Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.708
Filtrar
1.
Methods Mol Biol ; 2713: 71-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639115

RESUMO

In adult Drosophila, most of the hemocytes are macrophage-like cells (so called plasmatocytes), which serve various functions in organ homeostasis and immune defense. Ontogeny and functions are largely conserved between vertebrate and invertebrate macrophages. Hence, Drosophila offers a powerful genetic toolbox to study macrophage function and genetically modulate these cells. Technological advances in high-throughput sequencing approaches allowed to give an in-depth characterization of vertebrate macrophage populations and their heterogenous composition within different organs as well as changes in disease. Embryonic and larval hemocytes in Drosophila have been recently analyzed in single-cell RNA-sequencing (scRNA-seq) approaches during infection and steady state. These analyses revealed anatomical and functional Drosophila hemocyte subtypes dedicated to specific tasks. Only recently, the Fly Cell Atlas provided a whole transcriptomic single-cell atlas via single-nuclei RNA-sequencing (snRNA-seq) of adult Drosophila including many different tissues and cell types where hemocytes were also included. Yet, a specific protocol to isolate nuclei from adult hemocytes for snRNA-seq and study these cells in different experimental conditions was not available. In this chapter, we give a detailed protocol to purify hemocyte nuclei from adult Drosophila, which can be used in subsequent analyses such as snRNA-seq.


Assuntos
Drosophila melanogaster , RNA Nuclear Pequeno , Animais , Drosophila melanogaster/genética , Hemócitos , Núcleo Celular , Drosophila
2.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37593878

RESUMO

Migrating epithelial cells globally align their migration machinery to achieve tissue-level movement. Biochemical signaling across leading-trailing cell-cell interfaces can promote this alignment by partitioning migratory behaviors like protrusion and retraction to opposite sides of the interface. However, how signaling proteins become organized at interfaces to accomplish this is poorly understood. The follicular epithelial cells of Drosophila melanogaster have two signaling modules at their leading-trailing interfaces - one composed of the atypical cadherin Fat2 (also known as Kugelei) and the receptor tyrosine phosphatase Lar, and one composed of Semaphorin5c and its receptor Plexin A. Here, we show that these modules form one interface signaling system with Fat2 at its core. Trailing edge-enriched Fat2 concentrates both Lar and Semaphorin5c at leading edges of cells, but Lar and Semaphorin5c play little role in the localization of Fat2. Fat2 is also more stable at interfaces than Lar or Semaphorin5c. Once localized, Lar and Semaphorin5c act in parallel to promote collective migration. We propose that Fat2 serves as the organizer of this interface signaling system by coupling and polarizing the distributions of multiple effectors that work together to align the migration machinery of neighboring cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Feminino , Animais , Células Epiteliais , Células da Granulosa , Caderinas/genética , Movimento , Proteínas de Drosophila/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética
3.
Life Sci Alliance ; 6(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696575

RESUMO

Chemical synaptic transmission involves neurotransmitter release from presynaptic active zones (AZs). The AZ protein Rab-3-interacting molecule (RIM) is important for normal Ca2+-triggered release. However, its precise localization within AZs of the glutamatergic neuromuscular junctions of Drosophila melanogaster remains elusive. We used CRISPR/Cas9-assisted genome engineering of the rim locus to incorporate small epitope tags for targeted super-resolution imaging. A V5-tag, derived from simian virus 5, and an HA-tag, derived from human influenza virus, were N-terminally fused to the RIM Zinc finger. Whereas both variants are expressed in co-localization with the core AZ scaffold Bruchpilot, electrophysiological characterization reveals that AP-evoked synaptic release is disturbed in rimV5-Znf but not in rimHA-Znf In addition, rimHA-Znf synapses show intact presynaptic homeostatic potentiation. Combining super-resolution localization microscopy and hierarchical clustering, we detect ∼10 RIMHA-Znf subclusters with ∼13 nm diameter per AZ that are compacted and increased in numbers in presynaptic homeostatic potentiation.


Assuntos
Drosophila melanogaster , Neoplasias Cutâneas , Humanos , Animais , Sinapses , Junção Neuromuscular , Transporte Biológico , Análise por Conglomerados
4.
Cells ; 12(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681895

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doenças Neurodegenerativas , Animais , Esclerose Amiotrófica Lateral/genética , Drosophila , Drosophila melanogaster , Ácidos Graxos , Junção Neuromuscular , Larva
5.
Medicine (Baltimore) ; 102(36): e35132, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682125

RESUMO

Anger and aggression are common sources of distress and impairment. There is, however, no available data on anger and aggression based on bibliometric analysis. This study uses bibliometric analysis to analyze research hotspots and trends in anger and aggression. Publications on anger and aggression within the last ten years were collected from the Web of Science Core Collection. Using descriptive bibliometrics, journals, countries, institutions, authors, references, and keywords in anger and aggression research were visually analyzed via CiteSpace. A total of 3114 articles were included, and studies on anger and aggression increased yearly. The publications are mainly from 106 countries led by the USA and 381 institutions led by Univ Penn. We identified 505 authors, where Emil F. Coccaro had the highest number of articles, while Buss A.H. was the most frequently co-cited author. AGGRESSIVE BEHAVIOR is the journal that bore most of the studies, while PLOS ONE was the most cited journal. Our analysis demonstrated that research on anger and aggression is flourishing. Behaviors of anger and aggression, risk factors, neural mechanisms, personality, and adolescence have been researched hotspots in the past ten years. Besides, victimization, drosophila melanogaster, psychopathic traits, and perpetration are emerging anger and aggression research trends.


Assuntos
Bullying , Drosophila melanogaster , Animais , Agressão , Ira , Bibliometria
6.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686177

RESUMO

Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing multiple health benefits and relatively low toxicity. These compounds found in the diet play a central role in organism development and fitness. Given the complexity of the whole-body response to dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its extensively studied genome, has more than 70% gene homology to humans and has been used as a model system in biological studies for a long time. The notable advantages of Drosophila as a model system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan, and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of phytochemical ingestion and describe the previously reported effects of phytochemical consumption in Drosophila.


Assuntos
Drosophila melanogaster , Drosophila , Humanos , Animais , Carotenoides , Diarileptanoides , Compostos Fitoquímicos/farmacologia , Mamíferos
7.
Immunity ; 56(9): 1975-1977, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703824

RESUMO

2'3'-cyclic GMP-AMP (2'3'-cGAMP) and 3'2'-cGAMP activate STING-dependent antiviral immunity in Drosophila melanogaster but fail to control infection by C virus in some fly species. In this issue of Immunity, Cai et al. reveal that Drosophila produces multiple cyclic di-nucleotides (CDNs) in response to viral infection. One of these CDNs-2'3'-c-di-GMP-is a very potent STING activator capable of promoting antiviral immunity in otherwise susceptible flies.


Assuntos
Drosophila melanogaster , Sistemas do Segundo Mensageiro , Animais , Transdução de Sinais , Antivirais , Drosophila
8.
Proc Biol Sci ; 290(2006): 20231313, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700651

RESUMO

Ejaculate proteins are key mediators of post-mating sexual selection and sexual conflict, as they can influence both male fertilization success and female reproductive physiology. However, the extent and sources of genetic variation and condition dependence of the ejaculate proteome are largely unknown. Such knowledge could reveal the targets and mechanisms of post-mating selection and inform about the relative costs and allocation of different ejaculate components, each with its own potential fitness consequences. Here, we used liquid chromatography coupled with tandem mass spectrometry to characterize the whole-ejaculate protein composition across 12 isogenic lines of Drosophila melanogaster that were reared on a high- or low-quality diet. We discovered new proteins in the transferred ejaculate and inferred their origin in the male reproductive system. We further found that the ejaculate composition was mainly determined by genotype identity and genotype-specific responses to larval diet, with no clear overall diet effect. Nutrient restriction increased proteolytic protein activity and shifted the balance between reproductive function and RNA metabolism. Our results open new avenues for exploring the intricate role of genotypes and their environment in shaping ejaculate composition, or for studying the functional dynamics and evolutionary potential of the ejaculate in its multivariate complexity.


Assuntos
Drosophila , Proteoma , Feminino , Masculino , Animais , Drosophila melanogaster/genética , Interação Gene-Ambiente , Genótipo
9.
Proc Biol Sci ; 290(2006): 20231305, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700658

RESUMO

Mechanisms aimed at recovering from heat-induced damages are closely associated with the ability of ectotherms to survive exposure to stressful temperatures. Autophagy, a ubiquitous stress-responsive catabolic process, has recently gained renewed attention as one of these mechanisms. By increasing the turnover of cellular structures as well as the clearance of long-lived protein and protein aggregates, the induction of autophagy has been linked to increased tolerance to a range of abiotic stressors in diverse ectothermic organisms. However, whether a link between autophagy and heat-tolerance exists in insect models remains unclear despite broad ecophysiological implications thereof. Here, we explored the putative association between autophagy and heat-tolerance using Drosophila melanogaster as a model. We hypothesized that (i) heat-stress would cause an increase of autophagy in flies' tissues, and (ii) rapamycin exposure would trigger a detectable autophagic response in adults and increase their heat-tolerance. In line with our hypothesis, we report that flies exposed to heat-stress present signs of protein aggregation and appear to trigger an autophagy-related homoeostatic response as a result. We further show that rapamycin feeding causes the systemic effect associated with target of rapamycin (TOR) inhibition, induces autophagy locally in the fly gut, and increases the heat-stress tolerance of individuals. These results argue in favour of a substantial contribution of autophagy to the heat-stress tolerance mechanisms of insects.


Assuntos
Drosophila melanogaster , Termotolerância , Animais , Temperatura Alta , Autofagia , Temperatura
10.
Immunity ; 56(9): 1991-2005.e9, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659413

RESUMO

In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.


Assuntos
Antivirais , Drosophila , Animais , Drosophila melanogaster , GMP Cíclico , Mamíferos
11.
BMC Res Notes ; 16(1): 197, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679799

RESUMO

OBJECTIVES: Investigating protein-DNA interactions is imperative to understanding fundamental concepts such as cell growth, differentiation, and cell development in many systems. Sequencing techniques such as ChIP-seq can yield genome-wide DNA binding profiles of transcription factors; however this assay can be expensive, time-consuming, may not be informative for repetitive regions of the genome, and depend heavily upon antibody suitability. Combining DNA fluorescence in situ hybridization (FISH) with immunofluorescence (IF) is a quicker and inexpensive approach which has historically been used to investigate protein-DNA interactions in individual nuclei. However, these assays are sometimes incompatible due to the required denaturation step in DNA FISH that can alter protein epitopes, hindering primary antibody binding. Additionally, combining DNA FISH with IF may be challenging for less experienced trainees. Our goal was to develop an alternative technique to investigate protein-DNA interactions by combining RNA FISH with IF. RESULTS: We developed a hybrid RNA FISH-IF protocol for use on Drosophila melanogaster polytene chromosome spreads in order to visualize colocalization of proteins and DNA loci. We demonstrate that this assay is sensitive enough to determine if our protein of interest, Multi sex combs (Mxc), localizes to single-copy target transgenes carrying histone genes. Overall, this study provides an alternative, accessible method for investigating protein-DNA interactions at the single gene level in Drosophila melanogaster polytene chromosomes.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster/genética , RNA/genética , Cromossomos Politênicos/genética , Hibridização in Situ Fluorescente , Imunofluorescência , Proteínas Supressoras de Tumor , Proteínas de Drosophila/genética
12.
BMC Genom Data ; 24(1): 54, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735352

RESUMO

BACKGROUND: Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. RESULTS: To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets of 27 unique factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax (Ubx), Abdominal-A (Abd-A), and Abdominal-B (Abd-B), suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other factors that target the histone gene array: JIL-1, hormone-like receptor 78 (Hr78), the long isoform of female sterile homeotic (1) (fs(1)h) as well as the general transcription factors TBP associated factor 1 (TAF-1), Transcription Factor IIB (TFIIB), and Transcription Factor IIF (TFIIF). CONCLUSIONS: Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.


Assuntos
Proteínas de Drosophila , Infertilidade , Feminino , Animais , Drosophila , Drosophila melanogaster/genética , Histonas/genética , Montagem e Desmontagem da Cromatina/genética , Biologia Computacional , Proteínas de Drosophila/genética , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Proteínas Serina-Treonina Quinases
13.
Nat Commun ; 14(1): 5754, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717061

RESUMO

Transmission of many plant viruses relies on phloem-feeding insect vectors. However, how plant viruses directly modulate insect behavior is largely unknown. Barley yellow striate mosaic virus (BYSMV) is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus). Here, we show that BYSMV infects the central nervous system (CNS) of SBPHs, induces insect hyperactivity, and prolongs phloem feeding duration. The BYSMV accessory protein P6 interacts with the COP9 signalosome subunit 5 (LsCSN5) of SBPHs and suppresses LsCSN5-regulated de-neddylation from the Cullin 1 (CUL1), hereby inhibiting CUL1-based E3 ligases-mediated degradation of the circadian clock protein Timeless (TIM). Thus, virus infection or knockdown of LsCSN5 compromises TIM oscillation and induces high insect locomotor activity for transmission. Additionally, expression of BYSMV P6 in the CNS of transgenic Drosophila melanogaster disturbs circadian rhythm and induces high locomotor activity. Together, our results suggest the molecular mechanisms whereby BYSMV modulates locomotor activity of insect vectors for transmission.


Assuntos
Sistema Nervoso Central , Drosophila melanogaster , Animais , Complexo do Signalossomo COP9 , Insetos Vetores , Locomoção
14.
Nat Commun ; 14(1): 5587, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696787

RESUMO

CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.


Assuntos
Sistemas CRISPR-Cas , Drosophila melanogaster , Animais , Sistemas CRISPR-Cas/genética , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Proteína 9 Associada à CRISPR/genética , Clivagem do DNA , Mamíferos
15.
Curr Biol ; 33(17): R904-R906, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699347

RESUMO

New work reveals differences in oogenic gene expression between parthenogenetic and sexually reproducing Drosophila mercatorum strains. Recapitulating those changes in D. melanogaster oocytes induced parthenogenesis in this normally sexually reproducing species, providing molecular insight into how these reproductive modes arise.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Oócitos , Partenogênese/genética , Biologia
16.
Science ; 381(6663): 1197-1205, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708280

RESUMO

Inactivation of the ubiquitin ligase Ube3a causes the developmental disorder Angelman syndrome, whereas increased Ube3a dosage is associated with autism spectrum disorders. Despite the enriched localization of Ube3a in the axon terminals including presynapses, little is known about the presynaptic function of Ube3a and mechanisms underlying its presynaptic localization. We show that developmental synapse elimination requires presynaptic Ube3a activity in Drosophila neurons. We further identified the domain of Ube3a that is required for its interaction with the kinesin motor. Angelman syndrome-associated missense mutations in the interaction domain attenuate presynaptic targeting of Ube3a and prevent synapse elimination. Conversely, increased Ube3a activity in presynapses leads to precocious synapse elimination and impairs synaptic transmission. Our findings reveal the physiological role of Ube3a and suggest potential pathogenic mechanisms associated with Ube3a dysregulation.


Assuntos
Síndrome de Angelman , Transtorno do Espectro Autista , Proteínas de Drosophila , Drosophila melanogaster , Transmissão Sináptica , Ubiquitina-Proteína Ligases , Animais , Síndrome de Angelman/enzimologia , Síndrome de Angelman/genética , Transtorno do Espectro Autista/enzimologia , Transtorno do Espectro Autista/genética , Regulação para Baixo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Sinapses/enzimologia , Sinapses/genética
17.
Elife ; 122023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750868

RESUMO

Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.


Assuntos
Besouros , Placa Neural , Animais , Drosophila melanogaster , Insetos , Encéfalo , Vertebrados/genética , Expressão Gênica
18.
Micron ; 174: 103533, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660476

RESUMO

Micro-computed tomography (micro-CT) provides valuable data for studying soft tissue, though it is often affected by sample movement during scans and low contrast in X-ray absorption. This can result in lower image quality and geometric inaccuracies, collectively known as 'artefacts'. To mitigate these issues, samples can be embedded in hydrogels and enriched with heavy metals for contrast enhancement. However, the long-term durability of these enhancements remains largely unexplored. In this study, we examine the effects of two contrast enhancement agents - iodine and phosphotungstic acid (PTA) - and two hydrogels - agarose and Poloxamer 407 - over a 14-day period. We used Drosophila melanogaster as a test model for our investigation. Our findings reveal that PTA and agarose are highly durable, while iodine and poloxamer hydrogel exhibits higher leakage rates. These observations lay the foundation for estimating contrast stabilities in contrast-enhanced micro-CT with hydrogel embedding and serve to inform future research in this field.


Assuntos
Hidrogéis , Iodo , Animais , Microtomografia por Raio-X , Drosophila melanogaster , Sefarose , Ácido Fosfotúngstico , Poloxâmero
19.
J Cell Biol ; 222(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37747450

RESUMO

Src family kinases (SFKs) are evolutionarily conserved proteins acting downstream of receptors and regulating cellular processes including proliferation, adhesion, and migration. Elevated SFK expression and activity correlate with progression of a variety of cancers. Here, using the Drosophila melanogaster border cells as a model, we report that localized activation of a Src kinase promotes an unusual behavior: engulfment of one cell by another. By modulating Src expression and activity in the border cell cluster, we found that increased Src kinase activity, either by mutation or loss of a negative regulator, is sufficient to drive one cell to engulf another living cell. We elucidate a molecular mechanism that requires integrins, the kinases SHARK and FAK, and Rho family GTPases, but not the engulfment receptor Draper. We propose that cell cannibalism is a result of aberrant phagocytosis, where cells with dysregulated Src activity fail to differentiate between living and dead or self versus non-self, thus driving this malignant behavior.


Assuntos
Citofagocitose , Drosophila melanogaster , Quinases da Família src , Animais , Drosophila melanogaster/genética , Quinases da Família src/genética
20.
Proc Natl Acad Sci U S A ; 120(39): e2303376120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722034

RESUMO

In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster, 16 interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for maintenance of the oocyte specification. mRNA encoding Msps is transported and concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, ensuring oocyte fate maintenance by promoting high microtubule polymerization activity in the oocyte, and enhancing dynein-dependent nurse cell-to-oocyte transport.


Assuntos
Dineínas do Citoplasma , Drosophila , Animais , Drosophila melanogaster , Microtúbulos , Nucleotidiltransferases , Oócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...