RESUMO
Abstract Bacterial leaf blight (BLB) is one of the major rice diseases in Malaysia. This disease causes substantial yield loss as high as 70%. Development of rice varieties which inherited BLB resistant traits is a crucial approach to promote and sustain rice industry in Malaysia. Hence, this study aims were to enhance BLB disease resistant characters of high yielding commercial variety MR219 through backcross breeding approach with supporting tool of marker-assisted selection (MAS). Broad spectrum BLB resistance gene, Xa7 from donor parent IRBB7 were introgressed into the susceptible MR219 (recurrent parent) using two flanking markers ID7 and ID15. At BC3F4, we managed to generate 19 introgressed lines with homozygous Xa7 gene and showed resistant characteristics as donor parent when it was challenged with Xanthomonas oryzae pv. oryzae through artificial inoculation. Recurrent parent MR219 and control variety, MR263 were found to be severely infected by the disease. The improved lines exhibited similar morphological and yield performance characters as to the elite variety, MR219. Two lines, PB-2-107 and PB-2-34 were chosen to be potential lines because of their outstanding performances compared to parent, MR219. This study demonstrates a success story of MAS application in development of improved disease resistance lines of rice against BLB disease.
Resumo A mancha bacteriana das folhas (BLB) é uma das principais doenças do arroz na Malásia. Essa doença causa perdas substanciais de rendimento de até 70%. O desenvolvimento de variedades de arroz que herdaram características de resistência ao BLB é uma abordagem crucial para promover e sustentar a indústria do arroz na Malásia. Portanto, o objetivo deste estudo foi aumentar os caracteres BLB resistentes a doenças da variedade comercial MR219 de alto rendimento por meio de uma abordagem de cruzamento retrocruzamento com ferramenta de apoio de seleção assistida por marcador (MAS). O gene de resistência a BLB de amplo espectro, Xa7 do pai doador IRBB7, foi introgressado no MR219 suscetível (pai recorrente) usando dois marcadores flanqueadores ID7 e ID15. No BC3F4, conseguimos gerar 19 linhagens introgressadas com o gene Xa7 homozigoto e apresentamos características de resistência como genitor doador quando desafiado com Xanthomonas oryzae pv. oryzae por inoculação artificial. O pai recorrente MR219 e a variedade controle, MR263, estavam gravemente infectados pela doença. As linhas melhoradas exibiram características morfológicas e de desempenho de rendimento semelhantes às da variedade elite, MR219. Duas linhas, PB-2-107 e PB-2-34, foram escolhidas como linhas potenciais por causa de seus desempenhos excelentes em comparação com a mãe, MR219. Este estudo demonstra uma história de sucesso de aplicação de MAS no desenvolvimento de linhas de arroz melhoradas com resistência a doenças contra a doença BLB.
Assuntos
Oryza , Xanthomonas , Doenças das Plantas/genética , Resistência à Doença/genética , Melhoramento VegetalRESUMO
Leaf rust, caused by Puccinia hordei, is one of the most widespread and damaging foliar diseases affecting barley. The barley leaf rust resistance locus Rph7 has been shown to have unusually high sequence and haplotype divergence. In this study, we isolate the Rph7 gene using a fine mapping and RNA-Seq approach that is confirmed by mutational analysis and transgenic complementation. Rph7 is a pathogen-induced, non-canonical resistance gene encoding a protein that is distinct from other known plant disease resistance proteins in the Triticeae. Structural analysis using an AlphaFold2 protein model suggests that Rph7 encodes a putative NAC transcription factor with a zinc-finger BED domain with structural similarity to the N-terminal DNA-binding domain of the NAC transcription factor (ANAC019) from Arabidopsis. A global gene expression analysis suggests Rph7 mediates the activation and strength of the basal defence response. The isolation of Rph7 highlights the diversification of resistance mechanisms available for engineering disease control in crops.
Assuntos
Arabidopsis , Basidiomycota , Eczema , Hordeum , Fatores de Transcrição/genética , Hordeum/genética , Regulação da Expressão Gênica , Poaceae , Arabidopsis/genética , Proteínas de Plantas/genética , Doenças das Plantas/genéticaRESUMO
Raspberries (Rubus spp) are temperate climate fruits with profitable high returns and have the potential for diversification of fruit growing in mid to low-latitude regions. However, there are still no cultivars adapted to climatic conditions and high pressure of diseases that occurs in tropical areas. In this context, our objective was to evaluate the genetic diversity from a 116 raspberry genotypes panel obtained from interspecific crosses in a testcross scheme with four cultivars already introduced in Brazil. The panel was genotyped via genotyping-by-sequencing. 28,373 and 27,281 SNPs were obtained, using the species R. occidentalis and R. idaeus genomes as references, respectively. A third marker dataset was constructed consisting of 41,292 non-coincident markers. Overall, there were no differences in the results when using the different marker sets for the subsequent analyses. The mean heterozygosity was 0.54. The average effective population size was 174, indicating great genetic variability. The other analyses revealed that the half-sibling families were structured in three groups. It is concluded that the studied panel has great potential for breeding and further genetic studies. Moreover, only one of the three marker matrices is sufficient for diversity studies.
Assuntos
Basidiomycota , Doenças do Tecido Conjuntivo , Eczema , Doenças do Sistema Imunitário , Rubus , Dermatopatias Bacterianas , Humanos , Melhoramento Vegetal , Brasil , Doenças das Plantas/genéticaRESUMO
KEY MESSAGE: Novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance were developed, and the resistance gene PmW6RS was physically mapped onto 6RS-0.58-0.66-bin corresponding to 18.38 Mb in Weining rye. Rye (Secale cereale L., RR) contains valuable genes for wheat improvement. However, most of the rye resistance genes have not been successfully used in wheat cultivars. Identification of new rye resistance genes and transfer of these genes to wheat by developing small fragment translocation lines will make these genes more usable for wheat breeding. In this study, a broad-spectrum powdery mildew resistance gene PmW6RS was localized on rye chromosome arm 6RS using a new set of wheat-rye disomic and telosomic addition lines. To further study and use PmW6RS, 164 wheat-rye 6RS translocation lines were developed by 60Coγ-ray irradiation. Seedling and adult stage powdery mildew resistance analysis showed that 106 of the translocation lines were resistant. A physical map of 6RS was constructed using the 6RS translocation and deletion lines, and PmW6RS was localized in the 6RS-0.58-0.66-bin, flanked by markers X6RS-3 and X6RS-10 corresponding to the physical interval of 50.23-68.61 Mb in Weining rye genome. A total of 23 resistance-related genes were annotated. Nine markers co-segregate with the 6RS-0.58-0.66-bin, which can be used to rapidly trace the 6RS fragment carrying PmW6RS. Small fragment translocation lines with powdery mildew resistance were backcrossed with wheat cultivars, and 39 agronomically acceptable homozygous 6RS small fragment translocation lines were obtained. In conclusion, this study not only provides novel gene source and germplasms for wheat resistance breeding, but also laid a solid foundation for cloning of PmW6RS.
Assuntos
Ascomicetos , Secale , Secale/genética , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Translocação Genética , Doenças das Plantas/genéticaRESUMO
KEY MESSAGE: We mapped a new race-specific seedling stripe rust resistance gene on wheat chromosome 5BL and a new APR locus QYr.hazu-2BS from CIMMYT wheat line Kfa/2*Kachu. Breeding resistant wheat (Triticum aestivum) varieties is the most economical and efficient way to manage wheat stripe rust, but requires the prior identification of new resistance genes and development of associated molecular markers for marker-assisted selection. To map stripe rust resistance loci in wheat, we used a recombinant inbred line population generated by crossing the stripe rust-resistant parent 'Kfa/2*Kachu' and the susceptible parent 'Apav#1'. We employed genotyping-by-sequencing and bulked segregant RNA sequencing to map a new race-specific seedling stripe rust resistance gene, which we designated YrK, to wheat chromosome arm 5BL. TraesCS5B02G330700 encodes a receptor-like kinase and is a high-confidence candidate gene for YrK based on virus-induced gene silencing results and the significant induction of its expression 24 h after inoculation with wheat stripe rust. To assist breeding, we developed functional molecular markers based on the polymorphic single nucleotide polymorphisms in the coding sequence region of YrK. We also mapped four adult plant resistance (APR) loci to wheat chromosome arms 1BL, 2AS, 2BS and 4AL. Among these APR loci, we determined that QYr.hazu-1BL and QYr.hazu-2AS are allelic to the known pleiotropic resistance gene Lr46/Yr29/Pm39 and the race-specific gene Yr17, respectively. However, QYr.hazu-2BS is likely a new APR locus, for which we converted closely linked SNP polymorphisms into breeder-friendly Kompetitive allele-specific PCR (KASP) markers. In the present study, we provided new stripe rust resistance locus/gene and molecular markers for wheat breeder to develop rust-resistant wheat variety.
Assuntos
Basidiomycota , Resistência à Doença , Doenças das Plantas , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia , ChinaRESUMO
Late blight (LB) is a serious disease that affects potato crop and is caused by Phytophthora infestans. Fungicides are commonly used to manage this disease, but this practice has led to the development of resistant strains and it also poses serious environmental and health risks. Therefore, breeding for resistance development can be the most effective strategies to control late blight. Various Solanum species have been utilized as a source of resistance genes to combat late blight disease. Several potential resistance genes and quantitative resistance loci (QRLs) have been identified and mapped through the application of molecular techniques. Furthermore, molecular markers closely linked to resistance genes or QRLs have been utilized to hasten the breeding process. However, the use of single-gene resistance can lead to the breakdown of resistance within a short period. To address this, breeding programs are now being focused on development of durable and broad-spectrum resistant cultivars by combining multiple resistant genes and QRLs using advanced molecular breeding tools such as marker-assisted selection (MAS) and cis-genic approaches. In addition to the strategies mentioned earlier, somatic hybridization has been utilized for the development and characterization of interspecific somatic hybrids. To further broaden the scope of late blight resistance breeding, approaches such as genomic selection, RNAi silencing, and various genome editing techniques can be employed. This study provides an overview of recent advances in various breeding strategies and their applications in improving the late blight resistance breeding program.
Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum , Solanum tuberosum/genética , Melhoramento Vegetal , Solanum/genética , Genômica , Doenças das Plantas/genética , Resistência à Doença/genéticaRESUMO
Increasing plant resistance to Verticillium wilt (VW), which causes massive losses of Brassica rapa crops, is a challenge worldwide. However, few causal genes for VW resistance have been identified by forward genetic approaches, resulting in limited application in breeding. We combine a genome-wide association study in a natural population and quantitative trait locus mapping in an F2 population and identify that the MYB transcription factor BrMYB108 regulates plant resistance to VW. A 179 bp insertion in the BrMYB108 promoter alters its expression pattern during Verticillium longisporum (VL) infection. High BrMYB108 expression leads to high VL resistance, which is confirmed by disease resistance tests using BrMYB108 overexpression and loss-of-function mutants. Furthermore, we verify that BrMYB108 confers VL resistance by regulating reactive oxygen species (ROS) generation through binding to the promoters of respiratory burst oxidase genes (Rboh). A loss-of-function mutant of AtRbohF in Arabidopsis shows significant susceptibility to VL. Thus, BrMYB108 and its target ROS genes could be used as targets for genetic engineering for VL resistance of B. rapa.
Assuntos
Brassica rapa , Verticillium , Brassica rapa/genética , Espécies Reativas de Oxigênio , Verticillium/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Resistência à Doença/genéticaRESUMO
Plants release a mixture of volatile compounds when subjects to environmental stress, allowing them to transmit information to neighboring plants. Here, we find that Nicotiana benthamiana plants infected with tobacco mosaic virus (TMV) induces defense responses in neighboring congeners. Analytical screening of volatiles from N. benthamiana at 7 days post inoculation (dpi) using an optimized SPME-GC-MS method showed that TMV triggers the release of several volatiles, such as (E)-2-octenal, 6-methyl-5-hepten-2-one, and geranylacetone. Exposure to (E)-2-octenal enhances the resistance of N. benthamiana plants to TMV and triggers the immune system with upregulation of pathogenesis-related genes, such as NbPR1a, NbPR1b, NbPR2, and NbNPR1, which are related to TMV resistance. Furthermore, (E)-2-octenal upregulates jasmonic acid (JA) that levels up to 400-fold in recipient N. benthamiana plants and significantly affects the expression pattern of key genes in the JA/ET signaling pathway, such as NbMYC2, NbERF1, and NbPDF1.2, while the salicylic acid (SA) level is not significantly affected. Our results show for the first time that the volatile (E)-2-octenal primes the JA/ET pathway and then activates immune responses, ultimately leading to enhanced TMV resistance in adjacent N. benthamiana plants. These findings provide new insights into the role of airborne compounds in virus-induced interplant interactions.
Assuntos
Vírus do Mosaico do Tabaco , Tabaco , Humanos , Tabaco/genética , Tabaco/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Doenças das Plantas/genéticaRESUMO
Bacterial wilt negatively impacts the yield and quality of tomatoes. cis-Abienol, a labdane diterpenoid abundantly produced in the trichome secretion of Nicotiana spp., can induce bacterial wilt resistance in plants; however, study on its practical application and acting mechanism is very limited. This study established the application conditions of cis-abienol for inducing tomato bacterial wilt resistance by pot-inoculation experiments and investigated the underlying mechanism by determining the physio-biochemical indexes and transcriptomic changes. The results showed that applying cis-abienol to the roots was the most effective approach for inducing tomato bacterial wilt resistance. The optimal concentration was 60 µg/mL, and 2-3 consecutive applications with 3-6 days intervals were sufficient to induce the bacterial wilt resistance of tomato plants. cis-Abienol could enhance the antioxidant enzyme activity and stimulate the defensive signal transduction in tomato roots, leading to the upregulation of genes involved in the mitogen-activated protein kinase cascade. It also upregulated the expression of JAZ genes and increased the content of jasmonic acid (JA) and salicylic acid (SA), which control the expression of flavonoid biosynthetic genes and the content of phytoalexins in tomato roots. cis-Abienol-induced resistance mainly depends on the JA signalling pathway, and the SA signalling pathway is also involved in this process. This study established the feasibility of applying the plant-derived terpenoid cis-abienol to induce plant bacterial wilt resistance, which is of great value for developing eco-friendly bactericides.
Assuntos
Diterpenos , Solanum lycopersicum , Tabaco/genética , Tabaco/metabolismo , Solanum lycopersicum/genética , Transdução de Sinais , Diterpenos/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de PlantasRESUMO
Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.
Assuntos
Basidiomycota , Triticum , Triticum/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , GenômicaRESUMO
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Assuntos
Agentes de Controle Biológico , Praguicidas , Ecossistema , Interferência de RNA , RNA Interferente Pequeno/genética , Produtos Agrícolas/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologiaRESUMO
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
Assuntos
Nematoides , Oxilipinas , Animais , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Imunidade Vegetal/fisiologia , Nematoides/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Anthracnose is a fungal disease caused by Colletotrichum spp. that has a significant impact on worldwide pepper production. Colletotrichum scovillei is the most common pathogenic anthracnose-causing species in the Republic of Korea. RESULTS: The resistances of 197 pepper (Capsicum chinense) accessions deposited in Korea's National Agrobiodiversity Center were evaluated for their response against the virulent pathogens Colletotrichum acutatum isolate 'KSCa-1' and C. scovillei isolate 'Hana') in the field and in vitro methods for three consecutive years (2018 to 2020). The severity of the disease was recorded and compared between inoculation methods. Six phenotypically resistant pepper accessions were selected based on three years of disease data. All of the selected resistant pepper accessions outperformed the control resistant pepper in terms of resistance (PI 594,137). A genome-wide association study (GWAS) was carried out to identify single nucleotide polymorphisms (SNPs) associated with anthracnose resistance. An association analysis was performed using 53,518 SNPs and the disease score of the 2020 field and in vitro experiment results. Both field and in vitro experiments revealed 25 and 32 significantly associated SNPs, respectively. These SNPs were found on all chromosomes except Ch06 and Ch07 in the field experiment, whereas in the in vitro experiment they were found on all chromosomes except Ch04 and Ch11. CONCLUSION: In this study, six resistant C. chinense accessions were selected. Additionally, in this study, significantly associated SNPs were found in a gene that codes for a protein kinase receptor, such as serine/threonine-protein kinase, and other genes that are known to be involved in disease resistance. This may strengthen the role of these genes in the development of anthracnose resistance in Capsicum spp. As a result, the SNPs discovered to be strongly linked in this study can be used to identify a potential marker for selecting pepper material resistant to anthracnose, which will assist in the development of resistant varieties.
Assuntos
Capsicum , Colletotrichum , Estudo de Associação Genômica Ampla , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Quinases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
BACKGROUND: Stripe rust is considered one of the most devastating diseases of wheat all over the world, resulting in a high loss in its production. In this study, time-course changes in expression of the polyphenol biosynthesis pathways genes in wheat against stripe rust were investigated. The defense mechanisms triggered by mycorrhizal colonization and/or spraying with Streptomyces viridosporus HH1 against this disease were also investigated. RESULTS: Results obtained revealed that C3H, which is considered the key gene in lignin biosynthesis, was the most expressed gene. Furthermore, most of the chlorogenic acid and flavonoid biosynthesis genes were also overexpressed. Volcano plots of the studied genes reveal that the dual treatment led to a high significant overexpression of 10 out of the 13 studied genes. Heatmap of these genes showed that the most frequent expressed gene in response to all applied treatments along the study period was DFR, the key gene in the biosynthesis of anthocyanidins. Gene co-expression network of the studied genes showed that HQT was the most central gene with respect to the other genes, followed by AN2 and DFR, respectively. Accumulation of different flavonoids and phenolic acids were detected in response to the dual treatment, in particular, cinnamic acid, coumarin, and esculetin, which recorded the highest elevation level recording 1000, 488.23, and 329.5% respectively. Furthermore, results from the greenhouse experiment showed that application of the dual treatment led to an 82.8% reduction in the disease severity, compared with the control treatment. CONCLUSIONS: We can conclude that the biosynthesis of lignin, chlorogenic acid, and flavonoids contributed to the synergistic triggering effect of the dual treatment on wheat resistance to stripe rust.
Assuntos
Basidiomycota , Micorrizas , Triticum/genética , Polifenóis , Ácido Clorogênico , Lignina , Basidiomycota/fisiologia , Flavonoides , Doenças das Plantas/genética , Resistência à Doença/genéticaRESUMO
Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.
Assuntos
Ascomicetos , Verticillium , Epigênese Genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ascomicetos/genética , Verticillium/genética , Eucromatina/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismoRESUMO
BACKGROUND: The extracellular space between the cell wall and plasma membrane is a battlefield in plant-pathogen interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance. RESULTS: Here, we examined the secretome of Verticillium wilt-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt causal agent, Verticillium dahliae. Bioinformatics-driven analyses showed that the ZZM2 genome encodes 2085 secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and comparable unique genes between the two sub-genomes. Secretome annotation strongly suggested its involvement in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina benthamiana leaves were agro-infiltrated with 28 randomly selected members, suggesting that the secretome plays an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium wilt resistance in cotton. CONCLUSIONS: Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms regulating disease resistance.
Assuntos
Ascomicetos , Verticillium , Gossypium/genética , Resistência à Doença/genética , Secretoma , Verticillium/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Soybean stem canker (SSC) caused by the fungal pathogen Diaporthe caulivora is an important disease affecting soybean production worldwide. However, limited information related to the molecular mechanisms underlying soybean resistance to Diaporthe species is available. In the present work, we analyzed the defense responses to D. caulivora in the soybean genotypes Williams and Génesis 5601. The results showed that compared to Williams, Génesis 5601 is more resistant to fungal infection evidenced by significantly smaller lesion length, reduced disease severity and pathogen biomass. Transcriptional profiling was performed in untreated plants and in D. caulivora-inoculated and control-treated tissues at 8 and 48 h post inoculation (hpi). In total, 2.322 and 1.855 genes were differentially expressed in Génesis 5601 and Williams, respectively. Interestingly, Génesis 5601 exhibited a significantly higher number of upregulated genes compared to Williams at 8 hpi, 1.028 versus 434 genes. Resistance to D. caulivora was associated with defense activation through transcriptional reprogramming mediating perception of the pathogen by receptors, biosynthesis of phenylpropanoids, hormone signaling, small heat shock proteins and pathogenesis related (PR) genes. These findings provide novel insights into soybean defense mechanisms leading to host resistance against D. caulivora, and generate a foundation for the development of resistant SSC varieties within soybean breeding programs.
Assuntos
Resistência à Doença , Soja , Soja/genética , Soja/microbiologia , Resistência à Doença/genética , Melhoramento Vegetal , Mecanismos de Defesa , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
OBJECTIVES: RNA sequencing of two organisms in a symbiotic interaction can yield insights that are not found in samples from each organism alone. We present a sequencing dataset focusing on the small RNA fraction from wheat plants (Triticum aestivum) infected with the biotrophic pathogen wheat stem rust fungus (Puccinia graminis f.sp. tritici). Simultaneous small RNA sequencing of this agronomically important crop and its adversary can lead to a better understanding of the role of noncoding RNAs in both plant and fungal biology. DATA DESCRIPTION: Small RNA libraries were constructed from infected and mock-infected plant tissue and sequenced on the Ion Torrent platform. Quality control was performed to ensure sample and data integrity. Using this dataset, researchers can employ previously established methods to map subsets of reads exclusively to each organism's genome. Subsequent analyses can be undertaken to discover microRNAs, predict small RNA targets, and generate hypotheses for further laboratory experiments.
Assuntos
Basidiomycota , MicroRNAs , Análise de Sequência de RNA , Sequência de Bases , Biblioteca Gênica , MicroRNAs/genética , Basidiomycota/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
Root lesion nematodes (RLN) of the genus Pratylenchus are causing significant damage in cereal production worldwide. Due to climate change and without efficient and environment-friendly treatments, the damages through RLNs are predicted to increase. Microscopic assessments of RLNs in the field and the greenhouses are time-consuming and laborious. As a result, cereal breeders have mostly ignored this pest. We present a method measuring RLN in infected cereal roots using a standardized PCR approach. Publicly available Pratylenchus neglectus primer combinations were evaluated. An optimal primer combination for RT-qPCR assay was identified to detect and quantify P. neglectus within infected cereal roots. Using the RT-qPCR detection assay, P. neglectus could be clearly distinguished from other plant parasitic nematodes. We could identify P. neglectus DNA in barley and wheat roots as low as 0.863 and 0.916 ng/µl of total DNA, respectively. A single P. neglectus individual was detected in water suspension and within barley and wheat roots. The RT-qPCR detection assay provides a robust and accurate alternative to microscopic nematode identification and quantification. It could be of interest for resistance breeding, where large populations must be screened to detect and quantify P. neglectus in farmer's fields.