Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 849
Filtrar
1.
Nat Commun ; 11(1): 5085, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033250

RESUMO

Tibetan wheat is grown under environmental constraints at high-altitude conditions, but its underlying adaptation mechanism remains unknown. Here, we present a draft genome sequence of a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) accession Zang1817 and re-sequence 245 wheat accessions, including world-wide wheat landraces, cultivars as well as Tibetan landraces. We demonstrate that high-altitude environments can trigger extensive reshaping of wheat genomes, and also uncover that Tibetan wheat accessions accumulate high-altitude adapted haplotypes of related genes in response to harsh environmental constraints. Moreover, we find that Tibetan semi-wild wheat is a feral form of Tibetan landrace, and identify two associated loci, including a 0.8-Mb deletion region containing Brt1/2 homologs and a genomic region with TaQ-5A gene, responsible for rachis brittleness during the de-domestication episode. Our study provides confident evidence to support the hypothesis that Tibetan semi-wild wheat is de-domesticated from local landraces, in response to high-altitude extremes.


Assuntos
Adaptação Fisiológica , Altitude , Triticum/fisiologia , Adaptação Fisiológica/genética , Domesticação , Ecótipo , Genoma de Planta , Geografia , Metagenômica , Fenótipo , Análise de Componente Principal , Tibet , Triticum/genética
2.
PLoS One ; 15(9): e0239874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970785

RESUMO

Beta diversity can be portioned into local contributions to beta diversity (LCBD), which represents the degree of community composition uniqueness of a site compared to regionally sampled sites. LCBD can fluctuate among seasons and ecoregions according to site characteristics, species dispersal abilities, and biotic interactions. In this context, we examined anuran seasonal patterns of LCBD in different ecoregions of Western Brazil, and assessed their correlation with species richness and if environmental (climatic variables, pond area and ecoregions) and/or spatial predictors (spatial configuration of sampling sites captured by distance-based Moran's Eigenvector Maps) would drive patterns of LCBD. We sampled anurans in 19 ponds in different ecoregions in the Mato Grosso do Sul state, Western Brazil, during one dry and one rainy season. We found that LCBD patterns were similar between seasons with sites tending to contribute in the same way for community composition uniqueness during the dry and rainy season. Among studied ecoregions, Cerrado showed higher LCBD values in both seasons. In addition, LCBD was negatively correlated with species richness in the dry season. We also found that LCBD variation was explained by ecoregion in the dry season, but in the rainy season both environmental and spatial global models were non-significant. Our results reinforce the compositional uniqueness of the Cerrado ecoregion when compared to the other ecoregions in both seasons, which may be caused by the presence of species with different requirements that tolerate different conditions caused by seasonality.


Assuntos
Anuros/fisiologia , Ecótipo , Estações do Ano , Animais , Brasil , Tempo (Meteorologia)
3.
PLoS One ; 15(9): e0238405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936809

RESUMO

In the California Current Ecosystem, El Niño acts as a natural phenomenon that is partially representative of climate change impacts on marine bacteria at timescales relevant to microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the "blob") and an El Niño event resulted in prolonged ocean warming in the Southern California Bight (SCB). To determine whether this "marine heatwave" resulted in shifts in microbial populations, we sequenced the rpoC1 gene from the biogeochemically important picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies of ecotypes commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and ecotype trends appeared to operate on differing temporal scales. In contrast to ecotype trends, most microdiverse populations were static and possibly reflect local habitat conditions. The only exceptions were microdiversity from Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-heatwave composition by the end of this study. This research demonstrates that extended warming in the SCB can result in persistent changes in key microbial populations.


Assuntos
El Niño Oscilação Sul , Prochlorococcus/isolamento & purificação , Água do Mar/microbiologia , Synechococcus/isolamento & purificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Biodiversidade , California , Mudança Climática , Ecossistema , Ecótipo , Genes Bacterianos , Microbiota/genética , Oceano Pacífico , Filogenia , Prochlorococcus/genética , Prochlorococcus/crescimento & desenvolvimento , Estações do Ano , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento , Temperatura
4.
Ecotoxicol Environ Saf ; 204: 111086, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781345

RESUMO

In the present research, Silene vulgaris as a representative species growing on both unpolluted and heavy metal (HM) polluted terrains were used to identify ecotype-specific responses to metallic stress. Growth, cell ultrastructure and element accumulations were compared between non-metallicolous (NM), calamine (CAL) and serpentine (SER) specimens untreated with HMs and treated with Pb, Cd and Zn ions under in vitro conditions. Moreover, proteins' modifications related to their level, carbonylation and degradations via vacuolar proteases were verified and linked with potential mechanisms to cope with ions toxicity. Our experiment revealed diversified strategy of HM uptake in NM and both metallicolous ecotypes, in which antagonistic relationship of Zn and Pb/Cd ions provided survival benefits for the whole organism. Despite this similarity, growth rate and metabolic pathways induced in CAL and SER shoots varied significantly. Exposition to HMs in CAL culture led to drop in protein level by approximately 16% compared to the control. This parameter nearly correlated with the enhanced activity of proteases at pH 5.2 as well as possible glutamate changes to proline and reduced glutathione, resulting in intensified growth and first signs of cell senescence. In turn, SER shoots were characterized by growth retardation (to 53% of the control), although protein level and carbonylation were not modified, while a deeper insight into protein network showed its remodeling towards production of polyamines and 2-oxoglutarate delivered to the Krebs cycle. Contrary, an uncontrolled HM influx in NM shoots contributed to morpho-structural disorders accompanied by an increase activity of proteases involved in the degradation of oxidized proteins, what pointed to metal-induced autophagy. Taken together, S. vulgaris ecotypes respond to stress by triggering various mechanisms engaged their survival and/or death under HM treatment.


Assuntos
Cádmio/toxicidade , Chumbo/toxicidade , Proteínas de Plantas/metabolismo , Silene/efeitos dos fármacos , Poluentes do Solo/toxicidade , Zinco/toxicidade , Autofagia/efeitos dos fármacos , Bioacumulação/efeitos dos fármacos , Cádmio/metabolismo , Ecótipo , Glutationa/metabolismo , Chumbo/metabolismo , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura , Silene/crescimento & desenvolvimento , Silene/metabolismo , Silene/ultraestrutura , Poluentes do Solo/metabolismo , Zinco/metabolismo
5.
Nature ; 584(7822): 602-607, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641831

RESUMO

Species often include multiple ecotypes that are adapted to different environments1. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations2-4. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics. Limited recombination in these haplotype blocks keeps adaptive alleles together, and these regions differentiate sunflower ecotypes. For example, haplotype blocks control a 77-day difference in flowering between ecotypes of the silverleaf sunflower H. argophyllus (probably through deletion of a homologue of FLOWERING LOCUS T (FT)), and are associated with seed size, flowering time and soil fertility in dune-adapted sunflowers. These haplotypes are highly divergent, frequently associated with structural variants and often appear to represent introgressions from other-possibly now-extinct-congeners. These results highlight a pervasive role of structural variation in ecotypic adaptation.


Assuntos
Ecótipo , Haplótipos , Helianthus/genética , Aclimatação/genética , Alelos , Flores/genética , Helianthus/anatomia & histologia , Helianthus/crescimento & desenvolvimento , Filogenia , Sementes/genética
6.
Proc Natl Acad Sci U S A ; 117(29): 17112-17121, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647058

RESUMO

Resilience to environmental stressors due to climate warming is influenced by local adaptations, including plastic responses. The recent literature has focused on genomic signatures of climatic adaptation, but little is known about how plastic capacity may be influenced by biogeographic and evolutionary processes. We investigate phenotypic plasticity as a target of climatic selection, hypothesizing that lineages that evolved in warmer climates will exhibit greater plastic adaptive resilience to upper thermal stress. This was experimentally tested by comparing transcriptomic responses within and among temperate, subtropical, and desert ecotypes of Australian rainbowfish subjected to contemporary and projected summer temperatures. Critical thermal maxima were estimated, and ecological niches delineated using bioclimatic modeling. A comparative phylogenetic expression variance and evolution model was used to assess plastic and evolved changes in gene expression. Although 82% of all expressed genes were found in the three ecotypes, they shared expression patterns in only 5 out of 236 genes that responded to the climate change experiment. A total of 532 genes showed signals of adaptive (i.e., genetic-based) plasticity due to ecotype-specific directional selection, and 23 of those responded to projected summer temperatures. Network analyses demonstrated centrality of these genes in thermal response pathways. The greatest adaptive resilience to upper thermal stress was shown by the subtropical ecotype, followed by the desert and temperate ecotypes. Our findings indicate that vulnerability to climate change will be highly influenced by biogeographic factors, emphasizing the value of integrative assessments of climatic adaptive traits for accurate estimation of population and ecosystem responses.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Ecossistema , Temperatura Alta , Animais , Austrália , Clima Desértico , Ecótipo , Peixes/genética , Peixes/fisiologia , Genômica , Transcriptoma/genética
8.
Environ Sci Pollut Res Int ; 27(32): 40296-40308, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661964

RESUMO

In the present study, we characterized the phytochemical properties, which were specifically associated with phenolic compounds and antioxidant activities in six distinct ecotypes of Umbilicaria aprina Nyl. from Iran (including Kivarestan, Mishan, Takht-e Nader, Tochal, Sabalan, and Sahand) to detect diversities within the species. Total phenolic concentration (TPC) and radical scavenging capacities of U. aprina ecotypes were evaluated. Moreover, qualitative differences between chemical profiles were surveyed using liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Relatively moderate TPCs (Kivarestan = 36.12 ± 2.1, Mishan = 41.59 ± 2.2, Takht-e Nader = 31.85 ± 1.3, Tochal = 37.55 ± 2.3, Sabalan = 28.91 ± 2.5, and Sahand = 31.59 ± 2.2) were observed for ecotypes, but a very strong correlation (r = -0/842) was obtained between TPCs and IC50 values. Based on the results of LC-ESI-MS/MS, the following chemical substances were identified: orsellinic acid (1), lecanoric acid (2), evernic acid (3), gyrophoric acid (4), umbilicaric acid (5), hiascic acid (6), stictic acid (7) methyl hiascic acid (8), and an unknown substance (9). The MS/MS fragmentation scheme for each substance was determined and proposed. Wide discrepancies were observed in the chemical profiles of lichen ecotypes, which may corroborate the influence of ecological locality conditions, for example, altitude and slope aspects on secondary metabolism of lichen species U. aprina. The north-facing and east-facing ecotypes (Sabalan and Mishan, respectively) lacked depsidones (stictic acid) mainly because they receive the least direct radiation. Mishan ecotype, as the only east-facing ecotype, showed the most different chemical profile.


Assuntos
Antioxidantes , Líquens , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ecótipo , Irã (Geográfico) , Espectrometria de Massas por Ionização por Electrospray , Inquéritos e Questionários , Espectrometria de Massas em Tandem
9.
Mol Ecol ; 29(14): 2513-2516, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32497331

RESUMO

Chromosomal inversions are increasingly found to differentiate locally adapted populations. This adaptive role is predictable because reduced recombination protects allelic combinations from gene flow. However, we are far from understanding how frequently inversions contribute to local adaptation and how widespread this phenomenon is across species. In a "From the Cover" article in this issue of Molecular Ecology, Huang, Andrew, Owens, Ostevik, and Rieseberg (2020) provide an important step towards this goal not only by finding adaptive inversions in a sunflower ecotype, but also by reversing the approach used to investigate the link between adaptation and inversions. Most studies compare two phenotypes and uncover divergence at a few regions, of which some can subsequently be identified as inversions. In contrast, Huang et al first catalogue putative inversions and then test genotype-environment associations, which allows them to ask systematically whether inversions may be adaptive and in which ecological contexts. They achieve that by revisiting a previous reduced-representation sequencing (RAD-sequencing) data set, demonstrating the suitability of this method to detect inversions in species with limited genomic resources. As such, Huang et al pave the way for a better understanding of the evolutionary role of structural genomic variation and highlight that accounting for inversions in population genomics is now possible, and much needed, in a wider range of organisms.


Assuntos
Inversão Cromossômica , Helianthus , Adaptação Fisiológica , Ecótipo , Humanos , Metagenômica
10.
Phytochemistry ; 177: 112436, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563719

RESUMO

The giant reed is a fast growing herbaceous non-food crop considered as eligible alternative energy source to reduce the usage of fossil fuels. Tolerance of this plant to abiotic stress has been demonstrated across a range of stressful conditions, thus allowing cultivation in marginal or poorly cultivated land in order not to compromise food security and to overcome land use controversies. In this work, we de novo sequenced, assembled and analyzed the A. donax low G34 ecotype leaf transcriptome (RNAseq analysis) subjected to severe long-term salt stress (256.67 mM NaCl corresponding to 32 dS m-1 electric conductibility). In order to shed light upon the response to high salinity of this non model plant, we analyzed clusters related to salt sensory and signaling transduction, transcription factors, hormone regulation, Reactive Oxygen Species (ROS) scavenging and osmolyte biosynthesis, all of them showing different regulation compared to untreated plants. The analysis of clusters related to ethylene biosynthesis and signaling indicated that gene transcription is modulated towards the minimization of ethylene negative effects upon plant growth. Certainly, the photosynthesis is strongly affected since genes involved in Rubisco biosynthesis and assembly are down-regulated. However, a shift towards C4 photosynthesis is likely to occur as gene regulation is aimed to activate the primary CO2 fixation to PEP (phosphoenolpyruvate). The analysis of "carbon metabolism" category revealed that G34 ecotype under salt stress induces the expression of glycolysis and Krebs cycle related genes, this being consistent with the hypothesis that some sort of salt avoidance might be occurred in A. donax G34 low ecotype. By comparing our results with findings obtained with other giant reed ecotype, we identified several differences in the response to salt that are in accordance with the possibility that heritable phenotypic differences among clones of A. donax might be accumulated especially in ecotypes originating from distant geographical areas, despite their asexual reproduction modality. Additionally, 26,838 simple sequence repeat (SSR) markers were identified and validated. This SSR dataset definitely expands the marker catalogue of A. donax facilitating the genotypic characterization of this species.


Assuntos
Ecótipo , Poaceae , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta , Estresse Salino
11.
Int J Phytoremediation ; 22(13): 1338-1347, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524826

RESUMO

Farmland and mining ecotypes of the potential cadmium (Cd)-hyperaccumulator Solanum photeinocarpum were collected to study the effects of reciprocal grafting on the growth of, and Cd accumulation in, the post-grafting generations. The post generations of the following plant materials were evaluated in a pot experiment: the un-grafted farmland ecotype, grafted plants with the farmland ecotype as the scion or the rootstock, the un-grafted mining ecotype, and grafted plants with the mining ecotype as the scion or the rootstock. The results showed that reciprocal grafting increased the biomass, the activities of superoxide dismutase, peroxidase, and catalase, and the soluble protein content in the post-grafting generations of both ecotypes S. photeinocarpum. Reciprocal grafting also increased the Cd content in, and amount of Cd extracted by, the post-grafting generations of both ecotypes S. photeinocarpum as a result of lower soil pH and higher soil available Cd concentrations. Additionally, grafting affected the DNA methylation levels by inducing hypermethylation or demethylation in the post-grafting generation. Therefore, reciprocal grafting can enhance the Cd accumulation (phytoremediation) capacity of post-grafting generations of both ecotypes S. photeinocarpum by affecting DNA methylation levels.


Assuntos
Poluentes do Solo , Solanum , Biodegradação Ambiental , Cádmio/análise , Ecótipo , Raízes de Plantas/química , Poluentes do Solo/análise , Solanum/genética
12.
Phytochemistry ; 176: 112402, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32474264

RESUMO

The effect of environmental factors on the chemical composition of plants eventually resulting in plant growth regulation is an age-old issue in plant biology. Nowadays, the acceleration in changes in environmental conditions (e.g. global warming) can act as an incentive to investigate their correlation with metabolic changes. In this study, Cistus monspeliensis plants grown on the island of Sardinia (Italy) were used to explore the geographical-mediated metabolic variation and its repercussion on plant-fungus interactions. Samples of different ecotypes of C. monspeliensis were collected and chemically profiled by 1H NMR and HPTLC-based metabolomics and the relationship between the variations of biological activity was examined by multivariate data analysis. The ecotypes, collected from different geographical zones and altitudes, exhibited clearly distinguishable chemical profiles, particularly in their terpene and phenolic contents. In particular, multivariate data analysis revealed several diterpenes of the labdane and clerodane series among the terpenes and methoxyflavonoids to be responsible for the differentiation. The antifungal activity of the plants was used to explore the correlation between chemical variation and biological activity. Results showed that there was a strong correlation between the metabolic profiles and the antifungal activity, revealing terpenes and methoxylated flavonoids as the main involved metabolites. This demonstrated that environmental factors can influence the chemical variation of plant ecotypes, resulting in the generation of chemotypes that are potentially adapted to their niche conditions including the plant-fungal interactions.


Assuntos
Cistus , Ecótipo , Flavonoides , Fungos , Itália
13.
Ecotoxicol Environ Saf ; 201: 110823, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540619

RESUMO

This study compared co-tolerance to salinity and cadmium and investigated its mechanisms in a facultative metallophyte Silene vulgaris originating from distinct habitats. Shoots of calamine (Cal) and non-metallicolous (N-Cal) ecotypes grown in vitro were exposed to 10 and 100 mM NaCl, 5 µM CdCl2 and their combinations. Stress effects were evaluated based on growth, oxidative stress parameters, and DNA content and damage. Tolerance mechanisms were assessed by analyzing non-enzymatic antioxidants, osmolytes and ion accumulation. Irrespective of the ecotype, Cd stimulated shoot proliferation (micropropagation coefficients MC = 15.2 and 12.1 for Cal and N-Cal, respectively, growth tolerance index GTI = 148.1 and 156.7%). In Cal ecotype this was attributed to an increase in glutathione content and reorganization of cell membrane structures under Cd exposure, whereas in N-Cal to enhanced synthesis of other non-enzymatic antioxidants, mainly carotenoids and ascorbate. Low salinity stimulated growth of Cal ecotype due to optimizing Cl- content. High salinity inhibited growth, especially in Cal ecotype, where it enhanced DNA damage and disturbed ionic homeostasis. Species-specific reaction to combined salinity and Cd involved a mutual inhibition of Na+, Cl- and Cd2+ uptake. N-Cal ecotype responded to combined stresses by enhancing its antioxidant defense, presumably induced by Cd, whereas the metallicolous ecotype triggered osmotic adjustment. The study revealed that in S. vulgaris Cd application ameliorated metabolic responses to simultaneous salinity exposure. It also shed a light on distinct strategies of coping with combined abiotic stresses in two ecotypes of the species showing high plasticity in environmental conditions.


Assuntos
Adaptação Fisiológica , Cádmio/toxicidade , Dano ao DNA , Estresse Oxidativo/efeitos dos fármacos , Silene/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Carotenoides/metabolismo , Ecótipo , Glutationa/metabolismo , Estresse Oxidativo/genética , Salinidade , Silene/genética , Silene/crescimento & desenvolvimento , Silene/metabolismo , Solo/química
14.
Food Chem ; 331: 127351, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32580126

RESUMO

We processed three quinoa ecotypes as they are commonly consumed in a daily diet. For the treatments, quinoa seeds were washed, cooked, and/or germinated. Following treated, we used 1H NMR-based metabolomic profiling to explore differences between the ecotypes. Then, for a non-targeted and targeted food fingerprint analysis of samples, we performed multivariable data analyses, including principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), and hierarchical cluster analysis. From our study, we were able to discriminate each quinoa ecotype regardless of treatment based on its metabolomic profiling. Additionally, we were able to identify 30 metabolites that were useful to determine the effect of each treatment on nutritional composition. Germination increased the content of most metabolites irrespective of ecotype. In general, ecotype CQE_03 was different from ecotypes CQE_01 and CQE_02. Our phytochemical analysis revealed the effects of washing, cooking, and/or germination, particularly on saponins content.


Assuntos
Chenopodium quinoa/química , Chenopodium quinoa/crescimento & desenvolvimento , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Chenopodium quinoa/metabolismo , Culinária , Análise Discriminante , Ecótipo , Equador , Germinação , Análise dos Mínimos Quadrados , Metabolômica/estatística & dados numéricos , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética/estatística & dados numéricos , Sementes/química , Sementes/crescimento & desenvolvimento
15.
Phytopathology ; 110(10): 1647-1656, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32401153

RESUMO

Bacterial wilt and brown rot disease caused by Ralstonia solanacearum species complex (RSSC) is one of the major constraints of potato (Solanum tuberosum) production around the globe. During 2017 to 2018, an extensive field survey was conducted in six potato-growing provinces of Iran to monitor the status of bacterial wilt disease. Pathogenicity and host range assays using 59 bacterial strains isolated in Iran showed that they were pathogenic on eggplant, red nightshade, pepper, potato and tomato, while nonpathogenic on common bean, cowpea, cucumber, sunflower, zinnia and zucchini. PCR-based diagnosis revealed that the strains belong to the phylotype IIB/sequevar 1 (IIB/I) lineage of the RSSC. Furthermore, a five-gene multilocus sequence analysis and typing (egl, fliC, gyrB, mutS, and rplB) confirmed the phylogenetically near-homogeneous nature of the strains within IIB/I lineage. Four sequence types were identified among 58 IIB/1 strains isolated in Iran. Phylogenetically near-homogeneous nature of the strains in Iran raise questions about the mode of inoculum entry of the bacterial wilt pathogen into the country (one-time introduction versus multiple introductions), while the geographic origin of the Iranian R. solanacearum strains remains undetermined. Furthermore, sequence typing showed that there were shared alleles (haplotypes) and sequence types among the strains isolated in geographically distant areas in Iran, suggesting intranational transmission of the pathogen in the country.


Assuntos
Ralstonia solanacearum/genética , Solanum tuberosum , Ecótipo , Irã (Geográfico) , Filogenia , Doenças das Plantas
16.
PLoS Genet ; 16(4): e1008658, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302300

RESUMO

Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.


Assuntos
Ecótipo , Evolução Molecular , Peixes/anatomia & histologia , Peixes/genética , Expressão Gênica , Variação Genética , Genoma/genética , Animais , Ecologia , Feminino , Deriva Genética , Especiação Genética , Genética Populacional , Genômica , Masculino , Simpatria
17.
PLoS One ; 15(4): e0231129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240263

RESUMO

Aegilops umbellulata is a wild diploid wheat species with the UU genome that is an important genetic resource for wheat breeding. To exploit new synthetic allohexaploid lines available as bridges for wheat breeding, a total of 26 synthetic hexaploid lines were generated through crossing between the durum wheat cultivar Langdon and 26 accessions of Ae. umbellulata. In nascent synthetic hexaploids with the AABBUU genome, the presence of the set of seven U-genome chromosomes was confirmed with U-genome chromosome-specific markers developed based on RNA-seq-derived data from Ae. umbellulata. The AABBUU synthetic hexaploids showed large variations in flowering- and morphology-related traits, and these large variations transmitted well from the parental Ae. umbellulata accessions. However, the variation ranges in most traits examined were reduced under the AABBUU hexaploid background compared with under the diploid parents. The AABBUU and AABBDD synthetic hexaploids were clearly discriminated by several morphological traits, and an increase of plant height and in the number of spikes and a decrease of spike length were commonly observed in the AABBUU synthetics. Thus, interspecific differences in several morphological traits between Ae. umbellulata and A. tauschii largely affected the basic plant architecture of the synthetic hexaploids. In conclusion, the AABBUU synthetic hexaploid lines produced in the present study are useful resources for the introgression of desirable genes from Ae. umbellulata to common wheat.


Assuntos
Aegilops/genética , Cruzamentos Genéticos , Diploide , Variação Genética , Genoma de Planta , Poliploidia , Triticum/genética , Cromossomos de Plantas/genética , Ecótipo , Marcadores Genéticos , Dureza , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Característica Quantitativa Herdável , Sementes/genética , Especificidade da Espécie
18.
PLoS One ; 15(4): e0232180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343728

RESUMO

The ability to distinguish between different migratory behaviours (e.g., anadromy and potamodromy) in fish can provide important insights into the ecology, evolution, and conservation of many aquatic species. We present a simple stable carbon isotope (δ13C) approach for distinguishing between sockeye (anadromous ocean migrants) and kokanee (potamodromous freshwater residents), two migratory ecotypes of Oncorhynchus nerka (Salmonidae) that is applicable throughout most of their range across coastal regions of the North Pacific Ocean. Analyses of kokanee (n = 239) and sockeye (n = 417) from 87 sites spanning the North Pacific (Russia to California) show that anadromous and potamodromous ecotypes are broadly distinguishable on the basis of the δ13C values of their scale and bone collagen. We present three case studies demonstrating how this approach can address questions in archaeology, archival, and conservation research. Relative to conventional methods for determining migratory status, which typically apply chemical analyses to otoliths or involve genetic analyses of tissues, the δ13C approach outlined here has the benefit of being non-lethal (when applied to scales), cost-effective, widely available commercially, and should be much more broadly accessible for addressing archaeological questions since the recovery of otoliths at archaeological sites is rare.


Assuntos
Colágeno/química , Proteínas de Peixes/química , Salmão/fisiologia , Salmonidae/fisiologia , Migração Animal , Escamas de Animais/química , Animais , Arqueologia , Biodiversidade , Osso e Ossos/química , Isótopos de Carbono/análise , Conservação dos Recursos Naturais , DNA Antigo/análise , Ecótipo , Feminino , Lagos , Masculino , Oceano Pacífico , Salmão/classificação , Salmão/genética , Salmonidae/classificação , Salmonidae/genética
19.
J Vis Exp ; (157)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225144

RESUMO

Tomato is an agronomically important crop that can be infected by Pseudomonas syringae, a Gram-negative bacterium, resulting in bacterial speck disease. The tomato-P. syringae pv. tomato pathosystem is widely used to dissect the genetic basis of plant innate responses and disease resistance. While disease was successfully managed for many decades through the introduction of the Pto/Prf gene cluster from Solanum pimpinellifolium into cultivated tomato, race 1 strains of P. syringae have evolved to overcome resistance conferred by the Pto/Prf gene cluster and occur worldwide. Wild tomato species are important reservoirs of natural diversity in pathogen recognition, because they evolved in diverse environments with different pathogen pressures. In typical screens for disease resistance in wild tomato, adult plants are used, which can limit the number of plants that can be screened due to their extended growth time and greater growth space requirements. We developed a method to screen 10-day-old tomato seedlings for resistance, which minimizes plant growth time and growth chamber space, allows a rapid turnover of plants, and allows large sample sizes to be tested. Seedling outcomes of survival or death can be treated as discrete phenotypes or on a resistance scale defined by amount of new growth in surviving seedlings after flooding. This method has been optimized to screen 10-day-old tomato seedlings for resistance to two P. syringae strains and can easily be adapted to other P. syringae strains.


Assuntos
Bioensaio/métodos , Resistência à Doença , Lycopersicon esculentum/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Plântula/microbiologia , Cotilédone/fisiologia , Meios de Cultura , Ecótipo , Lycopersicon esculentum/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Fenótipo , Esterilização
20.
BMC Evol Biol ; 20(1): 36, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171237

RESUMO

BACKGROUND: The family Aegisthidae is known as typical component of deep-sea hyperbenthic waters that gradually colonized other marine environments. The phylogenetic relationships within this family have been examined here including hyperbenthic, planktonic, benthic forms and two associated Aegisthidae species. RESULTS: Ninety four specimens belong to 14 genera were studied using 18S and 28S rRNA and COI mtDNA. Bayesian analysis supports the monophyly of 10 genera whereas Andromastax, Jamstecia, Nudivorax and Aegisthus revealed to be paraphyletic. The first offshoot of the phylogenetic tree is a clade consists of the undescribed genus Aegisthidae gen.1 sister to the two monophyletic genera Cerviniella and Hase, whereas the other Cerviniinae members (represented by Cervinia and Expansicervinia) assemble a monophylum, sister to the hyperbenthic and planktonic aegisthid genera, resulting in the paraphyly of the subfamily Cerviniinae. Hence, we defined the new subfamily Cerviniellinae subfam. nov. encompassing the three benthic genera Cerviniella, Hase and Eucanuella. The subfamily Cerviniinae has been re-defined to include Cervinia, Expansicervinia and Paracerviniella. Members of the subfamily Pontostratiotinae were clustered into two clades, one consists of the genus Stratiopontotes sister to an undescribed genus + Cerviniopsis and Siphonis. The second contains Pontostratiotes sister to the members of the planktonic subfamily Aegisthinae, resulting in the paraphyly of the Pontostratiotinae. Therefore, the Pontostratiotinae has been re-defined to include only members of the genus Pontostratiotes; whereas the subfamily Cerviniopseinae has been re-erected and re-defined containing Stratiopontotes, Cerviniopsis, Siphonis, Aegisthidae gen. 2, Herdmaniopsis, Hemicervinia and Tonpostratiotes. Within this subfamily, the associated Siphonis clusters as sister to the Cerviniopsis represents an example of convergent evolution in which the possession of a stylet-like mandible and an oral cone reminiscent of the Siphonostomatoida. The planktonic Aegisthus, Andromastax, Jamstecia, Nudivorax and Scabrantenna confirm the monophylom Aegisthinae, sister to the Pontostratiotinae. CONCLUSIONS: Our DNA based phylogeny reveals the deep-sea origin of Aegisthidae by placing benthic Aegisthidae gen.1 and Cerviniellinae subfam. nov. as the most basal lineages. Secondary adaptations to hyperbenthic and planktonic realms, as well as associated lifestyle were discovered here by the derived positions of Pontostratiotinae, Aegisthinae and Siphonis respectively.


Assuntos
Aclimatação/fisiologia , Copépodes/anatomia & histologia , Copépodes/classificação , Ecossistema , Água do Mar , Animais , Copépodes/genética , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Ecótipo , Filogenia , Filogeografia , RNA Ribossômico 28S/análise , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA