Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.158
Filtrar
1.
Poult Sci ; 100(4): 101018, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33662661

RESUMO

The objective of the present study was to characterize the atypical turkey coronavirus strain detected in a commercial meat turkey farm in Poland. Using the viral metagenomics approach, we obtained a complete genome sequence of coronavirus, isolated from duodenum samples of animals suffering from acute enteritis. The nearly full-length genome consisted of 27,614 nucleotides and presented a typical genetic organization similar to that of Polish infectious bronchitis virus (IBV) or French turkey coronavirus/guinea fowl coronavirus strains. Phylogenetic analysis based on both the full-length genome and the whole S gene suggested that gCoV/Tk/Poland/G160/2016 is related to turkey and guinea fowl coronavirus and not IBV strains. Sequence analysis of the genome revealed unique genetic characteristics of the present strain, demonstrating that the virus emerged as a result of the exchange of the S gene of IBV GI-19 lineage with the S gene related to the North American turkey coronaviruses and French guinea fowl coronaviruses. Analysis of earlier, similar recombinations suggests that both the S gene structures may be particularly mobile, willingly switching between different gammacoronavirus genomic backbones. The identified recombinant caused a severe course of the disease, which may imply that it is in the first phase of breaking the barriers between different bird species.


Assuntos
Coronavirus do Peru , Gammacoronavirus , Vírus da Bronquite Infecciosa , Glicoproteína da Espícula de Coronavírus/genética , Animais , Galinhas , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Coronavirus do Peru/genética , Gammacoronavirus/genética , Genoma Viral , Vírus da Bronquite Infecciosa/genética , Filogenia , Doenças das Aves Domésticas/virologia
2.
Arch Virol ; 166(5): 1477-1480, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33616725

RESUMO

We determined the genomic sequence of a Ukrainian strain of fowl adenovirus B (FAdV-B). The isolate (D2453/1) shared 97.2% to 98.4% nucleotide sequence identity with other viruses belonging to the species Fowl aviadenovirus B. Marked genetic divergence was seen in the hexon, fiber, and ORF19 genes, and phylogenetic analysis suggested that recombination events had occurred in these regions. Our analysis revealed mosaicism in the recombination patterns, a finding that has also been described in the genomes of strains of FAdV-D and FAdV-E. The shared recombination breakpoints, affecting the same genomic regions in viruses belonging to different species, suggest that similar selection mechanisms are acting on the key neutralization antigens and epitopes in viruses of different FAdV species.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/genética , Galinhas/virologia , Genoma Viral/genética , Doenças das Aves Domésticas/virologia , Infecções por Adenoviridae/virologia , Animais , Aviadenovirus/classificação , Mapeamento Cromossômico , DNA Viral/genética , Variação Genética , Recombinação Homóloga , Filogenia , Proteínas Virais/genética
3.
Poult Sci ; 100(2): 482-487, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518100

RESUMO

H146-like goose-origin calicivirus (H146-like GCV) is a novel Caliciviridae family member in the Sanovirus genus that was recently discovered and proposed to cause runting-stunting syndrome and urate deposition in geese. At present, however, there is a lack of epidemiological information pertaining to the dynamics and distribution of H146-like GCV. The development of novel molecular diagnostic approaches capable of rapidly and accurately detecting this virus would support the strengthening, the prevention, and control of H146-like GCV infection. In the present study, we therefore used a TaqMan probe and primers specific for the viral nonstructural (NS) gene to develop a highly sensitive and specific PCR assay capable of detecting this H146-like GCV. The assay reproducibly detected 5.07 × 102 copies of a recombinant DNA plasmid containing the NS gene, with a dynamic range of 8 orders of magnitude (102-109 copies). Importantly, no cross-reactivity was observed with common viruses that affected waterfowl, and when we used this assay to evaluate clinical samples, we found it to be more sensitive and faster than traditional PCR. In summary, herein, we developed a novel TaqMan-based real-time PCR approach that could reliably detect and diagnose H146-like GCV. This tool will allow for the real-time diagnosis of H146-like GCV infections, enabling researchers to better understand the epidemiology and clinical presentation of this disease.


Assuntos
Infecções por Caliciviridae/veterinária , Caliciviridae/isolamento & purificação , Gansos , Doenças das Aves Domésticas/virologia , Animais , Caliciviridae/genética , Infecções por Caliciviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Poult Sci ; 100(2): 496-506, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518102

RESUMO

Infectious bursal disease (IBD), an acute, highly contagious, and immunosuppressive avian disease, is caused by infectious bursal disease virus (IBDV) and constitutes one of the main threats to the poultry industry, worldwide. This study was performed to isolate and characterize IBDV isolates circulating in Tunisia. Eleven collected bird samples were identified using an SYBR Green-based one-step real-time reverse transcriptase polymerase chain reaction. The full-length genome sequencing of 7 of the 11 IBDV isolates has been realized. VP2 gene data showed limited sequence variations for all the 7 tested samples. The few nucleotide changes were silent and the deduced amino acid sequences were identical with the exception of a unique and characteristic nonsilent mutation (C1203) detected for the TN37/19 isolate, with a change of amino acid (L) to (F) at position 401. In addition, the serine-rich heptapeptide SWSASGS, characteristic of virulent IBDV, as well the amino acid residues, conserved in most very virulent IBDV (vvIBDV) strains, were detected in all the Tunisian tested isolates. Nucleotide sequences of VP5 gene revealed the presence of 5 substitutions leading to changes in the amino acid sequences of the virus. Two of these mutations were unique and characteristic of the Tunisian isolates. Besides, the alternative AUG start codon, characteristic of vvIBDV, was observed in all obtained VP5 gene sequences. The Tunisian protein sequences of VP1 showed E242 and the TDN triplet at positions 145, 146, and 147, a motif specific of vvIBDV. Phylogenetic analyses of the 5 genes confirmed the sequence alignment results and showed that the Tunisian strains are closely related to the very virulent Algerian IBDV strains.


Assuntos
Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/genética , Doenças das Aves Domésticas/virologia , Animais , Sequência de Bases , Infecções por Birnaviridae/epidemiologia , Infecções por Birnaviridae/patologia , Infecções por Birnaviridae/virologia , Bolsa de Fabricius/patologia , Bolsa de Fabricius/virologia , Galinhas , Genoma Viral , Vírus da Doença Infecciosa da Bursa/patogenicidade , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Tunísia/epidemiologia , Proteínas Estruturais Virais/genética , Virulência/genética
5.
Poult Sci ; 100(2): 537-542, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518106

RESUMO

Duck Tembusu virus (DTMUV), a mosquito-borne flavivirus, has been identified as a causative agent of an emerging viral disease in ducks, causing significant economic losses to the duck-producing industry. In Thailand, DTMUV has been detected sporadically in ducks since the first report in 2013. However, information on the patterns of DTMUV infection in ducks in Thailand is limited. In this study, a serological survey of DTMUV on ducks raised in farming and free-grazing systems was conducted during 2015-2016. Blood samples of farm ducks (n = 160) and free-grazing ducks (n = 240) were collected in the summer, rainy, and winter seasons during 2015-2016 and tested for DTMUV infection. Our results showed that DTMUV infection in ducks in Thailand occurred all year-round; however, the patterns of DTMUV infection varied between 2 duck-raising systems. Significant seasonal pattern was found in free-grazing ducks, whereas no seasonality was observed in farm ducks. Notably, DTMUV infection in ducks in Thailand was highest in the winter season. In conclusion, our data indicate distinct patterns of DTMUV infection between farm and free-grazing ducks, and the year-round circulation of DTMUV in ducks in Thailand, with peaks in the winter season. This information will help reduce the risk of DTMUV transmission through prevention and control strategies focusing on the peak period. Routine surveillance of DTMUV in ducks is essential for early detection of DTMUV allowing the implementation of control measures in a timely manner.


Assuntos
Patos , Infecções por Flavivirus/veterinária , Flavivirus/imunologia , Doenças das Aves Domésticas/virologia , Animais , Anticorpos Antivirais/sangue , Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Galinhas , Infecções por Flavivirus/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Estações do Ano , Estudos Soroepidemiológicos , Tailândia/epidemiologia
6.
Poult Sci ; 100(2): 543-552, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518107

RESUMO

Astroviruses are a common cause of gastroenteritis in humans and animals. They are also associated with extraintestinal infections, including hepatitis in ducklings, nephritis in chickens, as well as fatal meningitis and encephalitis in humans and other mammals. Since 2014, outbreaks of disease characterized by visceral gout and swelling of kidneys have been reported in goslings and ducklings in China, with the causative agent revealed to be a novel avian astrovirus designated goose astrovirus (GoAstV). In the present study, this novel gout-associated GoAstV was identified in diseased goslings from 2 farms in Hunan province, China. Three genomes were successfully sequenced and analyzed and were shown to have high identities of 99.7 to 99.8% between each other, with some specific amino acid alterations revealed in open reading frame 2 when compared with other gout-associated GoAstVs. Two strains were further efficiently isolated in the DF-1 chicken fibroblast cell line with high virus titers of 1011 viral genomic copies per mL of culture media. A pilot virus challenge study using GoAstV in chickens demonstrated that this virus can cause clinical visceral gout in chickens, indicating its ability to cross the species barrier. Based on the phylogenetic analyses of capsid sequences, the identified GoAstVs were proposed to be classified into 2 genotypes, GoAstV1 and GoAstV2, and the novel gout-associated GoAstVs were all clustered in GoAstV2. Further Bayesian inference analyses indicated a nucleotide substitution rate of 1.46 × 10-3 substitutions/site/year for avian astrovirus based on open reading frame 2 sequences, and the time to the most recent common ancestor of GoAstVs was estimated to be around 2011. This is the first report to confirm GoAstV can infect chickens while also providing an estimation of the evolutionary rates of Avastroviruses.


Assuntos
Infecções por Astroviridae/veterinária , Avastrovirus/patogenicidade , Galinhas , Gansos , Gota/veterinária , Doenças das Aves Domésticas/virologia , Animais , Infecções por Astroviridae/virologia , Avastrovirus/genética , China/epidemiologia , Gota/virologia , Filogenia , Distribuição Aleatória
7.
Arch Virol ; 166(4): 1113-1124, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33576898

RESUMO

Avian influenza virus (AIV), Newcastle disease virus (NDV), and avian infectious bronchitis virus (IBV) inflict immense damage on the global poultry industry annually. Serological diagnostic methods are fundamental for the effective control and prevention of outbreaks caused by these viruses. In this study, a novel triplex protein microarray assay was developed and validated for the rapid and simultaneous visualized detection of antibodies against AIV, NDV, and IBV in chicken sera. The AIV nuclear protein (NP), NDV phosphoprotein (P), and IBV nonstructural protein 5 (nsp5) were produced in a prokaryotic expression system, purified, and immobilized onto an initiator integrated poly(dimethylsiloxane) (iPDMS) film as probes to detect antibodies against these viruses in chicken sera. After optimization of the reaction conditions, no cross-reactivity was detected with infectious bursal disease virus, avian leukosis virus subgroup J and chicken anemia virus antisera. The lowest detectable antibody titers in this assay corresponded to hemagglutination inhibition (HI) titers of 24 and 21 for AIV and NDV, respectively, and to an IDEXX antibody titer of 103 for IBV, using the HI assay and IDEXX commercial ELISA kit as the reference methods. When156 serum samples were tested using the new assay, the HI test and the IBV IDEXX ELISA kit, the assay showed 96.8% (151/156), 97.4% (152/156) and 99.4% (155/156) diagnostic accuracy for detection of AIV, NDV and IBV antibody, respectively. The current study suggests that the newly developed triplex microarray is rapid, sensitive, and specific, providing a viable alternative assay for AIV, NDV, and IBV antibody screening in epidemiological investigations and vaccination evaluations.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/diagnóstico , Análise Serial de Proteínas/veterinária , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Galinhas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Imunoensaio/normas , Imunoensaio/veterinária , Vírus da Bronquite Infecciosa/imunologia , Vírus da Influenza A/imunologia , Influenza Aviária/diagnóstico , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Testes Sorológicos/normas , Testes Sorológicos/veterinária
8.
Viruses ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546203

RESUMO

Avian nephritis virus (ANV) is classified in the Avastroviridae family with disease associations with nephritis, uneven flock growth and runting stunting syndrome (RSS) in chicken and turkey flocks, and other avian species. The whole genome of ANV genotype 3 (ANV-3) of 6959 nucleotides including the untranslated 5' and 3' regions and polyadenylated tail was detected in a metagenomic virome investigation of RSS-affected chicken broiler flocks. This report characterises the ANV-3 genome, identifying partially overlapping open reading frames (ORFs), ORF1a and ORF1b, and an opposing secondary pseudoknot prior to a ribosomal frameshift stemloop structure, with a separate ORF2, whilst observing conserved astrovirus motifs. Phylogenetic analysis of the Avastroviridae whole genome and ORF2 capsid polyprotein classified the first complete whole genome of ANV-3 within Avastroviridae genogroup 2.


Assuntos
Infecções por Astroviridae/veterinária , Avastrovirus/genética , Genoma Viral , Doenças das Aves Domésticas/virologia , Animais , Infecções por Astroviridae/virologia , Avastrovirus/química , Avastrovirus/classificação , Avastrovirus/isolamento & purificação , Sequência de Bases , Galinhas , Genótipo , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Filogenia , RNA Viral/química , RNA Viral/genética , Perus
9.
Viruses ; 13(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567525

RESUMO

Avian influenza virus (AIV) subtypes H5 and H7 are capable of mutating from low to high pathogenicity strains, causing high mortality in poultry with significant economic losses globally. During 2015, two outbreaks of H7N7 low pathogenicity AIV (LPAIV) in Germany, and one each in the United Kingdom (UK) and The Netherlands occurred, as well as single outbreaks of H7N7 high pathogenicity AIV (HPAIV) in Germany and the UK. Both HPAIV outbreaks were linked to precursor H7N7 LPAIV outbreaks on the same or adjacent premises. Herein, we describe the clinical, epidemiological, and virological investigations for the H7N7 UK HPAIV outbreak on a farm with layer chickens in mixed free-range and caged units. H7N7 HPAIV was identified and isolated from clinical samples, as well as H7N7 LPAIV, which could not be isolated. Using serological and molecular evidence, we postulate how the viruses spread throughout the premises, indicating potential points of incursion and possible locations for the mutation event. Serological and mortality data suggested that the LPAIV infection preceded the HPAIV infection and afforded some clinical protection against the HPAIV. These results document the identification of a LPAIV to HPAIV mutation in nature, providing insights into factors that drive its manifestation during outbreaks.


Assuntos
Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Anticorpos Antivirais/sangue , Galinhas , Surtos de Doenças/veterinária , Fazendas , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H7N7/classificação , Vírus da Influenza A Subtipo H7N7/imunologia , Influenza Aviária/epidemiologia , Influenza Aviária/patologia , Influenza Aviária/transmissão , Mutação , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/transmissão , Reino Unido/epidemiologia , Eliminação de Partículas Virais/genética
10.
J Vet Diagn Invest ; 33(2): 253-260, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33550926

RESUMO

We report whole-genome sequencing of influenza A virus (IAV) with 100% diagnostic sensitivity and results available in <24-48 h using amplicon-based nanopore sequencing technology (MinION) on clinical material from wild waterfowl (n = 19), commercial poultry (n = 4), and swine (n = 3). All 8 gene segments of IAV including those from 14 of the 18 recognized hemagglutinin subtypes and 9 of the 11 neuraminidase subtypes were amplified in their entirety at >500× coverage from each of 16 reference virus isolates evaluated. Subgenomic viral sequences obtained in 3 cases using Sanger sequencing as the reference standard were identical to those obtained when sequenced using the MinION approach. An inter-laboratory comparison demonstrated reproducibility when comparing 2 independent laboratories at ≥99.8% across the entirety of the IAV genomes sequenced.


Assuntos
Doenças das Aves/diagnóstico , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Sequenciamento por Nanoporos/veterinária , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/diagnóstico , Sequenciamento Completo do Genoma/veterinária , Animais , Animais Selvagens , Doenças das Aves/virologia , Galinhas , Patos , Vírus da Influenza A/genética , Influenza Aviária/virologia , Sequenciamento por Nanoporos/métodos , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Perus , Sequenciamento Completo do Genoma/métodos
11.
Trop Anim Health Prod ; 53(1): 90, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33415381

RESUMO

Circulation of the dominant sub-genotype VII.2 of Avian Orthoavulavirus-1 (AOAV-1) is affecting multiple poultry and non-poultry avian species and causing significant economic losses to the poultry industry worldwide. In countries where ND is endemic, continuous monitoring and characterization of field strains are necessary. In this study, genetic characteristics of eleven AOAV-1 strains were analyzed isolated from wild birds including parakeets (n = 3), lovebird parrot (n = 1), pheasant (n = 1), peacock (n = 1), and backyard chickens (n = 5) during 2015-2016. Genetic characterization (genome size [15,192 nucleotides], the presence of typical cleavage site [112-RRQKRF-117]) and biological assessment (HA log 27 to 29 and intracerebral pathogenicity index [ICPI] value ranging from 1.50 to 1.86) showed virulent AOAV-1. Phylogenetic analysis showed that the studied isolates belonged to sub-genotype VII.2 and genetically very closely related (> 98.9%) to viruses repeatedly isolated (2011-2018) from commercial poultry. These findings provide evidence for the existence of epidemiological links between poultry and wild bird species in the region where the disease is prevalent. The deduced amino acid analysis revealed several substitutions in critical domains of fusion and hemagglutinin-neuraminidase genes. The pathogenesis and transmission potential of wild bird-origin AOAV-1 strain (AW-Pht/2015) was evaluated in 21-day-old chickens that showed the strain was highly virulent causing clinical signs and killed all chickens. High viral loads were detected in different organs of the infected chickens correlating with the severity of lesions developed. The continuous monitoring of AOAV-1 isolates in different species of birds will improve our knowledge of the evolution of these viruses, thereby preventing possible panzootic.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/fisiologia , Galinhas , Genoma Viral , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Animais Selvagens , Avulavirus/genética , Infecções por Avulavirus/virologia , Doenças das Aves/virologia , Galliformes , Paquistão , Papagaios , Proteínas Virais de Fusão/análise
12.
Int J Biol Macromol ; 171: 448-456, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33421472

RESUMO

To investigate the effects of Hericium erinaceus polysaccharide (HEP) on immunity in Muscovy duck reovirus (MDRV)-infected ducklings and explore its mechanism of action, an MDRV contact-infection model was established. Then, we investigated the influence of HEP on morphology of main immune organs in MDRV-infected ducklings by HE staining, while antioxidant capacity (T-AOC, MDA), serum protein levels (TP, ALB, GLO), complement levels (C3, C4) and antibody levels (IgA, IgM, IgG) were detected. Apoptotic indexes (apoptosisi rate and FAS-L) were also quantified by TUNEL method and immunohistochemical staining. Meanwhile, FADD and CytC (apoptosis-related genes), were tested by quantitative RT-PCR. Results showed that HEP could reduce the injuries of immune organs caused by MDRV. Additionally, HEP markedly diminished MDA (p < 0.01), while significantly increased T-AOC, TP, ALB, GLO, C3, C4, IgA, IgM and IgG (p < 0.01 or p < 0.05). Then, HEP shifted apoptosis time to an early MDRV-infected stage and reduced apoptosis at later MDRV-infected stage. This was associated with changes of FADD and CytC. Collectively, our data suggested that HEP could reduce the immunesuppression by many ways, such as decreasing organs' injuries, improving antioxidant capacity, serum proteins levels, antibody levels and complement levels, while diminish the apoptosis by lowering the FADD and CytC.


Assuntos
Patos/virologia , Sistema Imunitário/efeitos dos fármacos , Polissacarídeos/uso terapêutico , Doenças das Aves Domésticas/tratamento farmacológico , Infecções por Reoviridae/veterinária , Imunidade Adaptativa/efeitos dos fármacos , Animais , Anticorpos Antivirais/sangue , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas/análise , Citocromos c/análise , Avaliação Pré-Clínica de Medicamentos , Proteína de Domínio de Morte Associada a Fas/análise , Linfócitos/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Tecido Linfoide/virologia , Oxirredução , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Distribuição Aleatória , Infecções por Reoviridae/tratamento farmacológico , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia
13.
Viruses ; 13(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498495

RESUMO

Newcastle disease (ND) is a highly transmissible and devastating disease that affects poultry and wild birds worldwide. Comprehensive knowledge regarding the characteristics and epidemiological factors of the ND virus (NDV) is critical for the control and prevention of ND. Effective vaccinations can prevent and control the spread of the NDV in poultry populations. For decades, the Democratic Republic of the Congo (DRC) has reported the impacts of ND on commercial and traditional poultry farming systems. The reports were preliminary clinical observations, and few cases were confirmed in the laboratory. However, data on the phylogenetic, genetic, and virological characteristics of NDVs circulating in the DRC are not available. In this study, the whole-genome sequences of three NDV isolates obtained using the next-generation sequencing method revealed two isolates that were a new variant of NDV, and one isolate that was clustered in the subgenotype VII.2. All DRC isolates were velogenic and were antigenically closely related to the vaccine strains. Our findings reveal that despite the circulation of the new variant, ND can be controlled in the DRC using the current vaccine. However, epidemiological studies should be conducted to elucidate the endemicity of the disease so that better control strategies can be implemented.


Assuntos
Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Animais , República Democrática do Congo/epidemiologia , Genótipo , Vírus da Doença de Newcastle/isolamento & purificação , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , RNA Viral/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma
14.
Arch Virol ; 166(2): 439-449, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389105

RESUMO

Chicken infectious anemia (CIA), caused by chicken anemia virus (CAV), is an important immunosuppressive disease that seriously threatens the global poultry industry. Here, we isolated and identified 30 new CAV strains from CAV-positive flocks. The VP1 genes of these strains were sequenced and analyzed at the nucleotide and amino acid levels and were found to have very similar nucleotide sequences (> 97% identity); however, they showed 93.9-100.0% sequence identity to the VP1 genes of 55 reference strains. Furthermore, alignment of the deduced amino acid sequences revealed some unique mutations. Phylogenetic analysis indicated the division of VP1 amino acid sequences into two groups (A and B) and four subgroups (A1, A2, A3 and A4). Interestingly, 22 of the newly isolated strains and some Asian reference strains belonged to the A1 group, whereas the remaining eight new isolates belonged to the A3 group. To evaluate the pathogenicity of the epidemic CAV strains from China, the representative strains CAV-JL16/8901 and CAV-HeN19/3001 and the reference strain Cux-1 were selected for animal experiments. Chickens infected with the isolates and reference strain all showed thymus atrophy and bone marrow yellowing. The mortality rates for CAV-JL16/8901, CAV-HeN19/3001, and the reference strain was 30%, 20%, and 0%, respectively, indicating that the epidemic strains pose a more serious threat to chickens. We not only analyzed the molecular evolution of the epidemic strains but also showed for the first time that the epidemic strains in China are more pathogenic than reference strain Cux-1. Effective measures should be established to prevent the spread of CIA in China.


Assuntos
Vírus da Anemia da Galinha/genética , Vírus da Anemia da Galinha/patogenicidade , Galinhas/virologia , Animais , China , Infecções por Circoviridae/virologia , DNA Viral/genética , Evolução Molecular , Genótipo , Epidemiologia Molecular/métodos , Filogenia , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA/métodos , Virulência/genética
15.
Arch Virol ; 166(2): 559-569, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33409548

RESUMO

Marek's disease (MD) is an important disease of avian species and a potential threat to the poultry industry worldwide. In this study, 16 dead commercial chickens from flocks with suspected MD were necropsied immediately after death. Pathological findings were compatible with MD, and gallid alphaherpesvirus 2 was identified in PCR of spleen samples. Virus isolation was performed in primary cell culture, and partial sequencing of the meq gene of the isolate revealed >99% nucleotide sequence identity to virulent and very virulent plus strains from a number of European countries, placing it in the same subclade of clade III as two virulent Italian strains and a very virulent plus Polish strain as well as virulent strains of geese and ducks. The data reported here indicate that a virulent strain of Marek's disease virus is circulating in Turkey and has not been stopped by the current national vaccination programme.


Assuntos
Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/isolamento & purificação , Doença de Marek/virologia , Aves Domésticas/virologia , Animais , Sequência de Bases/genética , Células Cultivadas , Galinhas/virologia , Patos/virologia , Gansos/virologia , Itália , Filogenia , Polônia , Doenças das Aves Domésticas/virologia , Turquia , Virulência/genética
16.
BMC Genomics ; 22(1): 67, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472590

RESUMO

BACKGROUND: Avian infectious bronchitis virus (IBV) is a gamma coronavirus that severely affects the poultry industry worldwide. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs with a length of more than 200 nucleotides, have been recently recognized as pivotal factors in the pathogenesis of viral infections. However, little is known about the function of lncRNAs in host cultured cells in response to IBV infection. RESULTS: We used next-generation high throughput sequencing to reveal the expression profiles of mRNAs and lncRNAs in IBV-infected HD11 cells. Compared with the uninfected cells, we identified 153 differentially expressed (DE) mRNAs (106 up-regulated mRNAs, 47 down-regulated mRNAs) and 181 DE lncRNAs (59 up-regulated lncRNAs, 122 down-regulated lncRNAs) in IBV-infected HD11 cells. Moreover, gene ontology (GO) and pathway enrichment analyses indicated that DE mRNAs and lncRNAs were mainly involved in cellular innate immunity, amino acid metabolism, and nucleic acid metabolism. In addition, 2640 novel chicken lncRNAs were identified, and a competing endogenous RNA (ceRNAs) network centered on gga-miR-30d and miR-146a-5p was established. CONCLUSIONS: We identified expression profiles of mRNAs and lncRNAs during IBV infection that provided new insights into the pathogenesis of IBV.


Assuntos
Galinhas/genética , Perfilação da Expressão Gênica/métodos , Macrófagos/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma/genética , Animais , Linhagem Celular , Galinhas/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Ontologia Genética , Vírus da Bronquite Infecciosa/patogenicidade , Macrófagos/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Transdução de Sinais/genética , Virulência
17.
BMC Vet Res ; 17(1): 51, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494765

RESUMO

BACKGROUND: Infectious bronchitis virus (IBV), a coronavirus, is one of the most important poultry pathogens worldwide due to its multiple serotypes and poor cross-protection. Vaccination plays a vital role in controlling the disease. The efficacy of vaccination in chicken flocks can be evaluated by detecting neutralizing antibodies with the neutralization test. However there are no simple and rapid methods for detecting the neutralizing antibodies. RESULTS: In this study, a peptide enzyme-linked immunosorbent assay (pELISA) as a possible alternative to the neutralization test for evaluating the immune response to IBV vaccine was developed. The pELISA could indirect evaluate neutralizing antibody titers against different types of IBV in all tested sera. The titers measured with the pELISA had a coefficient of 0.83 for neutralizing antibody titers. CONCLUSIONS: The pELISA could detect antibodies against different types of IBV in all tested sera. The pELISA has the potential to evaluate samples for IBV-specific neutralizing antibodies and surveillance the infection of IBV.


Assuntos
Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Vírus da Bronquite Infecciosa/imunologia , Testes de Neutralização , Doenças das Aves Domésticas/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Galinhas/imunologia , Galinhas/virologia , Infecções por Coronavirus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Testes de Neutralização/métodos , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Viruses ; 13(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451125

RESUMO

Kenyan poultry consists of ~80% free-range indigenous chickens kept in small flocks (~30 birds) on backyard poultry farms (BPFs) and they are traded via live bird markets (LBMs). Newcastle disease virus (NDV) was detected in samples collected from chickens, wild farm birds, and other domestic poultry species during a 2017-2018 survey conducted at 66 BPFs and 21 LBMs in nine Kenyan counties. NDV nucleic acids were detected by rRT-PCR L-test in 39.5% (641/1621) of 1621 analyzed samples, of which 9.67% (62/641) were NDV-positive by both the L-test and a fusion-test designed to identify the virulent virus, with a majority being at LBMs (64.5%; 40/62) compared to BPFs (25.5%; 22/62). Virus isolation and next-generation sequencing (NGS) on a subset of samples resulted in 32 complete NDV genome sequences with 95.8-100% nucleotide identities amongst themselves and 95.7-98.2% identity with other east African isolates from 2010-2016. These isolates were classified as a new sub-genotype, V.3, and shared 86.5-88.9% and 88.5-91.8% nucleotide identities with subgenotypes V.1 and V.2 viruses, respectively. The putative fusion protein cleavage site (113R-Q-K-R↓F 117) in all 32 isolates, and a 1.86 ICPI score of an isolate from a BPF chicken that had clinical signs consistent with Newcastle disease, confirmed the high virulence of the NDVs. Compared to genotypes V and VI viruses, the attachment (HN) protein of 18 of the 32 vNDVs had amino acid substitutions in the antigenic sites. A time-scaled phylogeographic analysis suggests a west-to-east dispersal of the NDVs via the live chicken trade, but the virus origins remain unconfirmed due to scarcity of continuous and systematic surveillance data. This study reveals the widespread prevalence of vNDVs in Kenyan backyard poultry, the central role of LBMs in the dispersal and possibly generation of new virus variants, and the need for robust molecular epidemiological surveillance in poultry and non-poultry avian species.


Assuntos
Galinhas/virologia , Genótipo , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Fazendas , Genoma Viral , Genômica/métodos , Quênia/epidemiologia , Epidemiologia Molecular , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Filogeografia , Vigilância em Saúde Pública , RNA Viral , Análise Espaço-Temporal , Virulência
19.
Viruses ; 13(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466596

RESUMO

Infectious Bursal Disease Virus (IBDV) has haunted the poultry industry with severe, prolonged immunosuppression of chickens when infected at an early age and can easily lead to other secondary infections. Understanding the pathogenic mechanisms could lead to effective prevention and control of Infectious Bursal Disease (IBD). Evidence suggests that the N-terminal domain of polymerase in segment B plays an important role, but it is not clear which part or residual is crucial for the pathogenicity. Using a reverse genetics technique, a molecular clone (rNN1172) of the parental vvIBDV strain NN1172 was generated, and its pathogenicity was found to be the same as the parental virus. Then, three recombinant chimeric viruses were rescued based on the rNN1172 and substituted with the counterparts in the N-terminal domain of the attenuated vaccine strain B87: the rNN1172-B87VP1a (substituting the full region of the 1-167 aa residuals), the rNN1172-B87VP1a∆4 (substituting the region of the 5-167 aa residuals), and the rNN1172-VP1∆4 (one single aa residual substitution V4I), to better explore the role of the N-terminal domain of polymerase on the viral pathogenicity. Interestingly, all these substitutions played different roles in the viral pathogenicity: the mortality of the rNN1172-B87VP1a-challenged chickens was significantly reduced from 30% to 0%. No obvious lesion was found in the histopathological examination, and the lowest viral genome copy number was also detected in the bursa when compared to the parental and two other recombinant viruses. The mortalities caused by rNN1172-B87VP1a∆4 and rNN1172-B87VP1∆4, respectively, were all reduced to 10% and had a delayed onset of death. Our results also revealed that the pathogenicity of the IBDV was consistent with the viral replication efficiency in vivo (bursae). This study demonstrated that the full region of the N-terminal of polymerase plays an important role in viral replication and pathogenicity, but the substitutions of its partial region or a single residual do not completely lead to the virus attenuation to Three-Yellow chickens, although that significantly reduces its pathogenicity.


Assuntos
Infecções por Birnaviridae/veterinária , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/virologia , Domínios e Motivos de Interação entre Proteínas , Replicação Viral , Substituição de Aminoácidos , Animais , Células Cultivadas , Embrião de Galinha , Clonagem Molecular , RNA Polimerases Dirigidas por DNA/química , Fibroblastos , Genoma Viral , Vírus da Doença Infecciosa da Bursa/patogenicidade , Mutação , Ligação Proteica , Genética Reversa , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Virulência , Replicação Viral/genética
20.
Gene ; 766: 145077, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32941951

RESUMO

Newcastle disease virus (NDV) is a contagious poultry paramyxovirus, leading to substantial economic losses to the poultry industry. Here, RNA-seq was carried out to investigate the altered expression of immune-related genes in chicken thymus within 96 h in response to NDV infection. In NDV-infected chicken thymus tissues, comparative transcriptome analysis revealed 1386 differentially expressed genes (DEGs) at 24 h with 989 up- and 397 down-regulated genes, 728 DEGs at 48 h with 567 up- and 161 down-regulated genes, 1514 DEGs at 72 h with 1016 up- and 498 down-regulated genes, and 1196 DEGs at 96 h with 522 up- and 674 down-regulated genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these candidate targets mainly participate in biological processes or biochemical, metabolic and signal transduction processes. Notably, there is large enrichment in biological processes, cell components and metabolic processes, which may be related to NDV pathogenicity. In addition, the expression of five immune-related DEGs identified by RNA-seq was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Our results indicated that the expression levels of AvBD5, IL16, IL22 and IL18R1 were obviously up-regulated, and Il-18 expression was also changed, but not significantly, which play key roles in the defense against NDV. Overall, we identified several candidate targets that may be involved in the regulation of NDV infection, which provide new insights into the complicated regulatory mechanisms of virus-host interactions, and explore new strategies for protecting chickens against the virus.


Assuntos
Galinhas/genética , Galinhas/imunologia , Doença de Newcastle/genética , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/imunologia , Transcriptoma/genética , Vacinas Virais/imunologia , Animais , Galinhas/virologia , Regulação para Baixo/imunologia , Perfilação da Expressão Gênica/métodos , Doença de Newcastle/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Análise de Sequência de RNA/métodos , Transcriptoma/imunologia , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...