Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
mBio ; 12(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436435

RESUMO

Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.


Assuntos
Pesquisa Biomédica/normas , Doenças Transmissíveis/patologia , História Natural/normas , Zoonoses/patologia , Animais , Biodiversidade , Pesquisa Biomédica/tendências , /virologia , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Interações Hospedeiro-Patógeno , Humanos , Museus/normas , /fisiologia , Manejo de Espécimes , Zoonoses/microbiologia , Zoonoses/parasitologia , Zoonoses/virologia
3.
Biosens Bioelectron ; 169: 112592, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32942143

RESUMO

Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.


Assuntos
Doenças Transmissíveis/diagnóstico , Dispositivos Lab-On-A-Chip , Ácidos Nucleicos/isolamento & purificação , Doenças das Plantas , Sistemas Automatizados de Assistência Junto ao Leito , Betacoronavirus/isolamento & purificação , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Desenho de Equipamento , Humanos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos/sangue , Ácidos Nucleicos/urina , Pandemias , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia
5.
Clin Microbiol Infect ; 26(4): 431-435, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31734357

RESUMO

BACKGROUND: Scents and odours characterize some microbes when grown in the laboratory, and experienced clinicians can diagnose patients with some infectious diseases based on their smell. Animal sniffing is an innate behaviour, and animals' olfactory acuity is used for detecting people, weapons, bombs, narcotics and food. OBJECTIVES: We briefly summarized current knowledge regarding the use of sniffing animals to diagnose some infectious diseases and the potential use of scent-based diagnostic instruments in microbiology. SOURCES: Information was sought through PubMed and extracted from peer-reviewed literature published between January 2000 and September 2019 and from reliable online news. The search terms 'odour', 'scent', 'bacteria', 'diagnostics', 'tuberculosis', 'malaria' and 'volatile compounds' were used. CONTENT: Four major areas of using sniffing animals are summarized. Dogs have been used to reliably detect stool associated with toxigenic Clostridioides difficile and for surveillance. Dogs showed high sensitivity and moderate specificity for detecting urinary tract infections in comparison to culture, especially for Escherichia coli. African giant pouched rats showed superiority for diagnosing tuberculosis over microscopy, but inferiority to culture/molecular methods. Several approaches for detecting malaria by analysing host skin odour or exhaled breath have been explored successfully. Some microbial infections produce specific volatile organic compounds (VOCs), which can be analysed by spectrometry, metabolomics or other analytical approaches to replace animal sniffing. IMPLICATIONS: The results of sniffing animal studies are fascinating, and animal sniffing can provide intermediate diagnostic solutions for some infectious diseases. Lack of reproducibility, and cost of animal training and housing are major drawbacks for wider implementation of sniffing animals. The ultimate goal is to understand the biological background of this animal ability and to characterize the specific VOCs that animals are recognizing. VOC identification, improvement of odour sampling methods and development of point-of-care instruments could allow implementation of scent-based tests for major human pathogens.


Assuntos
Doenças Transmissíveis/diagnóstico , Cães , Odorantes , Ratos , Olfato , Animais , Testes Respiratórios , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Fezes/microbiologia , Humanos , Malária/diagnóstico , Técnicas Microbiológicas , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis/análise
6.
Nucleic Acids Res ; 48(D1): D613-D620, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31733065

RESUMO

The pathogen-host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. PHI-base also curates literature describing specific gene alterations that did not affect the disease interaction phenotype, in order to provide complete datasets for comparative purposes. Viruses are not included, due to their extensive coverage in other databases. In this article, we describe the increased data content of PHI-base, plus new database features and further integration with complementary databases. The release of PHI-base version 4.8 (September 2019) contains 3454 manually curated references, and provides information on 6780 genes from 268 pathogens, tested on 210 hosts in 13,801 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species consist of approximately 60% plants (split 50:50 between cereal and non-cereal plants), and 40% other species of medical and/or environmental importance. The information available on pathogen effectors has risen by more than a third, and the entries for pathogens that infect crop species of global importance has dramatically increased in this release. We also briefly describe the future direction of the PHI-base project, and some existing problems with the PHI-base curation process.


Assuntos
Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Biologia Computacional/métodos , Bases de Dados Factuais , Interações Hospedeiro-Patógeno/genética , Algoritmos , Animais , Antifúngicos , Bioensaio , Produtos Agrícolas , Gerenciamento de Dados , Genoma de Planta , Humanos , Internet , Fenótipo , Plantas , Ferramenta de Busca
8.
PLoS One ; 14(10): e0222531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600207

RESUMO

BACKGROUND: Worldwide, the number of emerging and re-emerging infectious diseases is increasing, highlighting the importance of global disease pathogen surveillance. Traditional population-based methods may fail to capture important events, particularly in settings with limited access to health care, such as urban informal settlements. In such environments, a mixture of surface water runoff and human feces containing pathogenic microorganisms could be used as a surveillance surrogate. METHOD: We conducted a temporal metagenomic analysis of urban sewage from Kibera, an urban informal settlement in Nairobi, Kenya, to detect and quantify bacterial and associated antimicrobial resistance (AMR) determinants, viral and parasitic pathogens. Data were examined in conjunction with data from ongoing clinical infectious disease surveillance. RESULTS: A large variation of read abundances related to bacteria, viruses, and parasites of medical importance, as well as bacterial associated antimicrobial resistance genes over time were detected. Significant increased abundances were observed for a number of bacterial pathogens coinciding with higher abundances of AMR genes. Vibrio cholerae as well as rotavirus A, among other virus peaked in several weeks during the study period whereas Cryptosporidium spp. and Giardia spp, varied more over time. CONCLUSION: The metagenomic surveillance approach for monitoring circulating pathogens in sewage was able to detect putative pathogen and resistance loads in an urban informal settlement. Thus, valuable if generated in real time to serve as a comprehensive infectious disease agent surveillance system with the potential to guide disease prevention and treatment. The approach may lead to a paradigm shift in conducting real-time global genomics-based surveillance in settings with limited access to health care.


Assuntos
Bactérias/genética , Doenças Transmissíveis/genética , Metagenoma/genética , Microbiologia da Água , Animais , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Fezes/parasitologia , Fezes/virologia , Humanos , Quênia/epidemiologia , Metagenômica/métodos , Parasitos/genética , Parasitos/patogenicidade , Aceitação pelo Paciente de Cuidados de Saúde , Esgotos/microbiologia , Esgotos/parasitologia , Esgotos/virologia , Vírus/genética , Vírus/patogenicidade , Água/análise
9.
Nat Microbiol ; 4(12): 2466-2474, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570868

RESUMO

Vibrio cholerae interacts with many organisms in the environment, including heterotrophic protists (protozoa). Several species of protozoa have been reported to release undigested bacteria in expelled food vacuoles (EFVs) when feeding on some pathogens. While the production of EFVs has been reported, their biological role as a vector for the transmission of pathogens remains unknown. Here we report that ciliated protozoa release EFVs containing V. cholerae. The EFVs are stable, the cells inside them are protected from multiple stresses, and large numbers of cells escape when incubated at 37 °C or in the presence of nutrients. We show that OmpU, a major outer membrane protein positively regulated by ToxR, has a role in the production of EFVs. Notably, cells released from EFVs have growth and colonization advantages over planktonic cells both in vitro and in vivo. Our results suggest that EFVs facilitate V. cholerae survival in the environment, enhancing their infectious potential and may contribute to the dissemination of epidemic V. cholerae strains. These results improve our understanding of the mechanisms of persistence and the modes of transmission of V. cholerae and may further apply to other opportunistic pathogens that have been shown to be released by protists in EFVs.


Assuntos
Cólera/microbiologia , Vetores de Doenças , Interações Hospedeiro-Patógeno/fisiologia , Tetrahymena pyriformis/microbiologia , Vacúolos/microbiologia , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/metabolismo , Adesinas Bacterianas/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/parasitologia , Cólera/transmissão , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Temperatura , Fatores de Transcrição , Vacúolos/parasitologia , Vibrio cholerae/genética
10.
Nat Commun ; 10(1): 3939, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477710

RESUMO

Heterogeneity in transmission is a challenge for infectious disease dynamics and control. An 80-20 "Pareto" rule has been proposed to describe this heterogeneity whereby 80% of transmission is accounted for by 20% of individuals, herein called super-spreaders. It is unclear, however, whether super-spreading can be attributed to certain individuals or whether it is an unpredictable and unavoidable feature of epidemics. Here, we investigate heterogeneous malaria transmission at three sites in Uganda and find that super-spreading is negatively correlated with overall malaria transmission intensity. Mosquito biting among humans is 90-10 at the lowest transmission intensities declining to less than 70-30 at the highest intensities. For super-spreaders, biting ranges from 70-30 down to 60-40. The difference, approximately half the total variance, is due to environmental stochasticity. Super-spreading is thus partly due to super-spreaders, but modest gains are expected from targeting super-spreaders.


Assuntos
Algoritmos , Doenças Transmissíveis/transmissão , Malária/transmissão , Modelos Teóricos , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/parasitologia , Humanos , Malária/epidemiologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Plasmodium/fisiologia , Processos Estocásticos , Uganda/epidemiologia
11.
Hum Vaccin Immunother ; 15(10): 2405-2415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31158041

RESUMO

The Ninth Interactive Infectious Disease workshop TIPICO was held on November 22-23, 2018, in Santiago de Compostela, Spain. This 2-day academic experience addressed current and topical issues in the field of infectious diseases and vaccination. Summary findings of the meeting include: cervical cancer elimination will be possible in the future, thanks to the implementation of global vaccination action plans in combination with appropriate screening interventions. The introduction of appropriate immunization programs is key to maintain the success of current effective vaccines such as those against meningococcal disease or rotavirus infection. Additionally, reduced dose schedules might improve the efficiency of some vaccines (i.e., PCV13). New vaccines to improve current preventive alternatives are under development (e.g., against tuberculosis or influenza virus), while others to protect against infectious diseases with no current available vaccines (e.g., enterovirus, parechovirus and flaviviruses) need to be developed. Vaccinomics will be fundamental in this process, while infectomics will allow the application of precision medicine. Further research is also required to understand the impact of heterologous vaccine effects. Finally, vaccination requires education at all levels (individuals, community, healthcare professionals) to ensure its success by helping to overcome major barriers such as vaccine hesitancy and false contraindications.


Assuntos
Controle de Doenças Transmissíveis , Vacinas , Ensaios Clínicos como Assunto , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Congressos como Assunto , Pessoal de Saúde , Humanos , Espanha
12.
Philos Trans R Soc Lond B Biol Sci ; 374(1776): 20180260, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31104596

RESUMO

International travel offers an extensive network for new and recurring human-mediated introductions of exotic infectious pathogens and biota, freeing geographical constraints. We present a predictive census-travel model that integrates international travel with endpoint census data and epidemiological characteristics to predict points of introduction. Population demographics, inbound and outbound travel patterns, and quantification of source strength by country are combined to estimate and rank risk of introduction at user-scalable land parcel areas (e.g. state, county, zip code, census tract, gridded landscapes (1 mi2, 5 km2, etc.)). This risk ranking by parcel can be used to develop pathogen surveillance programmes, and has been incorporated in multiple US state/federal surveillance protocols. The census-travel model is versatile and independent of pathosystems, and applies a risk algorithm to generate risk maps for plant, human and animal contagions at different spatial scales. An interactive, user-friendly interface is available online (https://epi-models.shinyapps.io/Census_Travel/) to provide ease-of-use for regulatory agencies for early detection of high-risk exotics. The interface allows users to parametrize and run the model without knowledge of background code and underpinning data. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/microbiologia , Surtos de Doenças , Modelos Biológicos , Doenças das Plantas/microbiologia , Viagem , Animais , Doenças Transmissíveis/parasitologia , Saúde Global , Migração Humana , Humanos , Internacionalidade , Saúde Pública
14.
Nat Rev Genet ; 20(6): 323-340, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30953039

RESUMO

Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.


Assuntos
Doenças Transmissíveis/história , DNA Antigo/análise , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Evolução Biológica , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , DNA Antigo/isolamento & purificação , Fósseis , Saúde Global/história , História do Século XIX , História do Século XXI , História Antiga , História Medieval , Humanos , Vigilância em Saúde Pública/métodos , Vírus/genética , Vírus/isolamento & purificação
15.
Nat Microbiol ; 4(4): 663-674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742071

RESUMO

Thousands of pathogens are known to infect humans, but only a fraction are readily identifiable using current diagnostic methods. Microbial cell-free DNA sequencing offers the potential to non-invasively identify a wide range of infections throughout the body, but the challenges of clinical-grade metagenomic testing must be addressed. Here we describe the analytical and clinical validation of a next-generation sequencing test that identifies and quantifies microbial cell-free DNA in plasma from 1,250 clinically relevant bacteria, DNA viruses, fungi and eukaryotic parasites. Test accuracy, precision, bias and robustness to a number of metagenomics-specific challenges were determined using a panel of 13 microorganisms that model key determinants of performance in 358 contrived plasma samples, as well as 2,625 infections simulated in silico and 580 clinical study samples. The test showed 93.7% agreement with blood culture in a cohort of 350 patients with a sepsis alert and identified an independently adjudicated cause of the sepsis alert more often than all of the microbiological testing combined (169 aetiological determinations versus 132). Among the 166 samples adjudicated to have no sepsis aetiology identified by any of the tested methods, sequencing identified microbial cell-free DNA in 62, likely derived from commensal organisms and incidental findings unrelated to the sepsis alert. Analysis of the first 2,000 patient samples tested in the CLIA laboratory showed that more than 85% of results were delivered the day after sample receipt, with 53.7% of reports identifying one or more microorganisms.


Assuntos
Ácidos Nucleicos Livres/genética , Doenças Transmissíveis/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos de Coortes , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Viral/genética , Humanos , Sepse/diagnóstico , Sepse/microbiologia
17.
PLoS Negl Trop Dis ; 12(11): e0006889, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30395567

RESUMO

Rapid pathogen identification during an acute febrile illness is a critical first step for providing appropriate clinical care and patient isolation. Primary screening using sensitive and specific assays, such as real-time PCR and ELISAs, can rapidly test for known circulating infectious diseases. If the initial testing is negative, potentially due to a lack of developed diagnostic assays or an incomplete understanding of the pathogens circulating within a geographic region, additional testing would be required including highly multiplexed assays and metagenomic next generation sequencing. To bridge the gap between rapid point of care diagnostics and sequencing, we developed a highly multiplexed assay designed to detect 164 different viruses, bacteria, and parasites using the NanoString nCounter platform. Included in this assay were high consequence pathogens such as Ebola virus, highly endemic organisms including several Plasmodium species, and a large number of less prevalent pathogens to ensure a broad coverage of potential human pathogens. Evaluation of this panel resulted in positive detection of 113 (encompassing 98 different human pathogen types) of the 126 organisms available to us including the medically important Ebola virus, Lassa virus, dengue virus serotypes 1-4, Chikungunya virus, yellow fever virus, and Plasmodium falciparum. Overall, this assay could improve infectious disease diagnostics and biosurveillance efforts as a quick, highly multiplexed, and easy to use pathogen screening tool.


Assuntos
Doenças Transmissíveis/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Patologia Molecular/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Humanos , Parasitos/genética , Parasitos/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Vírus/genética , Vírus/isolamento & purificação
18.
Continuum (Minneap Minn) ; 24(5, Neuroinfectious Disease): 1489-1511, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273249

RESUMO

PURPOSE OF REVIEW: This article discusses select helminthic parasitic infections that may affect the central nervous system and reviews the epidemiology, neurologic presentation, recommended diagnostic testing, and treatment approach to these infections. RECENT FINDINGS: Emigration from and travel to areas endemic for helminthic infections that affect the nervous system has led to increased incidence of parasitic neurologic disease in developed countries, necessitating that neurologists be familiar with the diagnostic and therapeutic approach to these diseases. Evidence is emerging on the optimal treatment for neurocysticercosis, which varies based on the form of the disease in the nervous system. SUMMARY: Parenchymal neurocysticercosis is a leading cause of acquired epilepsy worldwide, and extraparenchymal neurocysticercosis is responsible for many cases of hydrocephalus. Recognition of the different stages and locations of neurocysticercosis is essential for proper management. Similarly, schistosomiasis constitutes a major cause of myelopathy in endemic areas and requires prompt diagnosis and treatment to avoid permanent deficits.


Assuntos
Sistema Nervoso Central/parasitologia , Doenças Transmissíveis , Helmintíase/patologia , Sistema Nervoso Central/diagnóstico por imagem , Doenças Transmissíveis/complicações , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/patologia , Helmintíase/epidemiologia , Humanos , Incidência , Imagem por Ressonância Magnética , Masculino , Neurocisticercose/diagnóstico por imagem , Neurocisticercose/parasitologia , Adulto Jovem
19.
Molecules ; 23(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200314

RESUMO

Dendrimers are drug delivery systems that are characterized by a three-dimensional, star-shaped, branched macromolecular network. They possess ideal properties such as low polydispersity index, biocompatibility and good water solubility. They are made up of the interior and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency, reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance, toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers for the treatment of viral and parasitic infections.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Dendrímeros/uso terapêutico , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Dendrímeros/química , Humanos , Preparações Farmacêuticas/química
20.
Behav Sci Law ; 36(6): 698-716, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191593

RESUMO

Animal hoarding has been considered a significant problem by animal welfare and law enforcement professionals for over a century. However, it has only been recognized as an indication of a mental disorder in the last decade. I review the different forms that animal hoarding can take and the current understanding of the prevalence, demographics and possible etiology of this disorder. Conventional animal cruelty laws have often been inadequate to respond to animal hoarding cases until they reach levels that may involve serious harm to animals and people. I document how prosecution of such cases can be difficult and often does not adequately consider the mental health issues underlying the problem or the high likelihood of recidivism. Attempts to solve these problems by enacting new laws specifically addressing animal hoarding have been controversial and ineffective. I explore new approaches that coordinate a variety of community resources in response to hoarding cases that offer the best opportunity to respond to both the human and animal problems associated with animal hoarding.


Assuntos
Bem-Estar do Animal/legislação & jurisprudência , Colecionismo/epidemiologia , Colecionismo/psicologia , Aplicação da Lei , Saúde Mental , Adulto , Animais , Doenças Transmissíveis/parasitologia , Feminino , Colecionismo/genética , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/psicologia , Prevalência , Transtornos Psicóticos , Prevenção Secundária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA