suggest flavonoids and their modern pharmaceutical cousins, indole chalcones are capable of fighting SARS-CoV-2. The in vitro anti-SARS-CoV-2 activity of these 30 compounds needs to be studied further for complete understanding and confirmation of their inhibitory potential.


Assuntos
Betacoronavirus/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Flavonoides/farmacologia , Indóis/química , Simulação de Acoplamento Molecular , Proteínas Virais/metabolismo , Betacoronavirus/metabolismo , Chalconas/metabolismo , Chalconas/farmacocinética , Simulação por Computador , Flavonoides/metabolismo , Flavonoides/farmacocinética , Conformação Proteica , Segurança , Distribuição Tecidual , Proteínas Virais/química
17.
PLoS One ; 15(8): e0237031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790698

RESUMO

Tomato is the most widespread vegetable crop in the world. In Italy, tomatoes are mainly cultivated in the South and in the Campania region, precisely in the area called Agro Nocerino-Sarnese. This flatland is affected by an extreme level of environmental degradation, especially related to the Sarno River, where concentrations of Potential Toxic Elements (PTEs) have been found to be higher than the maximum permitted level. The aim of this study was to determine the PTEs uptake by roots and their translocation to the aerial parts of the plants of two cultivars of tomatoes (Pomodoro Giallo and San Marzano Cirio 3). To the purpose, samples of the two cultivars were grown both in pots with experimentally contaminated soil containing: Cr or Cd or Pb at extremely high concentrations and in pots with uncontaminated soils (control). Additionally, the antioxidant properties of the cultivars selected grown on uncontaminated/contaminated soils were assessed. The results showed that Cd was the contaminant that most significantly interfered with the growth of both cultivars of tomato plants, whereas Pb caused lower phenotypical damage. Cd translocation from root to the organs of tomato plants was observed in both cultivars. Specifically, the total amount of Cd found in stems and leaves was higher in the Pomodoro Giallo (254.4 mg/kg dry weight) than in the San Marzano Cirio 3 (165.8 mg/kg dry weight). Cd was the only PTE found in the fruits of both cultivars, with values of 6.1 and 3.9 mg/kg dry weight of Pomodoro Giallo and San Marzano Cirio 3, respectively. The fruits of tomato plants grown in PTEs-contaminated soil showed inhibition or stimulations of the radical scavenging activity compared to the fruits grown in uncontaminated soil. This study highlighted that, despite the relatively high experimental concentrations of PTEs, their translocation to the edible part was comparatively low or absent.


Assuntos
Lycopersicon esculentum/metabolismo , Metais Pesados/farmacocinética , Poluentes do Solo/farmacocinética , Bioacumulação , Transporte Biológico Ativo , Cádmio/farmacocinética , Cádmio/toxicidade , Cromo/farmacocinética , Cromo/toxicidade , Depuradores de Radicais Livres/metabolismo , Radicais Livres/metabolismo , Itália , Chumbo/farmacocinética , Chumbo/toxicidade , Lycopersicon esculentum/efeitos dos fármacos , Lycopersicon esculentum/crescimento & desenvolvimento , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Distribuição Tecidual
18.
Curr Pharm Des ; 26(31): 3840-3846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32718282

RESUMO

BACKGROUND: The purpose of our study was to find a novel targeted imaging and drug delivery vehicle for inflammatory bowel disease (IBD). IBD is a common and troublesome disease that still lacks effective therapy and imaging options. As an attempt to improve the disease treatment, we tested αMSH for the targeting of nanoliposomes to IBD sites. αMSH, an endogenous tridecapeptide, binds to the melanocortin-1 receptor (MC1-R) and has anti-inflammatory and immunomodulating effects. MC1-R is found on macrophages, neutrophils and the renal tubule system. We formulated and tested a liposomal nanoparticle involving αMSH in order to achieve a specific targeting to the inflamed intestines. METHODS: NDP-αMSH peptide conjugated to Alexa Fluor™ 680 was linked to the liposomal membrane via NSuccinyl PE and additionally loaded into the lumen of the liposomes. Liposomes without the αMSH-conjugate and free NDP-αMSH were used as a control. The liposomes were also loaded with ICG to track them. The liposomes were tested in DSS treated mice, which had received DSS via drinking water order to develop a model IBD. Inflammation severity was assessed by the Disease Activity Index (DAI) score and ex vivo histological CD68 staining of samples taken from different parts of the intestine. The liposome targeting was analyzed by analyzing the ICG and ALEXA 680 fluorescence in the intestine compared to the biodistribution. RESULTS: NPD-αMSH was successfully labeled with Alexa and retained its biological activity. Liposomes were identified in expected regions in the inflamed bowel regions and in the kidneys, where MC1-R is abundant. In vivo liposome targeting correlated with the macrophage concentration at the site of the inflammation supporting the active targeting of the liposomes through αMSH. The liposomal αMSH was well tolerated by animals. CONCLUSION: This study opens up the possibility to further develop an αMSH targeted theranostic delivery to different clinically relevant applications in IBD inflammation but also opens possibilities for use in other inflammations like lung inflammation in Covid 19.


Assuntos
Doenças Inflamatórias Intestinais/diagnóstico por imagem , Lipossomos , Nanopartículas , Receptor Tipo 1 de Melanocortina/química , alfa-MSH/química , Animais , Corantes Fluorescentes/química , Camundongos , Distribuição Tecidual
19.
Proc Natl Acad Sci U S A ; 117(30): 17535-17542, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661159

RESUMO

Mismatch repair (MMR) deficiencies are a hallmark of various cancers causing accumulation of DNA mutations and mismatches, which often results in chemotherapy resistance. Metalloinsertor complexes, including [Rh(chrysi)(phen)(PPO)]Cl2 (Rh-PPO), specifically target DNA mismatches and selectively induce cytotoxicity within MMR-deficient cells. Here, we present an in vivo analysis of Rh-PPO, our most potent metalloinsertor. Studies with HCT116 xenograft tumors revealed a 25% reduction in tumor volume and 12% increase in survival with metalloinsertor treatment (1 mg/kg; nine intraperitoneal doses over 20 d). When compared to oxaliplatin, Rh-PPO displays ninefold higher potency at tumor sites. Pharmacokinetic studies revealed rapid absorption of Rh-PPO in plasma with notable accumulation in the liver compared to tumors. Additionally, intratumoral metalloinsertor administration resulted in enhanced anticancer effects, pointing to a need for more selective delivery methods. Overall, these data show that Rh-PPO inhibits xenograft tumor growth, supporting the strategy of using Rh-PPO as a chemotherapeutic targeted to MMR-deficient cancers.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ródio , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Pareamento Incorreto de Bases/efeitos dos fármacos , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Células HCT116 , Humanos , Camundongos , Estrutura Molecular , Ródio/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Life Sci ; 257: 118081, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663576

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of epilepsy with focal seizures, and currently available drugs may fail to provide a thorough treatment of the patients. The present study demonstrates the utility of glucose-coated gold nanoparticles (GNPs) as selective carriers of an antiepileptic drug, lacosamide (LCM), in developing a strategy to cross the blood-brain barrier to overcome drug resistance. Intravenous administration of LCM-loaded GNPs to epileptic animals yielded significantly higher nanoparticle levels in the hippocampus compared to the nanoparticle administration to intact animals. The amplitude and frequency of EEG-waves in both ictal and interictal stages decreased significantly after LCM-GNP administration to animals with TLE, while a decrease in the number of seizures was also observed though statistically insignificant. In these animals, malondialdehyde was unaffected, and glutathione levels were lower in the hippocampus compared to sham. Ultrastructurally, LCM-GNPs were observed in the brain parenchyma after intravenous injection to animals with TLE. We conclude that glucose-coated GNPs can be efficient in transferring effective doses of LCM into the brain enabling elimination of the need to administer high doses of the drug, and hence, may represent a new approach in the treatment of drug-resistant TLE.


Assuntos
Anticonvulsivantes/administração & dosagem , Sistemas de Liberação de Medicamentos , Epilepsia do Lobo Temporal/tratamento farmacológico , Lacosamida/administração & dosagem , Nanopartículas Metálicas , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Ouro/química , Hipocampo/metabolismo , Injeções Intravenosas , Lacosamida/farmacocinética , Lacosamida/farmacologia , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA