Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0227201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31895939

RESUMO

The eastern Baltic cod (Gadus morhua) population has been decreasing in the Baltic Sea for at least 30 years. Condition indices of the Baltic cod have decreased, and previous studies have suggested that this might be due to overfishing, predation, lower dissolved oxygen or changes in salinity. However, numerous studies from the Baltic Sea have demonstrated an ongoing thiamine deficiency in several animal classes, both invertebrates and vertebrates. The thiamine status of the eastern Baltic cod was investigated to determine if thiamine deficiency might be a factor in ongoing population declines. Thiamine concentrations were determined by chemical analyses of thiamine, thiamine monophosphate and thiamine diphosphate (combined SumT) in the liver using high performance liquid chromatography. Biochemical analyses measured the activity of the thiamine diphosphate-dependent enzyme transketolase to determine the proportion of apoenzymes in both liver and brain tissue. These biochemical analyses showed that 77% of the cod were thiamine deficient in the liver, of which 13% had a severe thiamine deficiency (i.e. 25% transketolase enzymes lacked thiamine diphosphate). The brain tissue of 77% of the cod showed thiamine deficiency, of which 64% showed severe thiamine deficiency. The thiamine deficiency biomarkers were investigated to find correlations to different biological parameters, such as length, weight, otolith weight, age (annuli counting) and different organ weights. The results suggested that thiamine deficiency increased with age. The SumT concentration ranged between 2.4-24 nmol/g in the liver, where the specimens with heavier otoliths had lower values of SumT (P = 0.0031). Of the cod sampled, only 2% of the specimens had a Fulton's condition factor indicating a healthy specimen, and 49% had a condition factor below 0.8, indicating poor health status. These results, showing a severe thiamine deficiency in eastern Baltic cod from the only known area where spawning presently occurs for this species, are of grave concern.


Assuntos
Doenças dos Peixes/metabolismo , Gadus morhua/metabolismo , Deficiência de Tiamina/veterinária , Tiamina/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Fígado/metabolismo , Masculino , Tiamina/análise , Deficiência de Tiamina/metabolismo
2.
Microbiol Res ; 229: 126325, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563838

RESUMO

Edwardsiella bacteria cause economic losses to a variety of commercially important fish globally. Human infections are rare and result in a gastroenteritis-like illness. Because these bacteria are evolutionarily related to other Enterobacteriaceae and the host cytoskeleton is a common target of enterics, we hypothesized that Edwardsiella may cause similar phenotypes. Here we use HeLa and Caco-2 infection models to show that microtubules are severed during the late infections. This microtubule alteration phenotype was not dependant on the type III or type VI secretion system (T3SS and T6SS) of the bacteria as ΔT3SS and ΔT6SS mutants of E. piscicida EIB202 and E. tarda ATCC15947 that lacks both also caused microtubule disassembly. Immunolocalization experiments showed the host katanin catalytic subunits A1 and A like 1 proteins at regions of microtubule severing, suggesting their involvement in the microtubule disassembly events. To identify bacterial components involved in this phenotype, we screened a 2,758 transposon library of E. piscicida EIB202 and found that 4 single mutations in the atpFHAGDC operon disrupted microtubule disassembly in HeLa cells. We then constructed three atp deletion mutants; they all could not disassemble host microtubules. This work provides the first clear evidence of host cytoskeletal alterations during Edwardsiella infections.


Assuntos
Edwardsiella/fisiologia , Infecções por Enterobacteriaceae/veterinária , Células Epiteliais/metabolismo , Doenças dos Peixes/metabolismo , Microtúbulos/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CACO-2 , Edwardsiella/genética , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Células Epiteliais/microbiologia , Doenças dos Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Óperon , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
3.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501250

RESUMO

Intracellular bacterial infections affect all vertebrates. Cultured fish are particularly vulnerable because no effective protection measures have been established since such infections emerged approximately 50 years ago. As in other vertebrates, the induction of cell-mediated immunity (CMI) plays an important role in protecting fish against infection. However, details of the mechanism of CMI induction in fish have not been clarified. In the present study, we focused on the production of interleukin 12 (IL-12), an important factor in CMI induction in fish. Using several different approaches, we investigated IL-12 regulation in amberjack (Seriola dumerili), the species most vulnerable to intracellular bacterial disease. The results of promoter assays and transcription factor gene expression analyses showed that the expression of interferon regulatory factor-1 (IRF-1) and activator protein-1 (AP-1) is necessary for IL-12 production. Phagocytosis of living cells (LCs) of Nocardia seriolae bacteria induced IL-12 production in neutrophils, accompanied by IRF-1 and AP-1 gene expression. Bacteria in which the exported repetitive protein (Erp)-like gene was deleted (Δerp-L) could not establish intracellular parasitism or induce IRF-1 and AP-1 expression or IL-12 production, despite being phagocytosed by neutrophils. These data suggest that IL-12 production is regulated by (i) two transcription factors, IRF-1 and AP-1, (ii) phagocytosis of LCs by neutrophils, and (iii) one or more cell components of LCs. Our results enhance the understanding of the immune response to intracellular bacterial infections in vertebrates and could facilitate the discovery of new agents to prevent intracellular bacterial disease.


Assuntos
Doenças dos Peixes/microbiologia , Interleucina-12/metabolismo , Nocardiose/veterinária , Nocardia , Animais , Linhagem Celular , Doenças dos Peixes/metabolismo , Peixes , Regulação da Expressão Gênica/imunologia , Interleucina-12/genética , Leucócitos/metabolismo , Nocardiose/metabolismo , Nocardiose/microbiologia , Regiões Promotoras Genéticas
4.
Fish Shellfish Immunol ; 94: 548-557, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31539573

RESUMO

A 56-day growth trial was conducted to investigate the effects of dietary yeast hydrolysate on the growth performance, antioxidation, immune response and resistance against Aeromonas hydrophila in largemouth bass. Four experimental diets were prepared with yeast hydrolysate levels of 0% (Y0), 1.5% (Y1.5), 3.0% (Y3.0) and 4.5% (Y4.5). Each diet was randomly assigned to triplicate 150-L tanks and each tank was stocked with 30 largemouth bass (initial body weight, IBW = 7.71 ±â€¯0.02 g). A challenge test was carried out after the feeding trial by injecting A. hydrophila intraperitoneally for 4-day observation. The results showed that the FBW and WGR in Y1.5 group were significantly higher than those in Y0 group (P < 0.05) and the feed conversion ratio (FCR) got the lowest value in Y1.5 group. And the hydrolysate supplement significantly increased the 4-day cumulative survival rate after the bacterial challenge (P < 0.05). The plasma malondialdehyde was lower in the yeast hydrolysate supplement groups in both pre- and post-challenge test (P < 0.05), while the plasma C3 increased (P < 0.05). In post-challenge test, the plasma superoxide dismutase (SOD) and catalase (CAT) activities increased in the Y1.5 and Y3.0 groups respectively (P < 0.05), and plasma lysozyme in Y1.5 group and the plasma IgM in Y3.0 group were higher than those in others respectively (P < 0.05). For the q-PCR results, in post-challenge test, the hepatic hep2 expression level in Y1.5 and Y4.5 groups were both significantly higher than those in others (P < 0.05), as well as il-8 in Y3.0 group. The spleen hif-1alpha and tgf-beta1 expression levels in Y4.5 group were all significantly lower than those in others (P < 0.05), while the gilt was significantly higher (P < 0.05) in the post-challenge test. And the expression levels of spleen tnf-alpah1 in Y1.5 and Y3.0 groups and il-8 in Y3.0 group were all significantly higher than those in other groups (P < 0.05) in the post-challenge test. The head kidney gilt expression level was significantly higher in the yeast hydrolysate supplement groups compared with the Y0 group (P < 0.05), and the head kidney il-8 expression level in Y1.5 group was significant higher than those in other groups in post-challenge test (P < 0.05). The present results indicated dietary yeast hydrolysate improved the antioxidant ability and enhanced the immune response of largemouth bass without negative effect on growth. And 1.5% or 3.0% of dietary yeast hydrolysate was recommended for largemouth bass based on the present results.


Assuntos
Bass , Resistência à Doença/efeitos dos fármacos , Doenças dos Peixes/imunologia , Expressão Gênica/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Fermento Seco/metabolismo , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Bass/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Fermento Seco/administração & dosagem
5.
Artigo em Inglês | MEDLINE | ID: mdl-31454703

RESUMO

This research aimed to assess the influence of dietary addition of rutin on inflammation, apoptosis and antioxidative responses in muscle of silver catfish (Rhamdia quelen) challenged with Aeromonas hydrophila (A. hydrophila). Fish were split into four groups as follows: control, 0.15% rutin, A. hydrophila, 0.15% rutin + A. hydrophila. After 2 weeks of feeding with standard or rutin diets, fish were challenged or not with A. hydrophila for 1 week. Rutin-added diet abrogates A. hydrophila induced-hemorrhage and inflammatory infiltration. It decreases A. hydrophila induced-apoptosis through decreasing the ratio of Bax to Bcl-2 and increasing phospho-Akt to Akt ratio. It diminishes the A. hydrophila induced-rise in nitric oxide and superoxide anion levels and reestablishes superoxide dismutase activity as well. Although such diet is unable to recover the levels of reduced glutathione (GSH), cysteine and glutamate cysteine ligase, which are depleted as a result of A. hydrophila infection, it diminishes the oxidized glutathione (GSSG) content, thus decreasing GSSG to GSH ratio. It increases the levels of cysteine residues of proteins and diminishes those of thiol-protein mixed disulfides, which were changed after A. hydrophila challenge. Finally, it reduces A. hydrophila induced-lipid peroxidation, markedly elevates ascorbic acid and thus reestablishes total antioxidant capacity, whose levels were decreased after A. hydrophila challenge. In conclusion, the dietary addition of rutin at 0.15% impairs A. hydrophila-induced inflammatory response, inhibits A. hydrophila-induced apoptosis and promotes cell survival. It also reduces the A. hydrophila-induced oxidative stress and stimulates the antioxidative responses in muscle of A. hydrophila-infected silver catfish.


Assuntos
Peixes-Gato/imunologia , Doenças dos Peixes/metabolismo , Infecções por Bactérias Gram-Negativas , Músculos/metabolismo , Rutina/farmacologia , Aeromonas hydrophila , Ração Animal , Animais , Antioxidantes/farmacologia , Apoptose , Suplementos Nutricionais , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Estresse Oxidativo , Substâncias Protetoras/farmacologia
6.
J Fish Dis ; 42(9): 1283-1291, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31241770

RESUMO

Renibacterium salmoninarum is the aetiological agent of bacterial kidney disease (BKD) in salmonid farms. This pathogen possesses at least three iron-acquisition mechanisms, but the link between these mechanisms and virulence is unclear. Therefore, this study used RT-qPCR to assess the effects of normal and iron-limited conditions on iron-uptake genes controlled by IdeR and related to iron acquisition in Chilean R. salmoninarum strain H-2 and the type strain DSM20767T . Further evaluated was the in vitro immune-related response of the Atlantic Salmon Kidney (ASK) cell line, derived from the primary organ affected by BKD. R. salmoninarum grown under iron-limited conditions overexpressed genes involved in haemin uptake and siderophore transport, with overexpression significantly higher in H-2 than DSM20767T . These overexpressed genes resulted in higher cytotoxicity and an increased immune response (i.e., TNF-α, IL-1ß, TLR1 and INF-γ) in the ASK cell line. This response was significantly higher against bacteria grown under iron-limited conditions, especially H-2. These observations indicate that iron-acquisition mechanisms are possibly highly related to the virulence and pathogenic capacity of R. salmoninarum. In conclusion, treatments that block iron-uptake mechanisms or siderophore synthesis are attractive therapeutic approaches for treating R. salmoninarum, which causes significant aquaculture losses.


Assuntos
Infecções por Actinomycetales/veterinária , Doenças dos Peixes/imunologia , Ferro/metabolismo , Micrococcaceae/imunologia , Micrococcaceae/patogenicidade , Salmo salar , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/metabolismo , Infecções por Actinomycetales/microbiologia , Animais , Linhagem Celular , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Imunidade Inata , Micrococcaceae/metabolismo , Virulência
7.
Ecotoxicol Environ Saf ; 181: 353-361, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31207574

RESUMO

Fatty liver is widely observed during Takifugu fasciatus production, but the mechanisms underlying fatty liver formation remain unknown. The present study was conducted to determine the potential effects of copper (Cu) on hepatic lipid deposition and metabolism in T. fasciatus after 21 days of exposure to Cu (levels: 0, 20 and 100 µg/L). Copper exposure decreased the weight gain rate (WG) in T. fasciatus, but increased the values of the viscerosomatic index (VSI) and hepatosomatic index (HSI) compared with the control. The time-dependent Cu accumulation in tissues increased as the Cu concentration increased. The order of Cu accumulation was liver > intestine > muscle. The lipid content, triglyceride (TG) content and lipoprotein lipase (LPL) activity increased after Cu exposure compared with the control. In addition, more lipid droplets and greater vacuolization were observed in the liver after exposure to 20 µg/L Cu than after 100 µg/L Cu. The expression of genes involved in lipogenesis (g6pd, 6pgd, lpl, fas and acc), lipolysis (hsl and cpt 1) and transcription (ppar α and ppar ©) was dependent on Cu. An analysis of the intestinal microbiome community showed that the highest values of the Chao 1 index, ACE, Shannon index and Simpson index were obtained in fish exposed to 20 µg/L Cu, whereas the lowest values were obtained after the 100 µg/L Cu treatment. The Principal Coordinates Analysis (PCoA) plots of the data revealed structural differences in the groups treated with Cu compared with the control group. At the phylum level, the intestinal microbiota in the Cu-treated and control fish were dominated by Proteobacteria and Bacteroidetes. The higher Firmicutes to Bacteroidetes ratio was observed in fish treated with 20 µg/L Cu compared with other groups, while the lowest ratio was observed in fish exposed to 100 µg/L Cu. Our study revealed the mechanisms by which Cu exposure altered (i) lipid deposition in the body and (ii) the intestinal microbiome, which may contribute to maintain the health status of T. fasciatus for the aquaculture.


Assuntos
Cobre/toxicidade , Fígado Gorduroso/veterinária , Doenças dos Peixes/induzido quimicamente , Takifugu , Poluentes Químicos da Água/toxicidade , Animais , Cobre/farmacocinética , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Doenças dos Peixes/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/genética , Lipase Lipoproteica/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculos/metabolismo , Takifugu/crescimento & desenvolvimento , Takifugu/metabolismo , Triglicerídeos/metabolismo , Poluentes Químicos da Água/farmacocinética
8.
BMC Genomics ; 20(1): 432, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138127

RESUMO

BACKGROUND: Accompanied with rapid growth and high density aquaculture, gibel carp has been seriously threatened by Carassius auratus herpesvirus (CaHV) since 2012. In previous study, distinct CaHV resistances and immune responses were revealed in the diseased individuals of three gibel carp gynogenetic clones (A+, F and H). However, little is known about the gene expression changes in the survivors after CaHV challenge, particularly their differences of innate and adaptive immune system between susceptible clone and resistant clone. RESULTS: We firstly confirmed the CaHV carrier state in the survivors of three gibel carp clones after CaHV challenge by evaluating the abundances of five CaHV genes. The assay of viral loads indicated the resistant clone H possessed not only stronger resistance but also higher tolerance to CaHV. Then, 2818, 4047 and 3323 differentially expressed unigenes (DEUs) were screened from the head-kidney transcriptome profiles of survivors compared with controls from clone A+, F and H. GO and KEGG analysis suggested that a persistent immune response might sustain in resistant clone H and F, while susceptible clone A+ had a long-term impact on the circulatory system which was consistent with the major symptoms of bleeding caused by CaHV. Among the top 30 enriched pathways of specifically up-regulated DEUs in respective clones, 26, 7 and 15 pathways in clone H, F and A+ were associated with infections, diseases, or immune-related pathways respectively. In addition, 20 pathways in clone F belonged to "metabolism" or "biogenesis", and 7 pathways involved in "circulatory system" were enriched in clone A+. Significantly, we revealed the differential expression changes of IFN system genes and immunoglobulin (Ig) genes among the survivors of three clones. Finally, myosins and Igs were identified as co-expression modules which were positively or negatively correlated to CaHV viral loads respectively. CONCLUSIONS: Our results revealed the common and distinct gene expression changes in immune and circulatory system in the survivors of three gibel carp gynogenetic clones with different CaHV resistances. The current study represents a paradigm of differential innate and adaptive immune reactions in teleost, and will be beneficial to the disease-resistance breeding of gibel carp.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Imunidade Adaptativa/genética , Animais , Carpas/metabolismo , Carpas/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Genes de Imunoglobulinas , Herpesviridae , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Imunidade Inata/genética , Interferons/metabolismo , Miosinas/genética , Transdução de Sinais
9.
Food Funct ; 10(6): 3396-3409, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31112144

RESUMO

Fish is among the cheapest and most promising sources of animal protein. The main edible portion of fish is muscle. This study explored the impact of dietary riboflavin on fish flesh quality and showed the possible role of muscle antioxidant defense in flesh quality in relation to dietary riboflavin. On-growing grass carp (initial average weight of 275.82 ± 0.57 g) were fed diets containing graded levels of riboflavin (0.63, 1.95, 3.98, 6.02, 7.96, and 10.04 mg kg-1 diet) for eight weeks. The results indicated that compared with the optimal riboflavin levels (3.98 and/or 6.02 mg riboflavin per kg diet), riboflavin deficiency treatment (0.63 mg riboflavin per kg diet) significantly reduced the muscle nutrients, including the protein, lipid, flavor amino acid, and total essential amino acid contents. Furthermore, the muscle shear force, pH value, and hydroxyproline concentration were reduced, while the muscle cooking loss and lactic acid content increased (P < 0.05). Compared with optimal riboflavin levels, the riboflavin deficiency treatment increased the reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl contents, while riboflavin treatments of 3.98-10.04 mg riboflavin per kg diet showed the lowest ROS and MDA contents (P < 0.05). Compared with the optimal riboflavin levels, the riboflavin deficiency treatment decreased the activities of copper/zinc superoxide dismutase (CuZnSOD), glutathione reductase (GR), catalase (CAT), and glutathione peroxidase (GPx), and reduced the glutathione (GSH) content (P < 0.05). Furthermore, the relative mRNA levels of antioxidant enzymes, including CuZnSOD, CAT, GR and GPx, and antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2) and casein kinase 2, were down-regulated, while those of Kelch-like ECH-associated protein 1b were up-regulated (P < 0.05). Collectively, the present study indicates that riboflavin deficiency treatment reduces the flesh quality, partly due to inhibition of the antioxidant defense through the Nrf2 signaling pathway, while optimal riboflavin levels reverse these negative effects.


Assuntos
Carpas/crescimento & desenvolvimento , Doenças dos Peixes/tratamento farmacológico , Carne/análise , Deficiência de Riboflavina/veterinária , Riboflavina/administração & dosagem , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Carpas/metabolismo , Catalase/genética , Catalase/metabolismo , Suplementos Nutricionais/análise , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Doenças dos Peixes/fisiopatologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Controle de Qualidade , Riboflavina/análise , Deficiência de Riboflavina/tratamento farmacológico , Deficiência de Riboflavina/metabolismo , Deficiência de Riboflavina/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Vet Res ; 50(1): 32, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046823

RESUMO

Lactococcus garvieae is a significant pathogen in aquaculture with a potential zoonotic risk. To begin to characterize the late immune response of trout to lactococcosis, we selected infected individuals showing clinical signs of lactococcosis. At the time lactococcosis clinical signs appeared, infection by L. garvieae induced a robust inflammatory response in the spleen of rainbow trout, which correlated with abundant granulomatous lesions. The response in kidney goes in parallel with that of spleen, and most of the gene regulations are similar in both organs. A correlation existed between the early inflammatory granulomas in spleen (containing macrophages with internalized L. garvieae) and up-regulated gene sets, which defined the presence of macrophages and neutrophils. This is the first analysis of the immune transcriptome of rainbow trout following L. garvieae infection during the initiation of adaptive immune mechanisms and shows a transcriptome induction of antibody response by both IgM (+) and IgT (+) spleen B cells to respond to systemic infection. These results increase our understanding of lactococcosis and pave the way for future research to improve control measures of lactococcosis on fish farms.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Granuloma/veterinária , Rim/metabolismo , Lactococcus , Baço/metabolismo , Esplenopatias/veterinária , Truta/microbiologia , Animais , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Baço/patologia , Esplenopatias/metabolismo , Esplenopatias/microbiologia , Esplenopatias/patologia , Transcriptoma , Truta/metabolismo
11.
Dev Comp Immunol ; 98: 108-118, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31051196

RESUMO

TAK1-binding proteins (TABs) are important immune protein involved in various intracellular signalling pathways. Here, TAB1-3 (lcTAB1-3) were characterized from Larimichthys crocea. The predicted 1524 bp coding sequence of lcTAB1 encoded a 507-residue protein, while lcTAB2 (2271 bp) and lcTAB3 (1836 bp) encoded 756 and 611 residue proteins, respectively. Their sequence shared conserved domain structures and functional sites with their orthologs from other species. The expression of lcTAB1-3 were detected in all tested tissues, which were upregulated in spleen, liver and kidney following Vibrio parahemolyticus infection. Immunofluorescence staining revealed that lcTAB1 were localized in cytoplasm, while lcTAB2 and lcTAB3 were in the endsome. Moreover, the NF-κB protein level was obviously upregulated after the co-overexpression of lcTAK1 and lcTABs, higher than that after the overexpression of lcTAK1 or lcTABs alone. Co-immunoprecipitation proved the direct interaction of lcTAB1/lcTAB2/lcTAB3 and lcTAK1. These findings indicated the roles of lcTABs in immune response of Larimichthys crocea.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/imunologia , Vibrioses/imunologia , Vibrio parahaemolyticus/imunologia , Sequência de Aminoácidos , Animais , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Homologia de Sequência de Aminoácidos , Vibrioses/genética , Vibrioses/microbiologia , Vibrio parahaemolyticus/fisiologia
12.
Mol Omics ; 15(3): 233-246, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098608

RESUMO

The pathogenesis of tilapia meningoencephalitis is still unclear, where the involvement of circRNA is considered for its active role as a "miRNA sponge". Therefore, we aimed to investigate the profile of circRNA in tilapia meningoencephalitis further by constructing the circRNA-miRNA network for in-depth mechanism exploration. Briefly, a nile tilapia model of meningitis was established by injecting Streptococcus agalactiae (1.0 × 107 cfu per mL) and we evaluated the infected tilapia brain for the expression profile of circRNAs, their potential functions and their correlation with genes involved in inflammatory pathways. A total of 11 263 circRNAs were identified from RNA sequencing (RNA-seq) data in nile tilapia (Oreochromis niloticus), a commercially important fish in China and East Asia. GO and KEGG analyses revealed that the biological functions of genes hosting the circRNAs were enriched in the progression of metabolism and binding. Notably, we found that 99% circRNAs in tilapia had abundant miRNA-binding sites and a total of 2136 of the identified circRNAs had two to six miRNA-binding sites. Six circRNAs were validated by qRT-PCR and the final circRNA-miRNA network was constructed. This is the first report of comprehensive identification of O. niloticus circRNAs being differentially regulated in the brain in normal conditions relating to S. agalactiae infection. This work will shed novel light on gene expression mechanisms under disease conditions and may identify circRNAs as new biomarkers for meningoencephalitis and neurodegenerative disorders.


Assuntos
Ciclídeos/metabolismo , Doenças dos Peixes/metabolismo , Meningoencefalite/veterinária , MicroRNAs/metabolismo , Infecções Estreptocócicas/veterinária , Animais , Encéfalo/metabolismo , Ciclídeos/genética , Biologia Computacional , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Meningoencefalite/metabolismo , Meningoencefalite/microbiologia , MicroRNAs/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae
13.
Microb Pathog ; 131: 164-169, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30978428

RESUMO

Bacterial diseases are one of the major problems in freshwater fish culture and have been linked to significant losses and high mortality rate. In this study, Nile tilapia Oreochromis niloticus was infected by Providencia rettgeri to evaluate the oxidative stress and antioxidant responses in the fish tissues. Juvenile Nile tilapia was divided into two groups, as follow: control (uninfected) and experimentally infected with 100 µL of P. rettgeri suspension containing 2.4 × 107 viable cells/fish, and the liver and kidney tissues were collected on days 7 and 14 post-infection (PI). Liver and kidney ROS and lipid peroxidation levels were high in infected fish on day 14 PI compared to control group, while superoxide dismutase activity was lower in liver (days 7 and 14 PI) and kidney (day 14 PI) compared to their respective control groups. Liver and kidney antioxidant capacity against peroxyl radicals, non-proteic, and proteic thiols levels was lower in infected tilapia on day 14 PI compared to control group. Based on these results, P. rettgeri infection may elicit oxidative damage via increased ROS production, decreased ROS elimination and inhibits enzymatic and non-enzymatic antioxidant defense systems; which may contribute directly to disease pathophysiology of infected animals.


Assuntos
Antioxidantes/metabolismo , Ciclídeos/metabolismo , Doenças dos Peixes/metabolismo , Estresse Oxidativo , Providencia/patogenicidade , Animais , Brasil , Ciclídeos/imunologia , Ciclídeos/microbiologia , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Rim/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tilápia/microbiologia
14.
Virology ; 531: 269-279, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30974383

RESUMO

The study evaluated the effects of nucleoprotein viral and the infectious virus in SHK-1 cells. The results show a strong respiratory burst activation and the induction of p47phox, SOD, GLURED, and apoptotic genes. Additionally, the cells alter the profile of SUMOylated proteins by the effect of transfection and infection experiments. In silico analyses show a set of structural motifs in NP susceptible of post-translational modification by the SUMO protein. Interestingly, the inhibition of the NADPH oxidase complex blocked the production of reactive oxygen species and the high level of cellular ROS due to the nucleoprotein and the ISAv. At the same time, the blocking of the p38MAPK signaling pathway and the use of Aristotelia chilensis, decreased viral progeny production. These results suggest that the NP triggers a strong production of ROS and modifying the post-translational profile mediated by SUMO-2/3, a phenomenon that favors the production of new virions.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Isavirus/metabolismo , NADPH Oxidases/metabolismo , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/veterinária , Estresse Oxidativo , Proteínas Virais/metabolismo , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Interações Hospedeiro-Patógeno , Isavirus/genética , NADPH Oxidases/genética , Nucleoproteínas/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Salmão , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Proteínas Virais/genética , Vírion/genética , Vírion/metabolismo
15.
Zool Res ; 40(4): 337-342, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31033261

RESUMO

Hemorrhagic septicemia is an acute, highly fatal disease that affects goldfish (Carassius auratus). To gain a better understanding of related immune genes, the transcriptomes of the skin and head kidney of goldfish suffering hemorrhagic septicemia were sequenced, assembled, and characterized. Based on functional annotation, an extensive and diverse catalog of expressed genes were identified in both the skin and head kidney. As two different organs, pair-wise comparison identified 122/77 unigenes up/down-regulated (two-fold change with P<0.05) in the skin and head kidney. Most genes of the immune pathways were expressed and isolated in both skin and head kidney, including interferon (IFN) transcription factors 1-10 and Toll-like receptors (TLRs). Interferon regulatory factor 3 (IRF3), a key IFN transcription factor, was up-regulated at the transcriptional level by polyriboinosinic: polyribocytidylic acid (poly I:C) challenge and regulated the IFN response by increasing the activity of IFN-ß and IFN-stimulated response element (ISRE)-containing promoter. This study will benefit the identification and understanding of novel genes that play important roles in the immunological reactions of fish suffering from hemorrhagic septicemia.


Assuntos
Doenças dos Peixes/metabolismo , Carpa Dourada , Rim Cefálico/metabolismo , Septicemia Hemorrágica/veterinária , Pele/metabolismo , Transcriptoma , Animais , Doenças dos Peixes/induzido quimicamente , Septicemia Hemorrágica/induzido quimicamente , Septicemia Hemorrágica/metabolismo , Poli I-C/toxicidade
16.
Front Immunol ; 10: 160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886611

RESUMO

Rock bream iridovirus (RBIV) causes severe mass mortality in Korean rock bream (Oplegnathus fasciatus) populations. To date, immune defense mechanisms of rock bream against RBIV are unclear. While red blood cells (RBCs) are known to be involved in the immune response against viral infections, the participation of rock bream RBCs in the immune response against RBIV has not been studied yet. In this study, we examined induction of the immune response in rock bream RBCs after RBIV infection. Each fish was injected with RBIV, and virus copy number in RBCs gradually increased from 4 days post-infection (dpi), peaking at 10 dpi. A total of 318 proteins were significantly regulated in RBCs from RBIV-infected individuals, 183 proteins were upregulated and 135 proteins were downregulated. Differentially upregulated proteins included those involved in cellular amino acid metabolic processes, cellular detoxification, snRNP assembly, and the spliceosome. Remarkably, the MHC class I-related protein pathway was upregulated during RBIV infection. Simultaneously, the regulation of apoptosis-related proteins, including caspase-6 (CASP6), caspase-9 (CASP9), Fas cell surface death receptor (FAS), desmoplakin (DSP), and p21 (RAC1)-activated kinase 2 (PAK2) changed with RBIV infection. Interestingly, the expression of genes within the ISG15 antiviral mechanism-related pathway, including filamin B (FLNB), interferon regulatory factor 3 (IRF3), nucleoporin 35 (NUP35), tripartite motif-containing 25 (TRIM25), and karyopherin subunit alpha 3 (KPNA3) were downregulated in RBCs from RBIV-infected individuals. Overall, these findings contribute to the understanding of RBIV pathogenesis and host interaction.


Assuntos
Apresentação do Antígeno/imunologia , Apoptose , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Iridoviridae/fisiologia , Animais , Apoptose/imunologia , Biologia Computacional/métodos , Eritrócitos/imunologia , Doenças dos Peixes/metabolismo , Proteoma , Proteômica/métodos , Transdução de Sinais , Carga Viral
17.
Gene ; 701: 152-160, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30910556

RESUMO

Edwardsiella tarda belongs to the genera of Gram negative bacterium mainly associated with edwardsiellosis, the most commonly found infectious fish disease throughout the globe. E. tarda is also a widespread pathogen which cause infections such as cellulitis or gas gangrene and generalized infections in humans. To control the escalating infection of E. trada on various species, it is essential to decoded the mysterious mechanism behind the bacterial infection at transcript level. In this present study, we carry out a de novo E. tarda Whole transcriptome sequencing, isolated from infected fish intestine using SOLiD sequencing platform. RNA-Seq data analysis was performed using various bioinformatics pipelines. Protein-protein interaction study for pathway enrichment and gene ontology study were executed for further investigation. Assembly statistics for E. tarda dataset showed that the number of transcript contigs was 9657 out of which 6749 were GO annotated whereas 1528 were not assigned any GO terms. GO analysis showed that the expressed genes were enhanced with molecular function, cellular component and biological process. A KEGG enrichment study showed that pathway's that are directly linked with immune diseases like Rheumatoid arthritis (0.2%), Tuberculosis (0.3%) Endocytosis (0.6%) was considerably enriched. Protein-protein interaction study showed that most of the expressed proteins were involved in metabolic pathways, flagellar assembly, Propanoate metabolism, Microbial metabolism in diverse environments, Butanoate metabolism and Carbon. The present study provides novel E. tarda transcriptome sequence data, allowing us to identify biologically significant genes and their functional relationship with fish diseases, and will be useful in recognize the reliable therapeutic targets in near feature.


Assuntos
Proteínas de Bactérias , Cipriniformes/microbiologia , Edwardsiella tarda , Infecções por Enterobacteriaceae , Doenças dos Peixes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Edwardsiella tarda/genética , Edwardsiella tarda/isolamento & purificação , Edwardsiella tarda/metabolismo , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia
18.
Fish Physiol Biochem ; 45(3): 1203-1215, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30915615

RESUMO

In this study, we report the starvation effect and vibriosis infection on a tropical fish, the tiger grouper (Epinephelus fuscoguttatus). The tiger groupers were infected with Vibrio vulnificus for 21 days. Gas chromatography-mass spectrometry combined with multivariate analysis was used to assess the variation in metabolite profiles of E. fuscoguttatus. Metabolite productions in infected fishes were significantly influenced by fatty acid production. The Omega 9 (ω-9) was abundant under the challenged conditions compared to Omega 3 (ω-3) and Omega 6 (ω-6). A total of six fatty acids from the ω-9 group were detected in high concentration in the infected fishes compared to the control groupers. These metabolites are Oleic acid, Palmitoleic acid, 6,9-Octadecenoic acid, 8,11-Eicosadienoic acid, cis-Erucic acid and 5,8,11-Eicosatrienoic acid. The production of ω-9 differed significantly (p ≤ 0.001) in the challenged samples. The detected ω-9 compounds were quantified based on three different extraction techniques with Supelco 37-component FAME mix (Supelco, USA). The highest concentration of ω-9 groups compared to the other fatty acids detected is 1320.79 mg/4 g and the lowest is 939 mg/4 g in challenged-starved; meanwhile, in challenged-fed, the highest concentration detected is 1220.87 mg/4 g and the lowest is 917.25 mg/4 g. These changes demonstrate that ω-9 can be used as a biomarker of infection in fish.


Assuntos
Ácidos Graxos/metabolismo , Doenças dos Peixes/microbiologia , Perciformes , Vibrioses/veterinária , Animais , Biomarcadores , Doenças dos Peixes/metabolismo , Privação de Alimentos , Vibrioses/metabolismo , Vibrioses/microbiologia
19.
Dev Comp Immunol ; 97: 28-37, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30910418

RESUMO

The aim of this article is to investigate the mechanism of lipotoxicity induced by high-fat diets (HFD) in Megalobrama amblycephala. In the present study, fish (average initial weight 40.0 ±â€¯0.35 g) were fed with two fat levels (6% and 11%) diets with four replicates for 60 days. At the end of the feeding trial, fish were challenged by thioacetamide (TAA) and survival rate was recorded for the next 96 h. The result showed that long-term HFD feeding induced a significant increase (P < 0.05) in the levels of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) in plasma. In addition, liver histopathological analysis showed an increased dilation of the blood vessels, erythrocytes outside of the blood vessels and vacuolization in fish fed with high-fat diet. After TAA challenge, compared with group fed with normal-fat diets (NFD), fish fed with HFD showed a significantly (P < 0.05) low survival rate. After feeding Megalobrama amblycephala with HFD for 60 days, the protein content and gene expression of pro-inflammatory factors were significantly elevated (P < 0.05). The protein and gene relative expressions of a Caspase-3, Caspase-9 and CD68 were significantly increased (P < 0.05), while antioxidant-related enzyme activities were significantly reduced (P < 0.05) in the liver of fish fed with HFD. In addition, HFD feeding also induced genotoxicity. Comet assay showed a significantly (P < 0.05) elevated DNA damage in blunt snout bream fed with HFD. Compared with normal-fat diets (NFD) group, the protein expression of γH2AX and gene expressions involved in cell cycle arrest were significantly increased (P < 0.05) in fish fed with HFD. Data in this research showed that lipotoxicity induced by HFD was likely mediated by chronic inflammation regulating macrophage recruitment, apoptosis and DNA damage. The study was valuable to understand the mechanism by which liver injury is induced in fish fed with HFD.


Assuntos
Cyprinidae/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças dos Peixes/metabolismo , Inflamação/complicações , Hepatopatias/metabolismo , Fígado/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Doença Crônica , Cyprinidae/genética , Doenças dos Peixes/etiologia , Doenças dos Peixes/genética , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/genética , Tioacetamida/farmacologia
20.
PLoS One ; 14(3): e0213867, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30865702

RESUMO

Corn gluten meal (CGM) is an important alternative protein source in aquafeed production. However, in turbot (Scophthalmus maximus), CGM could not be effectively utilized because of its low digestibility, the reason for which is still unclear. The purpose of the present study was to investigate and elucidate the cause for the poor utilization of CGM by turbot from the view of gut health. An 8-week feeding trial was conducted with turbot individuals (initial body weight 11.4 ± 0.2 g), which were fed with one of four isonitrogenous and isolipidic diets formulated to include 0%, 21.2%, 31.8%, and 42.6% CGM to progressively replace 0%, 33%, 50%, and 67% fish meal (FM) protein in a FM-based diet, respectively. The results showed that CGM caused dose-dependent decreases in (1) growth performance, nutrient digestibility, and feed utilization; (2) activities of brush-border membrane enzymes; (3) intestinal antioxidant indices of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase activities, and reduced glutathione level; (4) intestinal immune parameters of acid phosphatase activity, complement 3, complement 4, and IgM concentrations. Dose-dependent increases in the severity of the inflammation, with concomitant alterations on microvilli structure and increasing expression of inflammatory cytokine genes of Il-1ß, Il-8, and Tnf-α were observed but without a change in the intracellular junctions and the epithelial permeability established by the plasma diamine oxidase activity and D-lactate level examinations. In conclusion, the present work proved that CGM negatively affected the gut health of turbot by inducing enteritis and by decreasing intestinal immunity and antioxidant capacity, which could be one of the reasons for the reduced utilization of CGM by turbot.


Assuntos
Antioxidantes/metabolismo , Enterite/etiologia , Doenças dos Peixes/etiologia , Glutens/toxicidade , Zea mays/metabolismo , Fosfatase Ácida/metabolismo , Ração Animal/análise , Animais , Antioxidantes/química , Dieta , Enterite/imunologia , Enterite/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Linguados , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA