Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.117
Filtrar
1.
Nature ; 575(7781): 109-118, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695205

RESUMO

The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.


Assuntos
Produção Agrícola/métodos , Produção Agrícola/estatística & dados numéricos , Produtos Agrícolas/genética , Abastecimento de Alimentos/métodos , Abastecimento de Alimentos/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Desenvolvimento Sustentável/tendências , Aclimatação/genética , Aclimatação/fisiologia , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Produtos Agrícolas/virologia , Fertilizantes , Humanos , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Chuva
2.
Phytopathology ; 109(11): 1949-1956, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31573422

RESUMO

The pine wood nematode Bursaphelenchus xylophilus is a destructive species affecting pine trees worldwide; however, the underlying mechanism leading to pathogenesis remains unclear. In this study, a B. xylophilus gene encoding thaumatin-like protein-1 (Bx-tlp-1) was silenced by RNA interference to clarify the relationship between the Bx-tlp-1 gene and pathogenicity. The in vitro knockdown of Bx-tlp-1 with double-stranded RNA (dsRNA) decreased B. xylophilus reproduction and pathogenicity. Treatments with dsRNA targeting Bx-tlp-1 decreased expression by 90%, with the silencing effect maintained even in the F3 offspring. Pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA decreased the symptom of wilting, and the disease severity index was 56.7 at 30 days after inoculation. Additionally, analyses of the cavitation of intact pine stem samples by X-ray microtomography revealed that the xylem cavitation area of pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA was 0.46 mm2 at 30 days after inoculation. Results from this study indicated that the silencing of Bx-tlp-1 has effects on B. xylophilus fitness. The data presented here provide the foundation for future analyses of Bx-tlp-1 functions related to B. xylophilus pathogenicity.


Assuntos
Pinus , Tylenchida , Virulência , Animais , Técnicas de Silenciamento de Genes , Pinus/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , RNA de Cadeia Dupla , Tylenchida/genética , Tylenchida/patogenicidade , Virulência/genética
3.
J Agric Food Chem ; 67(45): 12590-12598, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31639305

RESUMO

Carotenoids play key roles in photosynthesis and photoprotection. Few multicellular plants produce the ketocarotenoid astaxanthin, a strong antioxidant; however, Arabidopsis thaliana lines overexpressing the Chlamydomonas reinhardtii ß-carotene ketolase (CrBKT) accumulated high amounts of astaxanthin in the leaves. In this study, we investigated the changed regulation of key metabolic pathways and the tolerance of the engineered plants to biotic and abiotic stresses resulting from the heterologous expression of CrBKT. Transcriptome analysis identified 1633 and 1722 genes that were differentially expressed in the leaves and siliques, respectively, of CrBKT-overexpressing plants (line CR5) as compared to wild-type Arabidopsis. These genes were enriched in the carotenoid biosynthetic pathways, and plant hormone biosynthesis and signaling pathways. In particular, metabolic profiling showed that, as compared to the wild-type leaves and siliques, overexpression of CrBKT increased the levels of most amino acids, but decreased the contents of sugars and carbohydrates. Furthermore, CR5 plants had lower sensitivity to abscisic acid (ABA) and increased tolerance to oxidative stress. CR5 plants also exhibited enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our study provides insight into the regulation of carotenoids and the related pathways, which may be involved in plant response to oxidative stress and pathogen infection.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/química , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Doenças das Plantas/genética , Reguladores de Crescimento de Planta/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/fisiologia , Xantofilas/biossíntese
4.
World J Microbiol Biotechnol ; 35(10): 148, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31549233

RESUMO

Assessment of temperature effect on plant resistance against diseases has become essential under climate change scenario as temperature rise is anticipated to modify host resistance. To determine temperature influence on resistance gene, a pair of near-isogenic rice lines differing for the Pi54 resistance gene was assessed against leaf blast. Blast resistance was determined as the extent of infection efficiency (IE) and sporulation (SP) at suboptimal (22 °C and 32 °C) and optimal temperature (27 °C) of pathogen aggressiveness. Relative resistance for IE and SP was higher at suboptimal temperature as compared to that of optimal temperature. Maximum level of resistance was at 22 °C where higher levels of expression of Pi54 and defence-regulatory transcription factor WRKY45 were also noted. At 32 °C, although some level of resistance noted, but level of Pi54 and WRKY45 expression was too low, suggesting that resistance recorded at higher temperature was due to reduced pathogen aggressiveness. At the optimal temperature for pathogen aggressiveness, comparatively lower levels of Pi54 and WRKY45 expression suggest possible temperature-induced interruption of the defence processes. The variation in resistance patterns modulated by temperature is appeared to be due to pathogen's sensitivity to temperature that leads to varying levels of Pi54 gene activation. Quick and violent activity of the pathogen at optimal temperature came into sight for the interruption of defence process activated by Pi54 gene. Evaluation of blast resistance genes under variable temperature conditions together with weather data could be applied in screening rice genotypes for selection of resistance having resilience to temperature rise.


Assuntos
Oryza/genética , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Temperatura Ambiente
5.
Plant Dis ; 103(11): 2742-2750, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31509495

RESUMO

Stripe rust, also known as yellow rust, is a significant threat to wheat yield worldwide. Adult plant resistance (APR) is the preferred way to obtain durable protection. Chinese winter wheat cultivar Xinong1376 has maintained acceptable APR to stripe rust in field environments. To characterize APR in this cultivar, 190 F10 recombinant inbred lines (RILs) developed from Xiaoyan81 × Xinong1376 were evaluated for infection type and disease severity in fields either artificially or naturally inoculated. The population along with parents were genotyped using the Illumina 90K single-nucleotide polymorphism arrays. Six quantitative trait loci (QTL) were detected using the inclusive composite interval mapping method. QYr.nwafu-4AL and QYr.nwafu-6BL.3 conferred stable resistance in all environments, and likely corresponded to a gene-rich region on the long arm of chromosomes 4A and 6B. QYr.nwafu-5AL, QYr.nwafu-5BL, QYr.nwafu-3BL.1, and QYr.nwafu-3BL.2 were detected only in some environments but enhanced the level of resistance conferred by QYr.nwafu-4AL and QYr.nwafu-6BL.3. Kompetitive allele-specific PCR (KASP) markers developed for QYr.nwafu-4AL and QYr.nwafu-6BL.3 were confirmed in a subset of RILs and 133 wheat genotypes. The QTL on 4AL and 6BL with their linked KASP markers would be useful for marker-assisted selection to improve stripe rust resistance in breeding programs.


Assuntos
Resistência à Doença , Ligação Genética , Triticum , Resistência à Doença/genética , Genótipo , Fenótipo , Doenças das Plantas/genética , Triticum/classificação , Triticum/genética , Triticum/microbiologia
6.
BMC Plant Biol ; 19(1): 319, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311507

RESUMO

BACKGROUND: Non-host resistance (NHR) presents a compelling long-term plant protection strategy for global food security, yet the genetic basis of NHR remains poorly understood. For many diseases, including stem rust of wheat [causal organism Puccinia graminis (Pg)], NHR is largely unexplored due to the inherent challenge of developing a genetically tractable system within which the resistance segregates. The present study turns to the pathogen's alternate host, barberry (Berberis spp.), to overcome this challenge. RESULTS: In this study, an interspecific mapping population derived from a cross between Pg-resistant Berberis thunbergii (Bt) and Pg-susceptible B. vulgaris was developed to investigate the Pg-NHR exhibited by Bt. To facilitate QTL analysis and subsequent trait dissection, the first genetic linkage maps for the two parental species were constructed and a chromosome-scale reference genome for Bt was assembled (PacBio + Hi-C). QTL analysis resulted in the identification of a single 13 cM region (~ 5.1 Mbp spanning 13 physical contigs) on the short arm of Bt chromosome 3. Differential gene expression analysis, combined with sequence variation analysis between the two parental species, led to the prioritization of several candidate genes within the QTL region, some of which belong to gene families previously implicated in disease resistance. CONCLUSIONS: Foundational genetic and genomic resources developed for Berberis spp. enabled the identification and annotation of a QTL associated with Pg-NHR. Although subsequent validation and fine mapping studies are needed, this study demonstrates the feasibility of and lays the groundwork for dissecting Pg-NHR in the alternate host of one of agriculture's most devastating pathogens.


Assuntos
Basidiomycota/fisiologia , Berberis/genética , Berberis/microbiologia , Doenças das Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Perfilação da Expressão Gênica , Genoma de Planta , Hibridização Genética , Padrões de Herança , Fenótipo , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Locos de Características Quantitativas
7.
Phytopathology ; 109(10): 1760-1768, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31282829

RESUMO

Leaf and stripe rust are major threats to wheat production worldwide. The effective, multiple rust resistances present in the Brazilian cultivar Toropi makes it an excellent choice for a genetic study of rust resistance. Testing of DNA from different seed lots of Toropi with 2,194 polymorphic 90K iSelect single nucleotide polymorphism markers identified significant genetic divergence, with as much as 35% dissimilarity between seed lots. As a result, further work was conducted with a single plant line derived from Toropi variant Toropi-6.4. A double haploid population with 168 lines derived from the cross Toropi-6.4 × Thatcher was phenotyped over multiple years and locations in Canada, New Zealand, and Kenya, with a total of seven field trials undertaken for leaf rust and nine for stripe rust. Genotyping with the 90K iSelect array, simple sequence repeat and Kompetitive allele-specific polymerase chain reaction markers resulted in a genetic map of 3,043 cM, containing 1,208 nonredundant markers. Significant quantitative trait loci (QTL) derived from Toropi-6.4 were identified in multiple environments on chromosomes 1B (QLr.crc-1BL/QYr.crc-1BL), 3B (QLr.crc-3BS), 4B (QYr.crc-4BL), 5A (QLr.crc-5AL and QYr.crc-5AL), and 5D (QLr.crc-5DS). The QTL QLr.crc-1BL/QYr.crc-1BL colocated with the multi-rust resistance locus Lr46/Yr29, while the QTL QLr.crc-5DS located to the Lr78 locus previously found in a wheat backcross population derived from Toropi. Comparisons of QTL combinations showed QLr.crc-1BL to contribute a significantly enhanced leaf rust resistance when combined with QLr.crc-5AL or QLr.crc-5DS, more so than when QLr.crc-5AL and QLr.crc-5DS were combined. A strong additive effect was also seen when the stripe rust resistance QTL QYr.crc-1BL and QYr.crc-5AL were combined.


Assuntos
Basidiomycota , Resistência à Doença , Triticum , Brasil , Canadá , Mapeamento Cromossômico , Resistência à Doença/genética , Genótipo , Quênia , Nova Zelândia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/microbiologia
8.
Microbiol Res ; 226: 1-9, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31284938

RESUMO

Citrus crops have great economic importance worldwide. However, citrus production faces many diseases caused by different pathogens, such as bacteria, oomycetes, fungi and viruses. To overcome important plant diseases in general, new technologies have been developed and applied to crop protection, including RNA interference (RNAi) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. RNAi has been demonstrated to be a powerful tool for application in plant defence mechanisms against different pathogens as well as their respective vectors, and CRISPR/Cas system has become widely used in gene editing or reprogramming or knocking out any chosen DNA/RNA sequence. In this article, we provide an overview of the use of RNAi and CRISPR/Cas technologies in management strategies to control several plants diseases, and we discuss how these strategies can be potentially used against citrus pathogens.


Assuntos
Citrus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Interferência de RNA , Bactérias/genética , Bactérias/patogenicidade , Sistemas CRISPR-Cas , Citrus/microbiologia , Produtos Agrícolas , Fungos/genética , Fungos/patogenicidade , Edição de Genes/métodos , Engenharia Genética , Vírus/genética , Vírus/patogenicidade
9.
Phytopathology ; 109(11): 1932-1940, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31282284

RESUMO

A previous genome-wide association study (GWAS) for leaf rust (caused by Puccinia triticina) resistance identified 46 resistance quantitative trait loci (QTL) in an elite spring wheat leaf rust resistance diversity panel. With the aim of characterizing the pleiotropic resistance sources to both leaf rust and stripe rust (caused by P. striiformis f. sp. tritici), stripe rust responses were tested in five U.S. environments at the adult-plant stage and to five U.S. races at the seedling stage. The data revealed balanced phenotypic distributions in this population except for the seedling response to P. striiformis f. sp. tritici race PSTv-37. GWAS for stripe rust resistance discovered a total of 21 QTL significantly associated with all-stage or field resistance on chromosomes 1B, 1D, 2B, 3B, 4A, 5A, 5B, 5D, 6A, 6B, 7A, and 7B. Previously documented pleiotropic resistance genes Yr18/Lr34 and Yr46/Lr67 and tightly linked genes Yr17-Lr37 and Yr30-Sr2-Lr27 were also detected in this population. In addition, stripe rust resistance QTL Yrswp-2B.1, Yrswp-3B, and Yrswp-7B colocated with leaf rust resistance loci 2B_3, 3B_t2, and 7B_4, respectively. Haplotype analysis uncovered that Yrswp-3B and 3B_t2 were either tightly linked genes or the same gene for resistance to both stripe and leaf rusts. Single nucleotide polymorphism markers IWB35950, IWB74350, and IWB72134 for the 3B QTL conferring resistance to both rusts should be useful in incorporating the resistance allele(s) in new cultivars.


Assuntos
Basidiomycota , Estudo de Associação Genômica Ampla , Triticum , Basidiomycota/fisiologia , Resistência à Doença/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
10.
BMC Plant Biol ; 19(1): 272, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226952

RESUMO

BACKGROUND: Cyclophilins (CYPs), belonging to the peptidyl prolyl cis/trans isomerase (PPIase) superfamily, play important roles during plant responses to biotic and abiotic stresses. RESULTS: Here, a total of 79 CYPs were identified in the genome of Gossypium hirsutum. Of which, 65 GhCYPs only contained one cyclophilin type PPIase domain, others 14 GhCYPs contain additional domains. A number of cis-acting elements related to phytohormone signaling were predicated in the upstream of GhCYPs ORF. The expression analysis revealed that GhCYPs were induced in response to cold, hot, salt, PEG and Verticillium dahliae infection. In addition, the functional importance of GhCYP-3 in Verticillium wilt resistance was also presented in this study. GhCYP-3 showed both cytoplasmic and nuclear localization. Overexpression of GhCYP-3 in Arabidopsis significantly improved Verticillium wilt resistance of the plants. Recombinant GhCYP-3 displayed PPIase activity and evident inhibitory effects on V. dahliae in vitro. Moreover, the extracts from GhCYP-3 transgenic Arabidopsis displayed significantly inhibit activity to conidia germinating and hyphal growth of V. dahliae. CONCLUSIONS: Our study identified the family members of cotton CYP genes using bioinformatics tools. Differential expression patterns of GhCYPs under various abiotic stress and V. dahliae infection conditions provide a comprehensive understanding of the biological functions of candidate genes. Moreover, GhCYP-3 involved in the resistance of cotton to V. dahliae infection presumably through antifungal activity.


Assuntos
Ciclofilinas/genética , Resistência à Doença/genética , Gossypium/genética , Doenças das Plantas/microbiologia , Verticillium , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Humanos , Doenças das Plantas/genética , Reguladores de Crescimento de Planta/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Transcriptoma
11.
BMC Genomics ; 20(1): 519, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234790

RESUMO

BACKGROUND: Banana wilt disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), is one of the most devastating diseases in banana (Musa spp.). Foc is a soil borne pathogen that causes rot of the roots or wilt of leaves by colonizing the xylem vessels. The dual RNA sequencing is used to simultaneously assess the transcriptomes of pathogen and host. This method greatly helps to understand the responses of pathogen and host to each other and discover the potential pathogenic mechanism. RESULTS: Plantlets of two economically important banana cultivars, Foc TR4 less susceptible cultivar NK and susceptible cultivar BX, were used to research the Foc-banana interaction mechanism. Notably, the infected NK had more significantly up-regulated genes on the respiration machinery including TCA cycle, glyoxylate, glycerol, and glycolysis compared to BX at 27 h post inoculation (hpi). In addition, genes involved in plant-pathogen interaction, starch, sucrose, linolenic acid and sphingolipid metabolisms were uniquely more greatly induced in BX than those in NK during the whole infection. Genes related to the biosynthesis and metabolism of SA and JA were greatly induced in the infected NK; while auxin and abscisic acid metabolisms related genes were strongly stimulated in the infected BX at 27 hpi. Furthermore, most of fungal genes were more highly expressed in the roots of BX than in those of NK. The fungal genes related to pathogenicity, pectin and chitin metabolism, reactive oxygen scavenging played the important roles during the infection of Foc. CCP1 (cytochrome c peroxidase 1) was verified to involve in cellulose utilization, oxidative stress response and pathogenicity of fungus. CONCLUSION: The transcriptome indicated that NK had much faster defense response against Foc TR4 than BX and the expression levels of fungal genes were higher in BX than those in NK. The metabolisms of carbon, nitrogen, and signal transduction molecular were differentially involved in pathogen infection in BX and NK. Additionally, the putative virulence associated fungal genes involved in colonization, nutrition acquirement and transport provided more insights into the infection process of Foc TR4 in banana roots.


Assuntos
Fusarium/genética , Musa/genética , Doenças das Plantas/microbiologia , Citocromo-c Peroxidase/metabolismo , Metabolismo Energético , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Musa/microbiologia , Doenças das Plantas/genética , Reguladores de Crescimento de Planta/genética , Reguladores de Crescimento de Planta/metabolismo , Raízes de Plantas/genética , Transdução de Sinais , Transcriptoma
12.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180042

RESUMO

The present investigation was focussed on regeneration, evaluation and screening of somaclones for yellow leaf disease (YLD) resistance using in vitro mutagenesis from a popular susceptible sugarcane variety Co86032 using four chemical mutagens at three levels of concentration (sodium azide (SA) at 0.5 mg L-1, 1.0 mg L-1, 1.5 mg L-1; sodium nitrite (SN) at 3 mg L-1, 5 mg L-1, 7 mg L-1; ethyl methane sulphonate (EMS) at 0.6 µ ML-1, 0.8 µML-1, 1.0 µ ML-1 and 2,4 D at 4 mg L-1, 5 mg L-1, 6 mg L-1). A total of 1138 tissue culture seedlings obtained were evaluated for virus resistance both in natural field conditions and in controlled greenhouse condition after aphid vector transmission and presence or absence of virus was observed by visual screening and reverse transcription-polymerase chain reaction method. Four out of 207 asymptomatic plants (16T22, 16T23, 16T29 and 16T31) were devoid of virus coat protein band and were considered to be YLD resistant. The obtained resistance somaclones showed inferior yield traits so they have to be exploited as parents in hybridization programmes with commercial varieties to impart YLD resistance ultimately yielding agronomically superior YLD-resistant varieties in sugarcane.


Assuntos
Resistência à Doença/genética , Luteoviridae/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , Saccharum/genética , Animais , Afídeos/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Células Clonais , Resistência à Doença/efeitos dos fármacos , Metanossulfonato de Etila/farmacologia , Expressão Gênica , Insetos Vetores/virologia , Luteoviridae/genética , Luteoviridae/crescimento & desenvolvimento , Mutagênese , Mutagênicos/farmacologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Técnicas de Embriogênese Somática de Plantas , Regeneração/genética , Regeneração/imunologia , Saccharum/efeitos dos fármacos , Saccharum/imunologia , Saccharum/virologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/virologia , Azida Sódica/farmacologia , Nitrito de Sódio/farmacologia
13.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216642

RESUMO

Soybean is one of the most important oil crops in the world. Bean pyralid is a major leaf-feeding insect of soybean. In order to screen out the functional genes and regulatory pathways related to the resistance for bean pyralid larvae, the small RNA and transcriptome sequencing were performed based on the highly resistant material (Gantai-2-2) and highly susceptible material (Wan 82-178) of soybean. The results showed that, when comparing 48 h feeding with 0 h feeding, 55 differentially expressed miRNAs were identified in Gantai-2-2 and 58 differentially expressed miRNAs were identified in Wan82-178. When comparing Gantai-2-2 with Wan82-178, 77 differentially expressed miRNAs were identified at 0 h feeding, and 70 differentially expressed miRNAs were identified at 48 h feeding. The pathway analysis of the predicted target genes revealed that the plant hormone signal transduction, RNA transport, protein processing in the endoplasmic reticulum, zeatin biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, and isoquinoline alkaloid biosynthesis may play important roles in soybean's defense against the stress caused by bean pyralid larvae. According to conjoint analysis of the miRNA/mRNA, a total of 20 differentially expressed miRNAs were negatively correlated with 26 differentially expressed target genes. The qRT-PCR analysis verified that the small RNA sequencing results were credible. According to the analyses of the differentially expressed miRNAs, we speculated that miRNAs are more likely to play key roles in the resistance to insects. Gma-miR156q, Gma-miR166u, Gma-miR166b, Gma-miR166j-3p, Gma-miR319d, Gma-miR394a-3p, Gma-miR396e, and so on-as well as their negatively regulated differentially expressed target genes-may be involved in the regulation of soybean resistance to bean pyralid larvae. These results laid a foundation for further in-depth research regarding the action mechanisms of insect resistance.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , RNA Mensageiro/genética , Soja/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Larva
14.
Plant Dis ; 103(8): 1918-1922, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161934

RESUMO

Lethal bronzing disease (LBD) is a lethal decline of various palm species caused by the 16SrIV-D phytoplasma. The disease was described in Texas in 2002 but found in Florida in 2006. Since its introduction, the phytoplasma has spread throughout much of the state. Typically, sampling of infected palms involves taking trunk tissue; however, in some instances this is not possible so alternative protocols are needed. In this study, phytoplasma titers were measured in different leaf tissues of infected palm in order to provide stakeholders with more sampling options. In addition, understanding the phytoplasma distribution in the palm canopy can shed light on the pathogen's biology and aid in vector studies. Three species of palm, Phoenix roebelinii, Sabal palmetto, and Syagrus romanzoffiana, were identified and confirmed positive for infection by qPCR analysis. Leaf tissue from these species that represented different stages of decay were sampled and tested by qPCR and dPCR. For each species, phytoplasma was only detectable in the spear leaf tissue that was connected directly to the apical meristem by both qPCR and dPCR. These data are useful by demonstrating that the 16SrIV-D phytoplasma appears to be restricted to the spear leaf so stakeholders who wish to sample palms but cannot sample trunk tissue due to palm size or lack of permission to drill into the trunk have an alternative tissue type to reliably sample. In addition, this information will help improve vector research by knowing where to collect insects that have a higher probably of possessing the phytoplasma.


Assuntos
Arecaceae , Phytoplasma , Folhas de Planta , Reação em Cadeia da Polimerase , Animais , Arecaceae/microbiologia , DNA Bacteriano/genética , Florida , Phytoplasma/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Texas
15.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167403

RESUMO

The respiratory burst oxidase homolog D (RbohD) acts as a central driving force of reactive oxygen species signaling in plant cells by integrating many different signal transduction pathways in plants, including incompatible interactions with pathogens. This study demonstrated the localization and distribution of RbohD in two types of potato-potato virus Y (PVY) interactions: Compatible and incompatible (resistant). The results indicated a statistically significant induction of the RbohD antigen signal in both interaction types. In the hypersensitive response (resistant reaction) of potato with a high level of resistance to the potato tuber necrotic strain of PVY (PVYNTN), RbohD localization followed by hydrogen peroxide (H2O2) detection was concentrated in the apoplast. In contrast, in the hypersensitive response of potato with a low resistance level to PVYNTN, the distribution of RbohD was concentrated more in the plant cell organelles than in the apoplast, resulting in the virus particles being present outside the inoculation area. Moreover, when compared to mock-inoculated plants and to the hypersensitive response, the PVYNTN-compatible potato interaction triggered high induction in the RbohD distribution, which was associated with necrotization. Our findings indicated that RbohD and hydrogen peroxide deposition was associated with the hypersensitive response, and both were detected in the vascular tissues and chloroplasts. These results suggest that the RbohD distribution is actively dependent on different types of PVY NTN-potato plant interactions. Additionally, the RbohD may be involved in the PVYNTN tissue limitation during the hypersensitive response, and it could be an active component of the systemic signal transduction in the susceptible host reaction.


Assuntos
Interações Hospedeiro-Patógeno , NADPH Oxidases/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Potyvirus/fisiologia , Biomarcadores , Suscetibilidade a Doenças , Imunofluorescência , Peróxido de Hidrogênio , NADPH Oxidases/metabolismo , Proteínas de Plantas/metabolismo , Transporte Proteico , Explosão Respiratória , Vírion/ultraestrutura
16.
Phytopathology ; 109(11): 1941-1948, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31215839

RESUMO

Meloidogyne graminicola causes significant damage to rice fields worldwide. Sources of resistance to M. graminicola reported in Oryza sativa are limited. Resistance to this species has been found in other Oryza species such as O. glaberrima and O. longistaminata. This study aimed to evaluate the reaction of four wild species of Oryza from the Embrapa Rice and Bean Germplasm Bank (Goiás, Brazil) to a pool of M. graminicola populations and determine the resistance mechanism in O. glumaepatula. Two genotypes of O. glaberrima, one of O. alta, three of O. glumaepatula, one of O. grandiglumis, one of O. longistaminata, and one of O. sativa (control) were included in the study. The results showed that O. glumaepatula was highly resistant (reproduction factor [RF] < 1). O. glaberrima, O. alta, and O. grandiglumis were considered moderately resistant. O. longistaminata was susceptible, although values of RF remained lower than the control O. sativa 'BR-IRGA 410', considered highly susceptible. Histological observations on the interaction of O. glumaepatula and M. graminicola showed reduced penetration of second-stage juveniles (J2s) when this resistant wild accession was compared with O. sativa. An intense hypersensitivity response-like reaction occurred at 2 days after inoculation in the root cortex of the resistant accession. Few J2s established in the central cylinder, and rare collapsed giant cells were observed surrounded by degenerate females. Fluorescence microscopy in O. glumaepatula revealed giant cells and the female body presumably exhibiting accumulation of phenolic compounds. Our study suggests that wild rice accessions, especially from the AA genotype (e.g., O. glumaepatula), are of great interest for use in future breeding programs with Oryza spp.


Assuntos
Resistência à Doença , Oryza , Tylenchoidea , Animais , Brasil , Resistência à Doença/genética , Genótipo , Oryza/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia
17.
Mol Genet Genomics ; 294(5): 1311-1326, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31175439

RESUMO

Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.


Assuntos
Capsicum/genética , Capsicum/parasitologia , Quitina/genética , Phytophthora/patogenicidade , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Acetatos/farmacologia , Antioxidantes/farmacologia , Clorofila/genética , Ciclopentanos/farmacologia , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes/métodos , Peróxido de Hidrogênio/farmacologia , Malondialdeído/farmacologia , Manitol/farmacologia , Melatonina/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/efeitos dos fármacos
19.
BMC Plant Biol ; 19(1): 249, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185908

RESUMO

BACKGROUND: As an elite japonica rice variety, Kongyu-131 has been cultivated for over 20 years in the third accumulated temperature zone of Heilongjiang Province, China. However, the cultivated area of Kongyu-131 has decreased each year due to extensive outbreaks of rice blast. To achieve the goals of improving blast resistance and preserving other desirable traits in Kongyu-131, a genome-updating method similar to repairing a bug in a computer program was adopted in this study. A new allele of the broad-spectrum blast resistance gene pi21 in the upland rice variety GKGH was mined by genetic analysis and introgressed into the genome of Kongyu-131 to upgrade its blast resistance. RESULT: QTL analysis was performed with an F2 population derived from a cross between Kongyu-131 and GKGH, and a blast resistance QTL was detected near the pi21 locus. Parental Pi21 sequence alignment showed that the pi21 of the donor (GKGH) was a new allele. By 5 InDel or SNP markers designed based on the sequence within and around pi21, the introgressed chromosome segment was shortened to less than 634 kb to minimize linkage drag by screening recombinants in the target region. The RRPG was 99.92%, calculated according to 201 SNP markers evenly distributed on 12 chromosomes. Artificial inoculation at the seedling stage showed that the blast resistance of the new Kongyu-131 was improved significantly. Field experiments also indicated that the improved Kongyu-131 had enhanced field resistance to rice blast and grain-quality traits similar to those of the original Kongyu-131. CONCLUSIONS: It is feasible to improve resistance to rice blast and preserve other desirable traits by precisely improving the Pi21 locus of Kongyu-131. Linkage drag can be eliminated effectively via recombinant selection on both sides of the target gene.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ligação Genética , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
20.
BMC Genomics ; 20(1): 390, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109305

RESUMO

BACKGROUND: Phytohormones are key regulators of plant growth, development, and signalling networks involved in responses to diverse biotic and abiotic stresses. Transcriptional reference maps of hormone responses have been reported for several model plant species such as Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon. However, because of species differences and the complexity of the wheat genome, these transcriptome data are not appropriate reference material for wheat studies. RESULTS: We comprehensively analysed the transcriptomic responses in wheat spikes to seven phytohormones, including indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), cytokinin (CK), salicylic acid (SA), and methyl jasmonic acid (MeJA). A total of 3386 genes were differentially expressed at 24 h after the hormone treatments. Furthermore, 22.7% of these genes exhibited overlapping transcriptional responses for at least two hormones, implying there is crosstalk among phytohormones. We subsequently identified genes with expression levels that were significantly and differentially induced by a specific phytohormone (i.e., hormone-specific responses). The data for these hormone-responsive genes were then compared with the transcriptome data for wheat spikes exposed to biotic (Fusarium head blight) and abiotic (water deficit) stresses. CONCLUSION: Our data were used to develop a transcriptional reference map of hormone responses in wheat spikes.


Assuntos
Reguladores de Crescimento de Planta/farmacologia , Transcriptoma , Triticum/genética , Desidratação/genética , Desidratação/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Fusarium , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA