Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.589
Filtrar
1.
Nat Commun ; 11(1): 4958, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009395

RESUMO

Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Regulação para Baixo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Transtornos Parkinsonianos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Astrócitos/metabolismo , Membrana Celular/metabolismo , Modelos Animais de Doenças , Glutamato Descarboxilase/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Núcleo Accumbens/metabolismo
2.
Rinsho Shinkeigaku ; 60(10): 712-715, 2020 Oct 24.
Artigo em Japonês | MEDLINE | ID: mdl-32893243

RESUMO

A 50-year-old woman developed gait disturbances and dysarthria since the past 2 years. She also presented with dystonia and hypokinesia of her left lower limb, and orthostatic hypotension. The dopamine transporter SPECT with 123I ioflupane showed abnormal scans in bilateral striatum. Cerebral MRI revealed atrophy and signal changes in the medulla and spinal cord, from which Alexander disease (AxD) was suspected. Consequently, we checked the Glial fibrillary acidic protein (GFAP) gene. The analysis of the gene detected a heterozygous c.219G>T mutation, which was the first mutation reported in Japan, and finally she was diagnosed with AxD. Dystonia is relatively rare in AxD patients, but this case demonstrated that AxD should be listed in the differential diagnosis of extrapyramidal syndromes with abnormalities of the medulla and spinal cord on MRI.


Assuntos
Doença de Alexander/diagnóstico , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina/metabolismo , Distonia/etiologia , Extremidade Inferior , Tomografia Computadorizada de Emissão de Fóton Único , Doença de Alexander/complicações , Doença de Alexander/diagnóstico por imagem , Doença de Alexander/metabolismo , Diagnóstico Diferencial , Distonia/diagnóstico por imagem , Feminino , Proteína Glial Fibrilar Ácida/genética , Humanos , Imagem por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Mutação
3.
Mol Pharmacol ; 98(5): 548-558, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913138

RESUMO

The prototypical member of the receptor-inactivating kappa opioid receptor (KOR) antagonists, norbinaltorphimine (norBNI), produces prolonged receptor inactivation by a cJun kinase mechanism. These antagonists have potential therapeutic utility in the treatment of stress disorders; however, additional preclinical characterization is necessary to understand important aspects of their action. In this study, we report that norBNI does not work as effectively in female mice as in males because of estrogen regulation of G protein receptor kinase (GRK); pretreatment of ovary-intact female mice with the selective GRK2/3 inhibitor, Compound 101, made females equally sensitive to norBNI as males. Prior observations suggested that in vivo treatment with norBNI does not produce long-lasting inhibition of KOR regulation of dopamine release in the nucleus accumbens. We assessed the persistence of norBNI receptor inactivation in subcellular compartments. Fast-scan cyclic voltammetry recordings confirmed that presynaptic inhibition of dopamine release by the KOR agonist U69,593 was not blocked by in vivo pretreatment with norBNI under conditions that prevented KOR-mediated aversion and analgesia. We employed a novel in vivo proxy sensor of KOR activation, adenovirus associated double floxed inverted-HyPerRed, and demonstrated that KOR activation stimulates cJun kinase-dependent reactive oxygen species (ROS) production in somatic regions of ventral tegmental area dopamine neurons, but did not activate ROS production in dopamine terminals. The compartment selective action helps explain how dopamine somatic, but not terminally expressed, KORs are inactivated by norBNI. These results further elucidate molecular signaling mechanisms mediating receptor-inactivating KOR antagonist action and advance medication development for this novel class of stress-resilience medications. SIGNIFICANCE STATEMENT: Kappa opioid receptor (KOR) antagonists are being developed as novel proresilience therapeutics for the treatment of mood and substance use disorders. This study showed that the long-acting KOR antagonists are affected by both the sex of the animal and the subcellular compartment in which the receptor is expressed.


Assuntos
Antagonistas de Entorpecentes/farmacologia , Receptores Opioides kappa/metabolismo , Analgésicos Opioides/farmacologia , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Nat Commun ; 11(1): 4448, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895370

RESUMO

Substance abuse disorders are linked to alteration of circadian rhythms, although the molecular and neuronal pathways implicated have not been fully elucidated. Addictive drugs, such as cocaine, induce a rapid increase of dopamine levels in the brain. Here, we show that acute administration of cocaine triggers reprogramming in circadian gene expression in the striatum, an area involved in psychomotor and rewarding effects of drugs. This process involves the activation of peroxisome protein activator receptor gamma (PPARγ), a nuclear receptor involved in inflammatory responses. PPARγ reprogramming is altered in mice with cell-specific ablation of the dopamine D2 receptor (D2R) in the striatal medium spiny neurons (MSNs) (iMSN-D2RKO). Administration of a specific PPARγ agonist in iMSN-D2RKO mice elicits substantial rescue of cocaine-dependent control of circadian genes. These findings have potential implications for development of strategies to treat substance abuse disorders.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/efeitos adversos , Núcleo Accumbens/efeitos dos fármacos , PPAR gama/metabolismo , Receptores de Dopamina D2/metabolismo , Administração Oral , Animais , Relógios Circadianos/fisiologia , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dopamina/metabolismo , Injeções Intraperitoneais , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/fisiopatologia , PPAR gama/agonistas , Pioglitazona/administração & dosagem , Receptores de Dopamina D2/genética , Recompensa , Transdução de Sinais
5.
Ecotoxicol Environ Saf ; 203: 111014, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888589

RESUMO

Tributyltin (TBT), a widely and persistently distributed organontin, has been well documented to disrupt reproduction and behaviors in animals due to its anti-aromatase activity. TBT has been also reported to enhance anxiety in several fish species, whereas the mechanism underlying remains largely unknown. To investigate the disruption of TBT on fish anxiety and the mechanisms possibly involved, adult male zebrafish (Danio rerio) were treated with TBT (100 and 500 ng/L) for 28 days and anxiety behavior was further investigated using a novel tank dive test. Result showed that TBT treatment significantly enhanced the total time of the fish spent in the lower half, delayed the onset time to the higher half of the tank and increased the total duration of freezing of the fish, indicating an enhanced anxiety in TBT-treated fish. Accordingly, TBT sharply elevated the cortisol levels in plasma in a concentration-dependent manner, suggesting that the elevated cortisol level might be involved in the enhanced anxiety. Although the expression of crha was significantly increased and crhbp was significantly decreased in the brain of TBT-treated fish which is consistent to the elevated cortisol level, the expressions of actha and acthb were sharply down-regulated. In contrast, the expressions of genes responsible for the synthesis and action of serotonin (5-HT) (pet1, thp2 and htr1aa), dopamine (DA) (th1, slc6a3, drd2a and drd2b) and gamma-aminobutyric acid (GABA) (gad2 and gabrg2) were all significantly inhibited. The down-regulation of these pivotal genes acting in 5-HT, DA and GABA neurotransmitter systems in response to TBT corresponded well with the TBT-enhanced anxiety in fish. It was thus strongly suggested that these neurotransmitters might be also involved in TBT-enhanced anxiety in adult male zebrafish. The present study extended our understanding of the neurotoxicity of TBT on the anxiety control and behavioral modulation in fish.


Assuntos
Ansiedade/induzido quimicamente , Hidrocortisona/metabolismo , Neurotransmissores/metabolismo , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Dopamina/metabolismo , Masculino , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Gene ; 763: 145115, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32891773

RESUMO

Dopamine (DA) is a crucial neuroendocrine-immune factor regulating the stress response of Litopenaeus vannamei. To understand the regulatory mechanisms of DA in L. vannamei, the eyestalks of L. vannamei with injection of DA (10-6 mol/shrimp) at 3 and 12 h were chosen to perform transcriptome analysis in this study. Furthermore, quantitative real-time PCR (RT-PCR) method was used to validate the accuracy of transcriptome data and analyze the expression pattern of candidate differentially expressed genes (DEGs) at different time points (0, 3, 6, and 12 h) after DA injection. The transcriptome data showed that 79,434 unigenes were generated. Therein 204 and 434 DEGs were obtained at 3 and 12 h respectively. Besides, the results of enriched pathways showed that the DEGs were involved in GnRH signaling pathway (ko04912) dopaminergic synapse (ko04728), glutamatergic synapse (ko04724), synapse (GO:0045202), synaptic vesicle transport (GO:0048489). Moreover, the Pearson's correlation coefficient (R) of 13 candidate DEGs between transcriptome sequencing and RT-PCR was 0.948, which confirmed the reliability and the accuracy of the transcriptome sequencing results. Furthermore, the results of interaction analysis uncovered 4 pairs of DEGs between eyestalks and hemocytes. Therefore, these results revealed that DA promoted the sensitivity of eyestalk to gonadal related hormones, induced the expression of neuroendocrine factor, enhanced the synaptic behavior and neural signal transduction, regulated immune systems and antioxidation, inhibited the visual function, and promoted the molting. These findings will benefit to foster the understanding on the effects of biogenic amines on neuroendocrine-immune (NEI) networks of crustacean, and supply a substantial material and foundation for further researching of the NEI response.


Assuntos
Dopamina/metabolismo , Hormônios/metabolismo , Penaeidae/genética , Transmissão Sináptica , Transcriptoma , Animais , Dopamina/farmacologia , Olho/metabolismo , Hemócitos/metabolismo , Penaeidae/efeitos dos fármacos , Penaeidae/metabolismo , Pró-Proteína Convertase 2/genética , Pró-Proteína Convertase 2/metabolismo , Estresse Fisiológico
7.
Subst Use Misuse ; 55(14): 2438-2442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32957797

RESUMO

BACKGROUND: The overwhelming fatalities of the global COVID-19 Pandemic will have daunting epigenetic sequala that can translate into an array of mental health issues, including panic, phobia, health anxiety, sleep disturbances to dissociative like symptoms including suicide. Method: We searched PUBMED for articles listed using the search terms "COVID 19 Pandemic", COVID19 and genes," "stress and COVID 19", Stress and Social distancing: Results: Long-term social distancing may be neurologically harmful, the consequence of epigenetic insults to the gene encoding the primary receptor for SARS-CoV2, and COVID 19. The gene is Angiotensin I Converting-Enzyme 2 (ACE2). According to the multi-experiment matrix (MEM), the gene exhibiting the most statistically significant co-expression link to ACE2 is Dopa Decarboxylase (DDC). DDC is a crucial enzyme that participates in the synthesis of both dopamine and serotonin. SARS-CoV2-induced downregulation of ACE2 expression might reduce dopamine and serotonin synthesis, causing hypodopaminergia. Discussion: Indeed, added to the known reduced dopamine function during periods of stress, including social distancing the consequence being both genetic and epigenetic vulnerability to all Reward Deficiency Syndrome (RDS) addictive behaviors. Stress seen in PTSD can generate downstream alterations in immune functions by reducing methylation levels of immune-related genes. Conclusion: Mitigation of these effects by identifying subjects at risk and promoting dopaminergic homeostasis to help regulate stress-relative hypodopaminergia, attenuate fears, and prevent subsequent unwanted drug and non-drug RDS type addictive behaviors seems prudent.


Assuntos
Comportamento Aditivo/genética , Infecções por Coronavirus/metabolismo , Dopamina/metabolismo , Pneumonia Viral/metabolismo , Ansiedade/genética , Ansiedade/metabolismo , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Betacoronavirus , Infecções por Coronavirus/psicologia , Dopa Descarboxilase/genética , Dopa Descarboxilase/metabolismo , Regulação para Baixo , Epigênese Genética , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/psicologia , Recompensa , Distância Social , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/psicologia , Suicídio , Síndrome
8.
Life Sci ; 259: 118259, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795538

RESUMO

AIMS: Parkinson's disease (PD) is a neurological disorder caused by environmental and genetic factors, characterized by the death of dopaminergic neurons of the substantia nigra pars compacta (SNpc), leading to a decrease of dopamine in the striatum. In addition to motor symptoms, PD has several abnormalities, among which are cardiovascular changes, such as orthostatic and postprandial hypotension, and blood pressure lability. Studies demonstrate gender differences in PD pathogenesis, indicating that female hormones have a protective role against disease development. However, no studies examining cardiovascular changes in a female rat model of parkinsonism exist. MAIN METHODS: Wistar female rats were subjected to ovariectomy (OVX) or sham surgery. After seven days, these animals were subjected to bilateral infusion of 6-hydroxydopamine (6-OHDA) or vehicle solution in their SNpc. On the 14th experimental day, a femoral artery catheterization was performed to record cardiovascular parameters after 24 h in conscious state. Analyses of cardiovascular variability and spontaneous baroreflex were performed. The nitrite (NO) concentration in the heart, thoracic aorta, abdominal aorta, and plasma was measured. KEY FINDINGS: The sham-6-OHDA group had no decrease in the mean arterial pressure compared to sham-saline group, whereas the OVX-6-OHDA group presented a baseline decrease in comparison to sham-6-OHDA. The OVX-6-OHDA group showed an NO increase in the heart and abdominal aorta, whereas the sham-6-OHDA group did not. The very low frequency variability component decreased in the sham-6-OHDA but not in the OVX-6-OHDA group. SIGNIFICANCE: We suggest a cardiovascular protection by ovarian hormones in PD with a possible NO involvement.


Assuntos
Sistema Cardiovascular/fisiopatologia , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Pressão Sanguínea , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Frequência Cardíaca , Neostriado/fisiopatologia , Óxido Nítrico/análise , Oxidopamina/efeitos adversos , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Substância Negra/fisiopatologia
9.
J Chromatogr A ; 1627: 461403, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823108

RESUMO

Dopamine is a catecholamine neurotransmitter that degrades rapidly in aqueous solutions; hence, its analysis following brain microdialysis is challenging. The aim of the current study was to develop and validate a new microdialysis coupled LC-MS/MS system with improved accuracy, precision, simplicity and turnaround time for dopamine, serotonin, methamphetamine, amphetamine, 4-hydroxymethamphetamine and 4-hydroxyamphetamine analysis in the brain. Dopamine degradation was studied with different stabilizing agents under different storage conditions. The modified microdialysis system was tested in vitro, and was optimized for best probe recovery, assessed by %gain. LC-MS/MS assay was developed and validated for the targeted compounds. Stabilizing agents (ascorbic acid, EDTA and acetic acid) as well as internal and cold standards were added on-line to the dialysate flow. Assay linearity range was 0.01-100 ng/mL, precision and accuracy passed criteria, and LOQ and LLOQ were 0.2 and 1.0 pg, respectively. The new microdialysis coupled LC-MS/MS system was used in Wistar rats striatum after 4 mg/kg subcutaneous methamphetamine. Methamphetamine rapidly distributed to rat striatum reaching an average ~200 ng/mL maximum, ~82.5 min post-dose. Amphetamine, followed by 4-hydroxymethamphetamine, was the most abundant metabolite. Dopamine was released following methamphetamine injection, while serotonin was not altered. In conclusion, we proposed and tested an innovative and simplified solution to improve stability, accuracy and turnover time to monitor unstable molecules, such as dopamine, by microdialysis.


Assuntos
Encéfalo/metabolismo , Dopamina/análise , Metanfetamina/análise , Serotonina/análise , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida de Alta Pressão , Dopamina/isolamento & purificação , Dopamina/metabolismo , Meia-Vida , Masculino , Metanfetamina/isolamento & purificação , Metanfetamina/metabolismo , Microdiálise , Ratos , Ratos Wistar , Serotonina/isolamento & purificação , Serotonina/metabolismo
10.
BMC Med Genet ; 21(1): 157, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736537

RESUMO

BACKGROUND: Heroin dependence is a complex disease with multiple phenotypes. Classification of heroin users into more homogeneous subgroups on the basis of these phenotypes could help to identify the involved genetic factors and precise treatments. This study aimed to identify the association between genetic polymorphisms of DA synthesis and metabolism genes, including tyrosine hydroxylase (TH), DOPA decarboxylase (DDC), solute carrier family 6 member 3 (SLC6A3) and DA beta-hydroxylase (DBH), with six important phenotypes of heroin dependence. METHODS: A total of 801 heroin dependent patients were recruited and fourteen potential functional single nucleotide polymorphisms (SNPs) were genotyped by SNaPshot. Associations between SNPs with six phenotypes were mainly assessed by binary logistic regression. Generalized multifactor dimensionality reduction was used to analyze the gene-by-gene and gene-by-environment interactions. RESULTS: We found that DBH rs1611114 TT genotype had a protective effect on memory impairment after heroin dependence (P = 0.002, OR = 0.610). We also found that the income-rs12666409-rs129915-rs1611114 interaction yielded the highest testing balance accuracy and cross-validation consistency for memory change after heroin dependence. CONCLUSIONS: Our results suggest that the memory change after heroin dependence was a result of a combination of genetics and environment. This finding could lead to a better understanding of heroin dependence and further improve personalized treatment.


Assuntos
Dopamina/biossíntese , Dopamina/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Dependência de Heroína/genética , Adulto , Euforia , Feminino , Interação Gene-Ambiente , Heroína/efeitos adversos , Dependência de Heroína/fisiopatologia , Humanos , Masculino , Memória , Metadona/efeitos adversos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
11.
Yakugaku Zasshi ; 140(8): 979-983, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32741871

RESUMO

Monoamine neurotransmitters are released by specialized neurons that regulate behavioral and cognitive functions. Although localization of monoaminergic neurons in the brain is well known, the distribution, concentration, and kinetics of monoamines remain unclear. We used mass spectrometry imaging (MSI) for simultaneous and quantitative imaging of endogenous monoamines to generate a murine brain atlas of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels. We observed several nuclei rich in both 5-HT and a catecholamine (DA or NE). Additionally, we analyzed de novo monoamine synthesis or fluctuations in those nuclei. We propose that MSI is a useful tool to gain deeper understanding of associations among the localization, levels, and turnover of monoamines in different brain areas and their role in inducing behavioral changes.


Assuntos
Monoaminas Biogênicas/análise , Monoaminas Biogênicas/metabolismo , Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Neurotransmissores/metabolismo , Animais , Dopamina/análise , Dopamina/metabolismo , Camundongos , Neurônios/metabolismo , Neurotransmissores/fisiologia , Norepinefrina/análise , Norepinefrina/metabolismo , Serotonina/análise , Serotonina/metabolismo
12.
BMC Neurol ; 20(1): 277, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652959

RESUMO

BACKGROUND: Dopamine transporter (DAT) imaging may enable clinicians to discriminate idiopathic normal pressure hydrocephalus (iNPH) from other parkinsonian disorders. However, a specific pattern of dopaminergic loss in DAT imaging of iNPH patients remains to be further elucidated. METHODS: In this preliminary study, 11 patients with iNPH in our hospital between March 2017 and February 2019 were finally enrolled. A diagnosis of iNPH was made according to the two established criteria. For visual analysis of DAT imaging, a striatum was divided into five domains. A semi-quantitative visual assessment was performed with a consensus between a nuclear medicine specialist and an experienced neurologist who were blinded to the clinical diagnosis. RESULTS: Striatal dopaminergic deficits were abnormal in 90.9% (10/11) of patients with iNPH. The degree of dopaminergic reduction was mild and heterogeneous. However, a tendency of preferential striatal DAT loss in the caudate nucleus (90.9%, 10/11) than in the putamen (72.7%, 8/11) was observed, whereas ventral portion (9.1%, 1/11) was relatively preserved. CONCLUSION: Striatal dopaminergic depletion might be mild and heterogeneous in patients with iNPH. These dopaminergic deficits were more common in the caudate nucleus than in the putamen, suggesting a pattern different from other degenerative parkinsonian disorders.


Assuntos
Corpo Estriado , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Hidrocefalia de Pressão Normal , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Diagnóstico por Imagem , Humanos , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Hidrocefalia de Pressão Normal/metabolismo
13.
Life Sci ; 257: 118070, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32668327

RESUMO

AIMS: Several studies suggested that ATP-sensitive potassium channels (KATP) are potential therapeutic targets for protection against various neurodegenerative disorders, yet, there is an ongoing controversy regarding their role in Parkinson's disease (PD). Thus, the aim of the current study is to investigate the protective effect of KATP blockade and activation in the mice rotenone model of PD. MAIN METHODS: PD has been induced by 9 subcutaneous injections of rotenone (1.5 mg/kg; 3 times/week) in adult male Swiss albino mice. For 3 consecutive weeks, parkinsonian mice were either untreated or treated with L-dopa (25 mg/kg), the KATP channel blocker glibenclamide (3 mg/kg) or the KATP channel opener nicorandil (6 mg/kg). KEY FINDINGS: Glibenclamide significantly improved motor performance in the wire hanging and stair tests and halted the decline in striatal dopamine content as well as dopaminergic neurons' density. In addition, it reduced the rotenone-induced apoptosis as portrayed in the immunohistopathological examination via increasing Bcl-2 and decreasing caspases-3, -8, -9 contents. Furthermore, through its anti-inflammatory potential, glibenclamide reduced tumor necrosis factor-alpha level. On the other hand, nicorandil failed to mitigate the rotenone-induced neurodegenerative consequences. SIGNIFICANCE: KATP channel blockade by glibenclamide has neuroprotective effect against rotenone-induced neurotoxicity, that was mediated by its anti-inflammatory effect along with hindering apoptosis through extrinsic and intrinsic pathways.


Assuntos
Glibureto/farmacologia , Canais KATP/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Canais KATP/metabolismo , Levodopa/farmacologia , Masculino , Camundongos , Nicorandil/farmacologia , Transtornos Parkinsonianos/fisiopatologia , Rotenona/toxicidade
14.
Proc Natl Acad Sci U S A ; 117(29): 17296-17307, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631998

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain. Rodent models containing familial LRRK2 mutations often lack robust PD-like neurodegenerative phenotypes. Here, we develop a robust preclinical model of PD in adult rats induced by the brain delivery of recombinant adenoviral vectors with neuronal-specific expression of human LRRK2 harboring the most common G2019S mutation. In this model, G2019S LRRK2 induces the robust degeneration of substantia nigra dopaminergic neurons, a pathological hallmark of PD. Introduction of a stable kinase-inactive mutation or administration of the selective kinase inhibitor, PF-360, attenuates neurodegeneration induced by G2019S LRRK2. Neuroprotection provided by pharmacological kinase inhibition is mediated by an unusual mechanism involving the robust destabilization of human LRRK2 protein in the brain relative to endogenous LRRK2. Our study further demonstrates that G2019S LRRK2-induced dopaminergic neurodegeneration critically requires normal GTPase activity, as hypothesis-testing mutations that increase GTP hydrolysis or impair GTP-binding activity provide neuroprotection although via distinct mechanisms. Taken together, our data demonstrate that G2019S LRRK2 induces neurodegeneration in vivo via a mechanism that is dependent on kinase and GTPase activity. Our study provides a robust rodent preclinical model of LRRK2-linked PD and nominates kinase inhibition and modulation of GTPase activity as promising disease-modifying therapeutic targets.


Assuntos
Neurônios Dopaminérgicos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Knockout , Mutação , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/patologia , Fenótipo , Projetos Piloto , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Substância Negra
15.
Proc Biol Sci ; 287(1930): 20201069, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32605517

RESUMO

Expression of adaptive reaction norms of life-history traits to spatio-temporal variation in food availability is crucial for individual fitness. Yet little is known about the neural signalling mechanisms underlying these reaction norms. Previous studies suggest a role for the dopamine system in regulating behavioural and morphological responses to food across a wide range of taxa. We tested whether this neural signalling system also regulates life-history reaction norms by exposing the zooplankton Daphnia magna to both dopamine and the dopamine reuptake inhibitor bupropion, an antidepressant that enters aquatic environments via various pathways. We recorded a range of life-history traits across two food levels. Both treatments induced changes to the life-history reaction norm slopes. These were due to the effects of the treatments being more pronounced at restricted food ration, where controls had lower somatic growth rates, higher age and larger size at maturation. This translated into a higher population growth rate (r) of dopamine and bupropion treatments when food was restricted. Our findings show that the dopamine system is an important regulatory mechanism underlying life-history trait responses to food abundance and that bupropion can strongly influence the life history of aquatic species such as D. magna. We discuss why D. magna do not evolve towards higher endogenous dopamine levels despite the apparent fitness benefits.


Assuntos
Daphnia/fisiologia , Dopamina/metabolismo , Animais , Evolução Biológica , Alimentos , Traços de História de Vida , Reprodução , Zooplâncton
16.
Nat Commun ; 11(1): 3764, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724058

RESUMO

Context can influence reactions to environmental cues and this elemental process has implications for substance use disorder. Using an animal model, we show that an alcohol-associated context elevates entry into a fluid port triggered by a conditioned stimulus (CS) that predicted alcohol (CS-triggered alcohol-seeking). This effect persists across multiple sessions and, after it diminishes in extinction, the alcohol context retains the capacity to augment reinstatement. Systemically administered eticlopride and chemogenetic inhibition of ventral tegmental area (VTA) dopamine neurons reduce CS-triggered alcohol-seeking. Chemogenetically silencing VTA dopamine terminals in the nucleus accumbens (NAc) core reduces CS-triggered alcohol-seeking, irrespective of context, whereas silencing VTA dopamine terminals in the NAc shell selectively reduces the elevation of CS-triggered alcohol-seeking in an alcohol context. This dissociation reveals new roles for divergent mesolimbic dopamine circuits in the control of responding to a discrete cue for alcohol and in the amplification of this behaviour in an alcohol context.


Assuntos
Transtornos Relacionados ao Uso de Álcool/psicologia , Dopamina/metabolismo , Etanol/administração & dosagem , Extinção Psicológica/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Modelos Animais de Doenças , Antagonistas de Dopamina/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/efeitos dos fármacos , Feminino , Humanos , Masculino , Ratos , Salicilamidas/administração & dosagem , Técnicas Estereotáxicas , Área Tegmentar Ventral/citologia
17.
Neurology ; 95(3): e280-e290, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32616674

RESUMO

OBJECTIVE: To investigate whether the patterns of striatal dopamine depletion on dopamine transporter (DAT) scans could provide information on the long-term prognosis in Parkinson disease (PD). METHODS: We enrolled 205 drug-naive patients with early-stage PD, who underwent 18F-FP-CIT PET scans at initial assessment and received PD medications for 3 or more years. After quantifying the DAT availability in each striatal subregion, factor analysis was conducted to simplify the identification of striatal dopamine depletion patterns and to yield 4 striatal subregion factors. We assessed the effect of these factors on the development of levodopa-induced dyskinesia (LID), wearing-off, freezing of gait (FOG), and dementia during the follow-up period (6.84 ± 1.80 years). RESULTS: The 4 factors indicated which striatal subregions were relatively preserved: factor 1 (caudate), factor 2 (more-affected sensorimotor striatum), factor 3 (less-affected sensorimotor striatum), and factor 4 (anterior putamen). Cox regression analyses using the composite scores of these striatal subregion factors as covariates demonstrated that selective dopamine depletion in the sensorimotor striatum was associated with a higher risk for developing LID. Selective dopamine loss in the putamen, particularly in the anterior putamen, was associated with early development of wearing-off. Selective involvement of the anterior putamen was associated with a higher risk for dementia conversion. However, the patterns of striatal dopamine depletion did not affect the risk of FOG. CONCLUSIONS: These findings suggested that the patterns of striatal dopaminergic denervation, which were estimated by the equation derived from the factor analysis, have a prognostic implication in patients with early-stage PD.


Assuntos
Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons/tendências , Idoso , Diagnóstico Precoce , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
18.
Nat Commun ; 11(1): 3369, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632153

RESUMO

Induced pluripotent stem cell (iPSC)-derived dopaminergic (DA) neurons are an expected source for cell-based therapies for Parkinson's disease (PD). The regulatory criteria for the clinical application of these therapies, however, have not been established. Here we show the results of our pre-clinical study, in which we evaluate the safety and efficacy of dopaminergic progenitors (DAPs) derived from a clinical-grade human iPSC line. We confirm the characteristics of DAPs by in vitro analyses. We also verify that the DAP population include no residual undifferentiated iPSCs or early neural stem cells and have no genetic aberration in cancer-related genes. Furthermore, in vivo studies using immunodeficient mice reveal no tumorigenicity or toxicity of the cells. When the DAPs are transplanted into the striatum of 6-OHDA-lesioned rats, the animals show behavioral improvement. Based on these results, we started a clinical trial to treat PD patients in 2018.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/transplante , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Ratos Nus , Transplante Heterólogo
19.
Nat Commun ; 11(1): 3460, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651365

RESUMO

The learning of stimulus-outcome associations allows for predictions about the environment. Ventral striatum and dopaminergic midbrain neurons form a larger network for generating reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to generate predictive signals in these distributed circuits have not been entirely clarified. Also, direct evidence of the underlying interregional assembly formation and information transfer is still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of stimulus representations in the ventral striatum even in the absence of reward. Upon such reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically encode the predicted reward value of conditioned stimuli. Together, our data reveal that ventral striatal and midbrain reward networks form a reinforcing loop to generate reward prediction coding.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Tubérculo Olfatório/efeitos dos fármacos , Animais , Dopamina/farmacologia , Masculino , Mesencéfalo/citologia , Camundongos , Modelos Teóricos , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/metabolismo
20.
Front Immunol ; 11: 1472, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655579

RESUMO

Severe acute respiratory syndrome coronavirus 2 has spread rapidly around the globe. However, despite its high pathogenicity and transmissibility, the severity of the associated disease, COVID-19, varies widely. While the prognosis is favorable in most patients, critical illness, manifested by respiratory distress, thromboembolism, shock, and multi-organ failure, has been reported in about 5% of cases. Several studies have associated poor COVID-19 outcomes with the exhaustion of natural killer cells and cytotoxic T cells, lymphopenia, and elevated serum levels of D-dimer. In this article, we propose a common pathophysiological denominator for these negative prognostic markers, endogenous, angiotensin II toxicity. We hypothesize that, like in avian influenza, the outlook of COVID-19 is negatively correlated with the intracellular accumulation of angiotensin II promoted by the viral blockade of its degrading enzyme receptors. In this model, upregulated angiotensin II causes premature vascular senescence, leading to dysfunctional coagulation, and immunity. We further hypothesize that angiotensin II blockers and immune checkpoint inhibitors may be salutary for COVID-19 patients with critical illness by reversing both the clotting and immune defects (Graphical Abstract).


Assuntos
Angiotensina II/sangue , Betacoronavirus/metabolismo , Infecções por Coronavirus/sangue , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/sangue , Pneumonia Viral/fisiopatologia , Regulação para Cima , Fatores Etários , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Encéfalo/imunologia , Encéfalo/metabolismo , Senescência Celular/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Estado Terminal , Citocinas/metabolismo , Dopamina/metabolismo , Regulação para Baixo , Humanos , Imunoterapia/métodos , Mitocôndrias/metabolismo , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Prognóstico , Sistema Renina-Angiotensina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA