Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.802
Filtrar
1.
Yakugaku Zasshi ; 140(10): 1259-1268, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32999205

RESUMO

RNA interference (RNAi) is the standard method of suppressing gene expression because of its target specificity, potency, and ability to silence the expression of virtually any gene. Using 21-mer small interfering RNA (siRNA) is the general approach for inducing RNAi, as siRNA can be easily prepared using a DNA/RNA synthesizer. Synthetic siRNA can be chemically modified to increase the potency of RNAi activity and abrogate innate immune stimulation. However, designing chemically modified siRNA requires substantial experimentation. A practical method for understanding the interaction of siRNA and RNAi-related proteins and how modifications affect RNA-protein interactions is therefore needed. Plasmid DNA (pDNA) expressing short hairpin RNA (shRNA) can also be used to induce RNAi. pDNA produces numerous shRNAs that induce RNAi with potent and longterm RNAi activity, even if only one pDNA molecule is delivered to the nucleus. However, this approach has some drawbacks with regard to its therapeutic application, such as a low pDNA transfection efficiency due to its huge molecular size and innate immune responses induced by extra genes, such as CpG motifs. To overcome these issues with RNAi inducers (siRNA and pDNA), our group developed some chemical approaches using chemically modified oligonucleotides. This article focuses on our two original approaches. The first involves the groove modification of siRNA duplexes to understand siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes, while the second involves the generation of RNAi medicine using chemically modified DNA, known as an intelligent shRNA expression device (iRed).


Assuntos
Desenvolvimento de Medicamentos/métodos , Interferência de RNA , RNA Interferente Pequeno/síntese química , DNA , Imunidade Inata , Oligonucleotídeos/química , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/química , Terapêutica com RNAi , Tubercidina/química
2.
Signal Transduct Target Ther ; 5(1): 220, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024075
3.
Molecules ; 25(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036293

RESUMO

A novel series of some hydrazones bearing thiazole moiety were generated via solvent-drop grinding of thiazole carbohydrazide 2 with various carbonyl compounds. Also, dehydrative-cyclocondensation of 2 with active methylene compounds or anhydrides gave the respective pyarzole or pyrazine derivatives. The structures of the newly synthesized compounds were established based on spectroscopic evidences and their alternative syntheses. Additionally, the anti-viral activity of all the products was tested against SARS-CoV-2 main protease (Mpro) using molecular docking combined with molecular dynamics simulation (MDS). The average binding affinities of the compounds 3a, 3b, and 3c (-8.1 ± 0.33 kcal/mol, -8.0 ± 0.35 kcal/mol, and -8.2 ± 0.21 kcal/mol, respectively) are better than that of the positive control Nelfinavir (-6.9 ± 0.51 kcal/mol). This shows the possibility of these three compounds to effectively bind to SARS-CoV-2 Mpro and hence, contradict the virus lifecycle.


Assuntos
Antivirais/síntese química , Betacoronavirus/enzimologia , Hidrazonas/síntese química , Inibidores de Proteases/síntese química , Pirazinas/síntese química , Pirazóis/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , Betacoronavirus/química , Betacoronavirus/efeitos dos fármacos , Sítios de Ligação , Infecções por Coronavirus/tratamento farmacológico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Descoberta de Drogas , Humanos , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pirazinas/farmacologia , Pirazóis/farmacologia , Termodinâmica , Interface Usuário-Computador , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
4.
Cell Mol Immunol ; 17(10): 1095-1097, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895485
5.
Cell Mol Immunol ; 17(10): 1098-1100, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939033
6.
mBio ; 11(5)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978311

RESUMO

The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.


Assuntos
Linfócitos B/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Imunoglobulina G/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Anticorpos Antivirais/imunologia , Linfócitos B/virologia , Convalescença , Reações Cruzadas , Feminino , Voluntários Saudáveis , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Glicoproteína da Espícula de Coronavírus/química
7.
Nat Commun ; 11(1): 4541, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917884

RESUMO

Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Internalização do Vírus , Células A549 , Betacoronavirus/metabolismo , Sítios de Ligação , Infecções por Coronavirus/metabolismo , Humanos , Modelos Moleculares , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química
8.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927621

RESUMO

Mass spectrometry and some other biophysical methods, have made substantial contributions to the studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human proteins interactions. The most interesting feature of SARS-CoV-2 seems to be the structure of its spike (S) protein and its interaction with the human cell receptor. Mass spectrometry of spike S protein revealed how the glycoforms are distributed across the S protein surface. X-ray crystallography and cryo-electron microscopy made huge impact on the studies on the S protein and ACE2 receptor protein interaction, by elucidating the three-dimensional structures of these proteins and their conformational changes. The findings of the most recent studies in the scope of SARS-CoV-2-Human protein-protein interactions are described here.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/epidemiologia , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/epidemiologia , Receptores Virais/química , Síndrome Respiratória Aguda Grave/epidemiologia , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Betacoronavirus/patogenicidade , Sítios de Ligação , Infecções por Coronavirus/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/genética , Receptores Virais/metabolismo , Vírus da SARS/química , Vírus da SARS/patogenicidade , Alinhamento de Sequência , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867349

RESUMO

Three types of new coronaviruses (CoVs) have been identified recently as the causative viruses for the severe pneumonia-like respiratory illnesses, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and corona-virus disease 2019 (COVID-19). Neither therapeutic agents nor vaccines have been developed to date, which is a major drawback in controlling the present global pandemic of COVID-19 caused by SARS coronavirus 2 (SARS-CoV-2) and has resulted in more than 20,439,814 cases and 744,385 deaths. Each of the 3C-like (3CL) proteases of the three CoVs is essential for the proliferation of the CoVs, and an inhibitor of the 3CL protease (3CLpro) is thought to be an ideal therapeutic agent against SARS, MERS, or COVID-19. Among these, SARS-CoV is the first corona-virus isolated and has been studied in detail since the first pandemic in 2003. This article briefly reviews a series of studies on SARS-CoV, focusing on the development of inhibitors for the SARS-CoV 3CLpro based on molecular interactions with the 3CL protease. Our recent approach, based on the structure-based rational design of a novel scaffold for SARS-CoV 3CLpro inhibitor, is also included. The achievements summarized in this short review would be useful for the design of a variety of novel inhibitors for corona-viruses, including SARS-CoV-2.


Assuntos
Antivirais/química , Betacoronavirus/química , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Inibidores de Proteases/química , Vírus da SARS/patogenicidade , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/classificação , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/classificação , Inibidores de Proteases/uso terapêutico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Vírus da SARS/genética , Vírus da SARS/metabolismo , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Especificidade por Substrato , Termodinâmica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
10.
Molecules ; 25(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872217

RESUMO

A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December 2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than 19.7 million cases have been reported globally and about 728,000 have died as of this writing (10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme is responsible not only for viral reproduction but also impedes host immune responses. The Mpro provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently, no specific therapies are available, and investigations into the treatment of COVID-19 are lacking. Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography-mass spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules, with three of them exerting biological activity and warranting further optimization and drug development to combat COVID-19.


Assuntos
Antivirais/química , Betacoronavirus/química , Compostos Fitoquímicos/química , Inibidores de Proteases/química , Tinospora/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/classificação , Antivirais/isolamento & purificação , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Descoberta de Drogas , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Humanos , Cinética , Simulação de Acoplamento Molecular , Pandemias , Compostos Fitoquímicos/classificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/classificação , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Especificidade por Substrato , Termodinâmica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
11.
Nat Commun ; 11(1): 4855, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978390

RESUMO

The atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43). Cx43 and ACKR3 are co-expressed in mouse brain astrocytes and human glioblastoma cells and form a complex in embryonic mouse brain. Functional in vitro studies show enhanced ACKR3 interaction with Cx43 upon ACKR3 agonist stimulation. Furthermore, ACKR3 activation promotes ß-arrestin2- and dynamin-dependent Cx43 internalization to inhibit gap junctional intercellular communication in primary astrocytes. These results demonstrate a functional link between ACKR3 and gap junctions that might be of pathophysiological relevance.


Assuntos
Astrócitos/metabolismo , Comunicação Celular/fisiologia , Conexina 43/metabolismo , Junções Comunicantes/patologia , Receptores CXCR/metabolismo , Animais , Proliferação de Células , Conexina 43/efeitos dos fármacos , Conexinas/metabolismo , Técnicas de Introdução de Genes , Glioblastoma/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Domínios e Motivos de Interação entre Proteínas , Receptores CXCR/agonistas , Receptores CXCR/genética , Transdução de Sinais/fisiologia
12.
PLoS Biol ; 18(9): e3000821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886672

RESUMO

As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.


Assuntos
Anticorpos/química , Dissulfetos/isolamento & purificação , Domínios de Imunoglobulina , Fragmentos de Peptídeos/isolamento & purificação , Domínios e Motivos de Interação entre Proteínas , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos , Formação de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Linfócitos B/fisiologia , Bovinos , Complemento C5/química , Complemento C5/genética , Complemento C5/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Dissulfetos/química , Dissulfetos/imunologia , Mapeamento de Epitopos/métodos , Humanos , Imunização , Domínios de Imunoglobulina/genética , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Domínios e Motivos de Interação entre Proteínas/genética
13.
PLoS Biol ; 18(9): e3000848, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898131

RESUMO

Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Miocárdio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Sarcômeros/metabolismo
14.
Nat Commun ; 11(1): 4268, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848159

RESUMO

Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton's Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acrilamidas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Linhagem Celular , Sobrevivência Celular , Corantes Fluorescentes , Meia-Vida , Humanos , Espaço Intracelular/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutação , Fenômenos de Química Orgânica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise
15.
Nat Commun ; 11(1): 4303, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855401

RESUMO

The novel highly transmissible human coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Thus far, there is no approved therapeutic drug specifically targeting this emerging virus. Here we report the isolation and characterization of a panel of human neutralizing monoclonal antibodies targeting the SARS-CoV-2 receptor binding domain (RBD). These antibodies were selected from a phage display library constructed using peripheral circulatory lymphocytes collected from patients at the acute phase of the disease. These neutralizing antibodies are shown to recognize distinct epitopes on the viral spike RBD. A subset of the antibodies exert their inhibitory activity by abrogating binding of the RBD to the human ACE2 receptor. The human monoclonal antibodies described here represent a promising basis for the design of efficient combined post-exposure therapy for SARS-CoV-2 infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Betacoronavirus/metabolismo , Chlorocebus aethiops , Mapeamento de Epitopos , Epitopos , Humanos , Biblioteca de Peptídeos , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
16.
Nat Commun ; 11(1): 4187, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826901

RESUMO

EHBP1 is an adaptor protein that regulates vesicular trafficking by recruiting Rab8 family members and Eps15-homology domain-containing proteins 1/2 (EHD1/2). It also links endosomes to the actin cytoskeleton. However, the underlying molecular mechanism of activation of EHBP1 actin-binding activity is unclear. Here, we show that both termini of EHBP1 have membrane targeting potential. EHBP1 associates with PI(3)P, PI(5)P, and phosphatidylserine via its N-terminal C2 domain. We show that in the absence of Rab8 family members, the C-terminal bivalent Mical/EHBP Rab binding (bMERB) domain forms an intramolecular complex with its central calponin homology (CH) domain and auto-inhibits actin binding. Rab8 binding to the bMERB domain relieves this inhibition. We have analyzed the CH:bMERB auto-inhibited complex and the active bMERB:Rab8 complex biochemically and structurally. Together with structure-based mutational studies, this explains how binding of Rab8 frees the CH domain and allows it to interact with the actin cytoskeleton, leading to membrane tubulation.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Proteínas dos Microfilamentos/genética , Modelos Moleculares , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico/fisiologia , Alinhamento de Sequência , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/genética
17.
Nat Commun ; 11(1): 4196, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826907

RESUMO

Cells utilise specialized polymerases from the Primase-Polymerase (Prim-Pol) superfamily to maintain genome stability. Prim-Pol's function in genome maintenance pathways including replication, repair and damage tolerance. Mycobacteria contain multiple Prim-Pols required for lesion repair, including Prim-PolC that performs short gap repair synthesis during excision repair. To understand the molecular basis of Prim-PolC's gap recognition and synthesis activities, we elucidated crystal structures of pre- and post-catalytic complexes bound to gapped DNA substrates. These intermediates explain its binding preference for short gaps and reveal a distinctive modus operandi called Synthesis-dependent Template Displacement (STD). This mechanism enables Prim-PolC to couple primer extension with template base dislocation, ensuring that the unpaired templating bases in the gap are ushered into the active site in an ordered manner. Insights provided by these structures establishes the molecular basis of Prim-PolC's gap recognition and extension activities, while also illuminating the mechanisms of primer extension utilised by closely related Prim-Pols.


Assuntos
Proteínas de Bactérias/química , DNA Primase/química , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA/química , Mycobacterium/genética , Mycobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
18.
Nat Commun ; 11(1): 4198, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826914

RESUMO

COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity, or as a therapeutic, has yet been developed to SARS-CoV-2. In this study, we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks ACE2 receptor binding, by overlapping the ACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in 293 cells expressing ACE2. When converted to secretory IgA, MAb326 also neutralizes authentic SARS-CoV-2 virus while the IgG isotype shows no neutralization. Our results suggest that SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Imunoglobulina A/imunologia , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Chlorocebus aethiops , Reações Cruzadas , Epitopos , Células HEK293 , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora/imunologia , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Vírus da SARS/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
19.
J Transl Med ; 18(1): 321, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831104

RESUMO

BACKGROUND: The outbreak of coronavirus disease (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through its surface spike glycoprotein (S-protein) recognition on the receptor Angiotensin-converting enzyme 2 (ACE2) in humans. However, it remains unclear how genetic variations in ACE2 may affect its function and structure, and consequently alter the recognition by SARS-CoV-2. METHODS: We have systemically characterized missense variants in the gene ACE2 using data from the Genome Aggregation Database (gnomAD; N = 141,456). To investigate the putative deleterious role of missense variants, six existing functional prediction tools were applied to evaluate their impact. We further analyzed the structural flexibility of ACE2 and its protein-protein interface with the S-protein of SARS-CoV-2 using our developed Legion Interfaces Analysis (LiAn) program. RESULTS: Here, we characterized a total of 12 ACE2 putative deleterious missense variants. Of those 12 variants, we further showed that p.His378Arg could directly weaken the binding of catalytic metal atom to decrease ACE2 activity and p.Ser19Pro could distort the most important helix to the S-protein. Another seven missense variants may affect secondary structures (i.e. p.Gly211Arg; p.Asp206Gly; p.Arg219Cys; p.Arg219His, p.Lys341Arg, p.Ile468Val, and p.Ser547Cys), whereas p.Ile468Val with AF = 0.01 is only present in Asian. CONCLUSIONS: We provide strong evidence of putative deleterious missense variants in ACE2 that are present in specific populations, which could disrupt the function and structure of ACE2. These findings provide novel insight into the genetic variation in ACE2 which may affect the SARS-CoV-2 recognition and infection, and COVID-19 susceptibility and treatment.


Assuntos
Betacoronavirus/fisiologia , Mutação de Sentido Incorreto , Peptidil Dipeptidase A/genética , Domínios e Motivos de Interação entre Proteínas/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Substituição de Aminoácidos , Betacoronavirus/metabolismo , Sítios de Ligação/genética , Infecções por Coronavirus/etnologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Predisposição Genética para Doença/etnologia , Variação Genética , Geografia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/etnologia , Pneumonia Viral/genética , Pneumonia Viral/virologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Secundária de Proteína/genética , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
20.
Biochem Biophys Res Commun ; 532(1): 134-138, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32829876

RESUMO

SARS-CoV-2 is the etiologic agent of COVID-19. There is currently no effective means of preventing infections by SARS-CoV-2, except through restriction of population movement and contact. An understanding of the origin, evolution and biochemistry (molecular biology) of SARS-CoV-2 is a prerequisite to its control. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein isolated from various populations and locations, are described. Mutations occurred in the phosphorylation sites, all located within a stretch which forms a phosphorylation dependent interaction site, including C-TAK1 phosphorylation sites for 14-3-3. The consequences of these mutations are discussed and a structure-based model for the role of protein 14-3-3 in the sequestration and inhibition of SARS-CoV-2 nucleocapsid protein's function is presented. It is proposed that the phosphorylation of SARS-CoV-2 nucleocapsid protein and its sequestration by Protein 14-3-3 is a cellular response mechanism for the control and inhibition of the replication, transcription and packaging of the SARS-CoV-2 genome.


Assuntos
Proteínas 14-3-3/química , Betacoronavirus/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Proteínas do Nucleocapsídeo/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , Sítios de Ligação , Infecções por Coronavirus/virologia , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Mutação , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Pandemias , Fosforilação , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA