RESUMO
OBJECTIVE: Use red blood cell stabilizer to store the antibody screening and antibody identification reagent red blood cells (RBCs) treated with 0.01â mol/L DTT and investigate its value in the pre-transfusion examinations of patients treated with daratumumab. METHOD: Determined the optimal incubation time for the 0.01â mol/L DTT-treated RBCs method by evaluating the effect of treatment at different time points. Added ID-CellStab to store DTT-treated RBCs, determined the maximum shelf life of reagent RBCs by monitoring the hemolysis index, and assessed changes in the antigenicity of blood group antigens on the surface of RBCs during storage with antibody reagents. RESULT: A protocol for long-term storage of reagent red blood cells treated with the 0.01â mol/L DTT method was established. The optimal incubation time was 40-50â min. RBCs could be stored stably for 18 days after adding ID-CellStab. The protocol was able to eliminate pan-agglutination caused by daratumumab, with no significant changes in the antigens of most blood group systems, except for some attenuation of K antigen and Duffy blood group system antigens during the storage period. CONCLUSION: The storage protocol of reagent RBCs based on the 0.01â mol/L DTT method does not affect the detection of most blood group antibodies and retains a certain degree of detection ability for anti-K antibodies, allowing patients treated with daratumumab to quickly perform pre-transfusion examinations, making up for the shortcomings of currently commercial reagent RBCs.
Assuntos
Antígenos de Grupos Sanguíneos , Eritrócitos , Humanos , Ditiotreitol/farmacologia , Ditiotreitol/metabolismo , Indicadores e Reagentes/metabolismo , Indicadores e Reagentes/farmacologia , Eritrócitos/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/farmacologiaRESUMO
Per- and polyfluoroalkyl substances (PFAS) are persistent in the environment and may disrupt the endocrine system. Our previous study showed that perfluorooctanoic acid (PFOA, C8) and perfluorooctanesulfonic acid (PFOS, C8S) can inhibit 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2) activity leading to an active glucocorticoid accumulation. In this study, we extended investigation for 17 PFAS, including carboxylic and sulfonic acids, with different carbon-chain lengths, to determine their inhibitory potency and structure-activity relationship in human placental and rat renal 11ß-HSD2. C8-C14 PFAS at 100 µM significantly inhibited human 11ß-HSD2 with a potency as C10 (half-maximal inhibitory concentration, IC50, 9.19 µM) > C11 (15.09 µM) > C12 (18.43 µM) > C9 (20.93 µM) > C13 (124 µM) > C14 (147.3 µM) > other C4-C7 carboxylic acids, and C8S > C7S = C10S > other sulfonic acids. For rat 11ß-HSD2, only C9 and C10 and C7S and C8S PFAS exhibited significant inhibitory effects. PFAS are primarily mixed/competitive inhibitors of human 11ß-HSD2. Preincubation and simultaneous incubation with the reducing agent dithiothreitol significantly increased human 11ß-HSD2 but not rat 11ß-HSD2, and preincubation but not simultaneous incubation with dithiothreitol partially reversed C10-mediated inhibition on human 11ß-HSD2. Docking analysis showed that all PFAS bound to the steroid-binding site and carbon-chain length determined the potency of inhibition, with the optimal molecular length (12.6 Å) for potent inhibitors PFDA and PFOS, which is comparable to the molecular length (12.7 Å) of the substrate cortisol. The length between 8.9 and 17.2 Å is the probable threshold molecular length to inhibit human 11ß-HSD2. In conclusion, the carbon-chain length determines the inhibitory effect of PFAS on human and rat 11ß-HSD2, and the inhibitory potency of long-chain PFAS on human and rat 11ß-HSD2 showed V-shaped pattern. Long-chain PFAS may partially act on the cysteine residues of human 11ß-HSD2.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Fluorocarbonos , Animais , Feminino , Humanos , Gravidez , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Ditiotreitol , Fluorocarbonos/toxicidade , Placenta/metabolismo , Relação Estrutura-AtividadeRESUMO
Sulfur containing glycosides offer an exciting prospect for inclusion within noncanonical glycan sequences, particularly as enabling probes for chemical glycobiology and for carbohydrate-based therapeutic development. In this context, we required access to 4-thio-d-glucopyranose and sought its chemical synthesis. Unable to isolate this material in homogenous form, we observed instead a thermodynamic preference for interconversion of the pyranose to 4-thio-d-glucofuranose. Accordingly, we present an improved method to access both bis(4-thio-d-glucopyranoside)-4,4'-disulfide and 4-thio-d-glucofuranose from a single precursor, demonstrating that the latter compound can be accessed from the former using a dithiothreitol controlled reduction of the disulfide. The dithiothreitol-mediated interconversion between pyranose (monomer and disulfide) and furanose forms for this thiosugar is monitored by 1H NMR spectroscopy over a 24-h period. Access to these materials will support accessing sulfur-containing mimetics of glucose and derivatives therefrom, such as sugar nucleotides.
Assuntos
Carboidratos , Glucose , Ditiotreitol , Carboidratos/química , Monossacarídeos , DissulfetosRESUMO
Proteins can transform from their native state to a state having fibrillar aggregates characterized by cross ß sheet structure. The fibrillar aggregates are known as amyloid and have been linked to several disorders. Disulfide bonds in proteins are one of the important factors that determine the propensity of aggregation. Hen Egg White Lysozyme (HEWL) was used by us as a model protein to decipher the role disulfide bonds play in the amyloid fibril formation and fibril morphology by using Dithiothreitol (DTT) as reducing agent at pH 2.7 and pH 7.4. We found that DTT can have different effects on HEWL amyloid depending on pH and the buffer used for preparing the amyloid fibrils. Our studies highlight the critical role of non-native disulfide bonds in amyloidogenesis and how disruption of these bonds can greatly affect the fibrillation process. Overall, these studies throw light on the fibrillation mechanism and can be explored further in designing effective inhibitors against amyloidosis.
Assuntos
Amiloide , Muramidase , Animais , Amiloide/química , Muramidase/química , Ditiotreitol/farmacologia , Proteínas Amiloidogênicas , Concentração de Íons de Hidrogênio , Dissulfetos , Galinhas/metabolismo , Agregados ProteicosRESUMO
Objective To investigate the effect of family with sequence similarity 134 member B (FAM134B)-mediated endoplasmic reticulophagy on apoptosis of hepatocytes induced by endoplasmic reticulum stress (ERS) and identify its potential regulatory mechanism. Methods BRL-3A cells were treated with 0, 0.5, 1.0, 2.0, 4.0, 6.0 mmol/L dithiothreitol (DTT) for 48 hours. The effect of DTT treatment on the proliferation and apoptosis was analyzed using real time cellular dynamic analysis (RTCA) and flow cytometry. The level of proteins related to ERS, endoplasmic reticulophagy, mitochondria-endoplasmic reticulum contact sites (MERCs), and mitochondrial apoptosis pathway were determined using Western blot analysis. Co-localization of ER and lysosomes were detected using ER and lysosomal fluorescence probes. A Ca2+ fluorescence probe was used to detect the level of Ca2+ in mitochondria. Results DTT treatment significantly inhibited cell proliferation and promoted apoptosis in hepatocytes. The levels of proteins related to ERS and endoplasmic reticulophagy, MERCs and the mitochondrial apoptosis pathway significantly increased in BRL-3A cells treated with DTT. DTT treatment decreased the ER-lysosome co-localization and enhanced the fluorescence intensity of Ca2+ in mitochondria. Conclusion DTT aggravates hepatocyte apoptosis by inhibiting FAM134B-mediated endoplasmic reticulophagy and enhancing the level of mitochondrial Ca2+.
Assuntos
Apoptose , Retículo Endoplasmático , Ratos , Animais , Ditiotreitol/farmacologia , Ditiotreitol/metabolismo , Retículo Endoplasmático/metabolismo , Hepatócitos , Estresse do Retículo Endoplasmático , AutofagiaRESUMO
The α-Gal epitope consisting of the terminal trisaccharide Galα1,3Galß1,4GlcNAc exposed on cell or protein surfaces can cause severe immune reactions, such as hypersensitivity reactions, in humans. This epitope is also called the xenotransplantation epitope because it is one of the main reasons for the rejection of non-human organ transplants by the human innate immune response. Recombinant therapeutic proteins expressed in murine cell lines may contain α-Gal epitopes, and therefore their absence or presence needs to be tightly monitored to minimize any undesired adverse effects. The analytical identification of α-Gal epitopes in glycoproteins using the common standard techniques based on liquid chromatography and mass spectrometry is challenging, mainly due to the isobaricity of hexose stereoisomers. Here, we present a straightforward NMR approach to detect the presence of α-Gal in biotherapeutics based on a quick screen with sensitive 1H-1H TOCSY spectra followed by a confirmation using 1H-13C HSQC spectra.Abbreviations: α-Gal: α1,3-linked galactose; AGC: automatic gain control; CHO: Chinese hamster ovary; CE: capillary electrophoreses coupled to mass spectrometry; COSY: correlation spectroscopy; DSS: 2,2-dimethyl-2-silapentane-5-sulfonate; DTT: dithiothreitol; GlcNAc: N-acetyl glusomamine; HCD: higher-energy collisional dissociation; HMBC: heteronuclear multiple-bond correlation; HPLC: high-performance liquid chromatography; HSQC: heteronuclear single-quantum corre; LacNAc: N-acetyl lactosamine; mAb: monoclonal antibody; MS: mass spectrometry; NMR: nuclear magnetic resonance; NOESY: 2D) nuclear Overhauser spectroscopy; PEG: polyethylenglycol; pH*: observed pH meter reading without correction for isotope effects; PTM: post-translational modification; TCEP: tris(2-carboxyethyl) phosphine hydrochloride; TOCSY: total correlation spectroscopy; xCGE-LIF: multiplex capillary gel electrophoresis with laser-induced fluorescence detection.
Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Animais , Células CHO , Cricetinae , Cricetulus , Ditiotreitol , Epitopos , Galactose/química , Espectroscopia de Ressonância Magnética , Camundongos , TrissacarídeosRESUMO
We report the use of electrogenerated anthraquinone radical anion (AQâ¢-) to trigger fast catalytic depolymerization of polymers derived from poly(dithiothreitol) (pDTT)-a self-immolative polymer (SIP) with a backbone of dithiothreitols connected with disulfide bonds and end-capped via disulfide bonds to pyridyl groups. The pDTT derivatives studied include polymers with simple thiohexyl end-caps or modified with AQ or methyl groups by Steglich esterification. All polymers were shown to be depolymerized using catalytic amounts of electrons delivered by AQâ¢-. For pDTT, as little as 0.2 electrons per polymer chain was needed to achieve complete depolymerization. We hypothesize that the reaction proceeds with AQâ¢- as an electron carrier (either molecularly or as a pendant group), which transfers an electron to a disulfide bond in the polymer in a dissociative manner, generating a thiyl radical and a thiolate. The rapid and catalytic depolymerization is driven by thiyl radicals attacking other disulfide bonds internally or between pDTT chains in a chain reaction. Electrochemical triggering works as a general method for initiating depolymerization of pDTT derivatives and may likely also be used for depolymerization of other disulfide polymers.
Assuntos
Dissulfetos , Polímeros , Ânions , Antraquinonas , Dissulfetos/química , Ditiotreitol , Polímeros/químicaRESUMO
Due to the decreasing self-repairing ability, elder people are easier to form chronic wounds and suffer from slow and difficult wound healing. It is desirable to develop a novel wound dressing that can accelerate chronic wound healing in elderly subjects to decrease the pain of patients and save medical resources. In this work, Heparin and basic fibroblast growth factor(bFGF) were dissolved in the mixing solution of 4-arm acrylated polyethylene glycol and dithiothreitol to form hydrogel dressing in vitro at room temperature without any catalysts, which is convenient and easy to handle in clinic application. In vitro re-lease test shows the bFGF could be continuously released for at least 7 days, whereas the dressing surface integrity maintained for 3 days degradation in PBS solution. Three groups of treatments including bFGF-Gel, bFGF-Sol and control without any treatment were applied on the full-thickness wound on the 22 months old mice back. The wound closure rate and histological and immunohistochemical staining all illustrated that bFGF-Gel displayed a better wound healing effect than the other two groups. Thus, as-prepared hydrogel dressing seems supe-rior to current clinical treatment and more effective in elderly subjects, which shows promising potential to be applied in the clinic.
Assuntos
Fator 2 de Crescimento de Fibroblastos , Hidrogéis , Animais , Bandagens , Modelos Animais de Doenças , Ditiotreitol/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Heparina/farmacologia , Hidrogéis/farmacologia , Camundongos , Polietilenoglicóis/farmacologia , CicatrizaçãoRESUMO
Detection of host cell protein (HCP) impurities is critical to ensuring that recombinant drug products, including monoclonal antibodies (mAbs), are safe. Mechanistic characterization as to how HCPs persist in drug products is important to refining downstream processing. It has been hypothesized that weak lipase-mAb interactions enable HCP lipases to evade drug purification processes. Here, we apply state-of-the-art methods to establish lipase-mAb binding mechanisms. First, the mass spectrometry (MS) approach of fast photochemical oxidation of proteins was used to elucidate putative binding regions. The CH1 domain was identified as a conserved interaction site for IgG1 and IgG4 mAbs against the HCPs phospholipase B-like protein (PLBL2) and lysosomal phospholipase A2 (LPLA2). Rationally designed mutations in the CH1 domain of the IgG4 mAb caused a 3- to 70-fold KD reduction against PLBL2 by surface plasmon resonance (SPR). LPLA2-IgG4 mutant complexes, undetected by SPR and studied using native MS collisional dissociation experiments, also showed significant complex disruption, from 16% to 100%. Native MS and ion mobility (IM) determined complex stoichiometries for four lipase-IgG4 complexes and directly interrogated the enrichment of specific lipase glycoforms. Confirmed with time-course and exoglycosidase experiments, deglycosylated lipases prevented binding, and low-molecular-weight glycoforms promoted binding, to mAbs. This work demonstrates the value of integrated biophysical approaches to characterize micromolar affinity complexes. It is the first in-depth structural report of lipase-mAb binding, finding roles for the CH1 domain and lipase glycosylation in mediating binding. The structural insights gained offer new approaches for the bioengineering of cells or mAbs to reduce HCP impurity levels.Abbreviations: CAN, Acetonitrile; AMAC, Ammonium acetate; BFGS, Broyden-Fletcher-Goldfarb-Shanno; CHO, Chinese Hamster Ovary; KD, Dissociation constant; DTT, Dithiothreitol; ELISA, Enzyme-linked immunosorbent assay; FPOP, Fast photochemical oxidation of proteins; FA, Formic acid; F(ab'), Fragment antibodies; HCP, Host cell protein; IgG, Immunoglobulin; IM, Ion mobility; LOD, Lower limit of detection; LPLA2, Lysosomal phospholipase A2; Man, Mannose; MS, Mass spectrometry; MeOH, Methanol; MST, Microscale thermophoresis; mAbs, Monoclonal antibodies; PPT1, Palmitoyl protein thioesterase; ppm, Parts per million; PLBL2, Phospholipase B-like protein; PLD3, Phospholipase D3; PS-20, Polysorbate-20; SP, Sphingomyelin phosphodiesterase; SPR, Surface plasmon resonance; TFA, Trifluoroacetic acid.
Assuntos
Lisofosfolipase , Esfingomielina Fosfodiesterase , Humanos , Cricetinae , Animais , Cricetulus , Células CHO , Polissorbatos , Ditiotreitol , Manose , Ácido Trifluoracético , Metanol , Anticorpos Monoclonais/química , Imunoglobulina G/genética , Fosfolipases A2 , Acetonitrilas , Lipase , Glicosídeo HidrolasesRESUMO
Therapeutic monoclonal antibodies (mAbs) have a propensity to host a large number of chemical and enzymatical modifications that need to be properly assessed for their potential impact on target binding. Traditional strategies of assessing the criticality of these attributes often involve a laborious and low-throughput variant enrichment step prior to binding affinity measurement. Here, we developed a novel competitive binding-based enrichment strategy followed by mass spectrometry analysis (namely, competitive binding-MS) to achieve high-throughput evaluation of potential critical quality attributes in therapeutic mAbs. Leveraging the differences in target binding capability under competitive binding conditions, the criticality of multiple mAb attributes can be simultaneously evaluated by quantitative mass spectrometry analysis. The utility of this new workflow was demonstrated in three mAb case studies, where different post-translational modifications occurring within the complementarity-determining regions were successfully interrogated for their impact on antigen binding. As this workflow does not require prior enrichment (e.g., by forced degradation or liquid chromatography fractionation) of the variants, it is particularly valuable during the mAb candidate developability assessment, where fast turn-around time is highly desired to assist candidate selection.Abbreviations: ACN: acetonitrile; ADCC: antibody-dependent cell-mediated cytotoxicity; AEX: anion exchange chromatography; bsAb: bispecific antibody; CDC: complement-dependent cytotoxicity; CDR: complementarity-determining region; CML: carboxymethylation; CQA: critical quality attribute; DDA: data-dependent acquisition; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; FA: formic acid; Fab: Fragment antigen-binding; FcRn: neonatal Fc receptor; HC: heavy chain; HIC: hydrophobic interaction chromatography; IAA: iodoacetamide; IEX: ion exchange chromatography; LC: light chain; mAb monoclonal antibody; msAb: monospecific antibody; MS: mass spectrometry; PBS: phosphate-buffered saline; pI: isoelectric point; PTM: post-translational modification; SCX: strong cation exchange chromatography; SEC: size exclusion chromatography; SPR: surface plasmon resonance; XIC: extracted ion chromatography.
Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Acetonitrilas , Anticorpos Monoclonais/química , Ligação Competitiva , Cátions , Regiões Determinantes de Complementaridade/química , Dimetil Sulfóxido , Ditiotreitol , Iodoacetamida , Espectrometria de Massas/métodos , FosfatosRESUMO
BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.
Assuntos
Sulfeto de Hidrogênio , Ácidos Nucleicos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Carbono/metabolismo , Ditiotreitol/metabolismo , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ligases/metabolismo , Lipídeos , Mercaptoetanol/metabolismo , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Vitaminas/metabolismoRESUMO
Thiopurine drugs azathioprine (AZA) and 6-mercaptopurine (6-MP) are used extensively in pediatric and adult patients with inflammatory and neoplastic diseases. They are metabolized to 6-thioguanine nucleotides (6-TGN) or to 6-methyl-mercaptopurine nucleotides (6-MMPN). The balance between 6-TGN and 6-MMPN is highly variable and monitoring is recommended, but its benefit in outcome gives rise to conflicting results, potentially increased by differences in quantifying 6-MP metabolism. Our aim was to report (1) the HPLC-UV procedure used in our laboratory to quantify red blood cells (RBCs) with 6-TGN and 6-MMPN (as its derivate: 6-MMP(d)) in patients treated with thiopurines and (2) additional tests, sometimes confirmatory, to improve method standardization. The comparison of two methods to count RBCs shows that metabolite concentrations were slightly lower in the washed and resuspended RBCs than in whole blood. Perchloric acid (0.7 M), dithiothreitol (DTT, final 0.013 M sample concentration) and 60 min hydrolysis were selected for acid hydrolysis. (3) Monitoring data from 83 patients receiving AZA or 6-MP showed that at steady state, only 53/183 (29%) had 6-TGN and 6-MMPN in the recommended therapeutic range. Our method is discussed in light of the technical conditions and sample stability data from 17 publications identified since the first analytical report in 1987. Monitoring data demonstrate, if required, that inter-patient variability in 6-TGN and 6-MMPN concentrations is high in samples from treated patients.
Assuntos
Doenças Inflamatórias Intestinais , Mercaptopurina , Adulto , Azatioprina/metabolismo , Criança , Cromatografia Líquida de Alta Pressão/métodos , Ditiotreitol , Eritrócitos/metabolismo , Humanos , Imunossupressores/uso terapêutico , Doenças Inflamatórias Intestinais/metabolismo , Mercaptopurina/uso terapêutico , Nucleotídeos/metabolismo , Tioguanina/uso terapêuticoRESUMO
BACKGROUND: To investigate the effect of anti-CD38 monoclonal antibodies (mAb) (daratumumab, DARA) and anti-CD47 mAb combined with azacytidine on blood transfusion compatibility tests, transfusion effects in the treatment of multiple myeloma or acute myeloid leukemia and the corresponding management strategy. MATERIALS AND METHODS: Among the 19 patients who were treated with DARA and anti-CD47 mAb, 4 patients with cross matching incompatibility were selected. The ABO blood group, the Rh blood group, irregular antibody screening and direct antiglobulin test (DAT) and cross matching testing were performed before and after the application of mAbs using serological methods. Then, irregular antibody screening and microcolumn gel cross matching tests were performed with donor and recipient erythrocytes and serum treated with DL-dithiothreitol (DTT) and Immucor kit, respectively. The transfusion effect was monitored. RESULTS: 21.05% (4/19) patients had mismatched cross-matching results after mAb treatment. The agglutination intensity of irregular antibody screening tests (3 + â¼ 4 +) after anti-CD47 mAb was higher than that (1 + â¼ 2 +) after DARA. In the DARA group, treating RBCs with 0.2 mol L-1 DTT eliminated the DARA interference with antibody screening. In the anti-CD47 mAb group, the antibody screening, cross-matching test and DAT had been strongly interfered, and using Immucor kit eliminated the interference with antibody screening testing. There was no difference in the transfusion effect. CONCLUSION: The application of mAb drugs led to incompatibility of cross matching tests, and the transfusion effect was not affected.
Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Ditiotreitol/uso terapêutico , Sistema ABO de Grupos Sanguíneos/uso terapêutico , Anticorpos Monoclonais , Mieloma Múltiplo/tratamento farmacológico , Transfusão de Sangue , Antineoplásicos/uso terapêutico , Azacitidina/uso terapêuticoRESUMO
Metal and redox homeostasis in cyanobacteria is tightly controlled to preserve the photosynthetic machinery from mismetallation and minimize cell damage. This control is mainly taken by FUR (ferric uptake regulation) proteins. FurC works as the PerR (peroxide response) paralog in Anabaena sp. PCC7120. Despite its importance, this regulator remained poorly characterized. Although FurC lacks the typical CXXC motifs present in FUR proteins, it contains a tightly bound zinc per subunit. FurC: Zn stoichiometrically binds zinc and manganese in a second site, manganese being more efficient in the binding of FurC: Zn to its DNA target PprxA. Oligomerization analyses of FurC: Zn evidence the occurrence of different aggregates ranging from dimers to octamers. Notably, intermolecular disulfide bonds are not involved in FurC: Zn dimerization, dimer being the most reduced form of the protein. Oligomerization of dimers occurs upon oxidation of thiols by H2O2 or diamide and can be reversed by 1,4-Dithiothreitol (DTT). Irreversible inactivation of the regulator occurs by metal catalyzed oxidation promoted by ferrous iron. However, inactivation upon oxidation with H2O2 in the absence of iron was reverted by addition of DTT. Comparison of models for FurC: Zn dimers and tetramers obtained using AlphaFold Colab and SWISS-MODEL allowed to infer the residues forming both metal-binding sites and to propose the involvement of Cys86 in reversible tetramer formation. Our results decipher the existence of two levels of inactivation of FurC: Zn of Anabaena sp. PCC7120, a reversible one through disulfide-formed FurC: Zn tetramers and the irreversible metal catalyzed oxidation. This additional reversible regulation may be specific of cyanobacteria.
Assuntos
Anabaena , Manganês , Manganês/metabolismo , Peróxido de Hidrogênio/metabolismo , Ditiotreitol/metabolismo , Diamida/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Anabaena/genética , Anabaena/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Peróxidos/metabolismo , Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismoRESUMO
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-ß-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.
Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Gravidez , Feminino , Bovinos , Masculino , Animais , Injeções de Esperma Intracitoplásmicas/veterinária , Injeções de Esperma Intracitoplásmicas/métodos , Espermatozoides/fisiologia , Reação Acrossômica , Oócitos/fisiologia , Ditiotreitol/farmacologiaRESUMO
The on-demand replacement of multifunctional hydrogel wound dressings helps to avoid bacterial colonization, and the on-demand painless peeling of tissue adhesive hydrogels on the wound site remains a major challenge to be solved. In this work, we design and develop a series of multifunctional dynamic Schiff base network hydrogels composed of cystamine-modified hyaluronic acid, benzaldehyde-functionalized poly(ethylene glycol)-co-poly(glycerol sebacate), and polydopamine@polypyrrole nanocomposite (PDA@PPy) with mild on-demand removability to enhance drug-resistant bacteria-infected wound healing. These hydrogels exhibited ideal injectable and self-healing properties, excellent tissue adhesion, in vivo hemostasis, good antioxidation, and conductivity. PDA@PPy inspired by melanin endows hydrogels with excellent antioxidant capacity, UV-blocking ability, and photothermal anti-infection ability. Based on the dynamic oxidation-reduction response of disulfide bonds inspired by the dissociation of the tertiary spatial structure transformation of poly-polypeptide chains, these hydrogels can achieve rapid painless on-demand removal under mild conditions by adding dithiothreitol. These multifunctional hydrogels significantly promoted collagen deposition and angiogenesis in the MRSA-infected full-thickness skin repair experiment. All the results showed that these multifunctional hydrogels with painless on-demand removal property showed great potential in clinical treatment of infected wounds.
Assuntos
Polímeros , Adesivos Teciduais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Bactérias , Bandagens , Benzaldeídos , Colágeno , Cistamina , Decanoatos , Dissulfetos , Ditiotreitol , Glicerol/análogos & derivados , Humanos , Ácido Hialurônico , Hidrogéis/química , Hidrogéis/farmacologia , Melaninas , Polietilenoglicóis , Polímeros/farmacologia , Pirróis , Bases de Schiff , Aderências Teciduais , Raios Ultravioleta , CicatrizaçãoRESUMO
BACKGROUND: The anti-CD38 antibody daratumumab is a common multiple myeloma treatment. As the erythrocyte's membrane expresses CD38, Daratumumab-treated samples show agglutination in serological pre-transfusion tests, hindering detection of erythrocyte alloantibodies. Dithiothreitol interferes with erythrocyte antigens, affecting investigation of unexpected antibodies. DARAEx®, an anti-CD38 neutralizing agent, overcomes daratumumab-induced effects, without dithiothreitol's interferences. DARAEx® is applied only in Biorad columns. This study aimed to provide a DARAEx® protocol for application with the Grifols platform. METHODS: We introduced a modified DARAEx® protocol (AssutaBB protocol) and performed antibody screenings on samples from nineteen daratumumab-treated patients. RESULTS: The AssutaBB protocol provided antibody screen results for all patients, exactly as established in the default manufacturing protocol. Eleven patients presented natural negative antibody screens; eight presented positive K/E antibodies. CONCLUSIONS: AssutaBB allows the use of the more widespread Grifols platform in daratumumab-treated patients.
Assuntos
Anticorpos Monoclonais , Antineoplásicos , Eritrócitos , Mieloma Múltiplo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ditiotreitol/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Isoanticorpos , Mieloma Múltiplo/tratamento farmacológicoRESUMO
Mammalian transglutaminase 2 exhibits poor long-term stability in solution. Reconstituting lyophilized transglutaminase 2 in solutions containing dithiothreitol and EDTA alone and together with glycerol stabilizes the activity of this enzyme for several weeks.
Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Animais , Ditiotreitol , Ácido Edético , Glicerol , Cobaias , Fígado , MamíferosRESUMO
Several halogenated flame retardants (HFRs) have been identified as thyroid disruptors in birds including the polybrominated diphenyl ether (PBDE) mixtures, which have been replaced with other HFRs such as Dechlorane-604 (Dec-604). Dec-604 Component B (Dec-604 CB), a putative debrominated product of Dec-604, has been frequently reported in urban-adapted ring-billed gulls (Larus delawarensis) breeding in the Montreal area (QC, Canada). The metabolic pathways of Dec-604 are yet to be characterized, although the occurrence of Dec-604 CB in gulls may suggest that enzyme-mediated dehalogenation may occur, potentially involving the thyroid deiodinases. The objective of this study was to investigate the effect of Dec-604 on type 1 deiodinase (DIO1) in the presence of thyroxine (T4) in an in vitro DIO1 assay using liver microsomes of ring-billed gulls that are highly exposed to HFRs in the Montreal area, and to determine whether DIO1 is involved in the in vitro debromination of Dec-604. We tested the in vitro activity of DIO1 in gull liver microsomes in the presence of five concentrations of Dec-604 ranging from 0.86 to 86.21 nM. HFR concentrations (Σ40HFR) were also determined in liver samples of gulls. Results showed that total DIO1 activity in gull liver microsomes was increased by three of the five concentrations of Dec-604. No relationship between liver Σ40HFR concentrations and DIO1 activity was observed, except for T2 formation rates that significantly decreased with increasing liver HFR concentrations. Moreover, greater Dec-604 CB to Dec-604 concentration ratios in activated gull microsomes (with the DIO1 cofactor dithiothreitol) were found at the intermediate Dec-604 concentration compared to controls. These results suggested that liver microsome DIO1 activity may be perturbed in ring-billed gulls exposed to Dec-604, and be involved at least in part, in the debromination of Dec-604 leading to the formation of Dec-604 CB.
Assuntos
Charadriiformes , Retardadores de Chama , Febre Hemorrágica com Síndrome Renal , Animais , Biotransformação , Charadriiformes/metabolismo , Ditiotreitol/metabolismo , Retardadores de Chama/metabolismo , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/metabolismo , Éteres Difenil Halogenados/toxicidade , Iodeto Peroxidase/metabolismo , Glândula Tireoide , Tiroxina/metabolismoRESUMO
Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.