Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.550
Filtrar
1.
Braz. j. biol ; 84: e247487, 2024. graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1345555

RESUMO

Abstract Worldwide, conventional agriculture makes extensive use of pesticides. Although the effects of herbicides are relatively well known in terms of environmental impacts on non-target organisms, there is very little scientific evidence regarding the impacts of herbicide residues on aquatic arthropods from tropical conservation areas. This study evaluates for the first time the toxicity of the herbicides ametryn, atrazine, and clomazone on the aquatic insect Limnocoris submontandoni (Hemiptera: Naucoridae). The lethal concentration (LC50) of herbicides was evaluated for these insects, as well as the effect of the herbicides on the insects' tissues and testicles. The estimated LC50 was 1012.41, 192.42, and 46.09 mg/L for clomazone, atrazine, and ametryn, respectively. Spermatocyte and spermatid changes were observed under the effect of atrazine, and effects on spermatogenesis were observed for some concentrations of clomazone, with apparent recovery after a short time. Our results provide useful information on the effects of herbicide residues in aquatic systems. This information can help minimize the risk of long-term reproductive effects in non-target species that have been previously overlooked in ecotoxicology studies.


Resumo Em todo o mundo, a agricultura convencional faz uso extensivo de pesticidas. Embora os efeitos dos herbicidas sejam relativamente bem conhecidos em termos de impactos ambientais em organismos não-alvo, há pouca evidência científica sobre os impactos de resíduos de herbicidas em artrópodes aquáticos de áreas de conservação tropicais. Este estudo avalia pela primeira vez a toxicidade dos herbicidas ametryn, atrazine e clomazone sobre o inseto aquático Limnocoris submontandoni (Hemiptera: Naucoridae). A concentração letal (LC50) de herbicidas foi avaliada para esses insetos, bem como o efeito dos herbicidas nos tecidos e testículos dos insetos. A LC50 estimada foi de 1012,41, 192,42 e 46,09 mg/L para clomazone, atrazine e ametryn, respectivamente. Alterações nos espermatócitos e espermátides foram observadas sob o efeito de atrazine, e efeitos na espermatogênese foram observados para algumas concentrações de clomazone, com aparente recuperação após um curto período de tempo. Nossos resultados fornecem informações úteis sobre os efeitos de resíduos de herbicidas em sistemas aquáticos. Essas informações podem ajudar a minimizar o risco de efeitos reprodutivos de longo prazo em espécies não-alvo que foram negligenciadas anteriormente em estudos de ecotoxicologia.


Assuntos
Animais , Artrópodes , Poluentes Químicos da Água/toxicidade , Hemípteros , Herbicidas/toxicidade , Ecotoxicologia , Genitália
2.
Ying Yong Sheng Tai Xue Bao ; 33(3): 855-864, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35524541

RESUMO

Human activities have severely polluted environments during industrialization. Rotifers are commonly used as model species for ecotoxicological assays. The sensitivities of ecotoxicological indices of rotifers highly depend on different pollutants. We summarized available ecotoxicological indices of rotifers, and reviewed their sensitivity to commonly investigated pollutants. Under the stress of heavy metals, the life-table demographic parameters, physiological and biochemical indices generally show high sensitivity. In response to persistent organic pollutants, sexual indices generally show higher sensitivity than asexual ones. Some studies showed that swimming speed revealed higher sensitivity after exposure to several pollutants compared with life-table demographic and population growth indices. We suggested to consider swimming speed of rotifer as an alternative index for ecotoxicological assays. Overall, this study would provide a guideline for rotifer ecotoxicological studies in the future.


Assuntos
Metais Pesados , Rotíferos , Poluentes Químicos da Água , Animais , Ecotoxicologia , Humanos , Rotíferos/fisiologia , Natação , Poluentes Químicos da Água/toxicidade
3.
Proteomics ; 22(10): e2200055, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35452157

RESUMO

The global Earth ecosystem faces many intertwined threats, primarily anthropogenic pollution, drastic reduction of wild spaces, faster spread of pathogens, and global climate warming. Ecotoxicology, the integration of toxicology and ecology, aims to describe the effects of toxicants on organisms, whether at the level of the population, the community, the ecosystem, or the biosphere. Sentinel species are employed to assess threats to life, giving advance warning of danger. In this issue of Proteomics, Wilde and collaborators (Proteomics 2022, 22, https://doi.org/10.1002/pmic.202100289) present a comprehensive coverage of the proteome of the crustacean Daphnia magna, a species used to evaluate aquatic pollution. This study illustrates how current shotgun proteomics technology allows straightforward quantitation of any protein for whole animals or dissected organs, making global molecular phenotyping a reality for animals. Tandem mass spectrometry operated in data-independent acquisition can be used to compare the response of sentinels to various environmental conditions. The current low number of well-annotated animal or plant genomes, the high diversity of genetic backgrounds of each species, and the paucity of knowledge about protein functions for most of the relevant sentinels pose huge challenges for data interpretation. As a result, ecology and ecotoxicology today constitute an exceptional field for proteomics.


Assuntos
Ecossistema , Proteômica , Animais , Daphnia/metabolismo , Ecotoxicologia/métodos , Proteoma/metabolismo , Proteômica/métodos
4.
J Hazard Mater ; 433: 128771, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366444

RESUMO

A novel adsorptive organoclay (Intraplex A®) was developed for the in situ immobilization of per- and polyfluoroalkyl substances (PFAS) in the vadose zone. We provide the first evaluation of the effects of Intraplex A® on earthworms and plants in a PFAS-contaminated soil. Ecotoxicological tests were carried out on control soil with and without Intraplex A® (C + I and C, respectively) and PFAS-contaminated soil with and without Intraplex A® (PFAS + I and PFAS, respectively). We investigated the acute ecotoxicological effects of PFAS and Intraplex A® on the growth, reproduction and survival of earthworms (Eisenia fetida) and on plant growth (oat - Avena sativa and turnip - Brassica rapa L. silvestris). Earthworm lethality was 7.6 lower in PFAS + I than in PFAS soil. Earthworms avoided 100% C + I and PFAS + I soils, and reduced earthworms' reproduction was observed in both these soils. For both plant species, the PFAS + I soil yielded less fresh and dry shoot biomass than the PFAS soil, while root growth remained unaffected (all tests: p < 0.05). Soils with Intraplex A® had some negative effects on plants and earthworms, which must be balanced with its benefits as an in situ PFAS adsorbent.


Assuntos
Fluorcarbonetos , Oligoquetos , Poluentes do Solo , Animais , Ecotoxicologia , Fluorcarbonetos/toxicidade , Plantas , Solo , Poluentes do Solo/análise
5.
Regul Toxicol Pharmacol ; 131: 105156, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35321839

RESUMO

In recent years, various ecotoxicological test guidelines and (technical) guidance documents have been evaluated and updated with regard to their applicability to nanomaterials (NMs). Several of these have currently reached official regulatory status. Ensuring their harmonized implementation with previously recognized methods for ecotoxicity testing of chemicals is a crucial next step towards effective and efficient regulation of NMs. In the present study, we evaluated the feasibility of assessing multigenerational effects in the first generation of offspring derived from exposed Daphnia magna whilst maintaining test conditions in accordance with regulatory test guidelines and guidance documents for NMs. To do so, we integrated the recommendations for ecotoxicological testing of NMs as defined in OECD Guidance Document 317 into an extended long-term D. magna reproduction test method (OECD Test Guideline 211) and assessed effects of two poorly soluble NMs (nTiO2 and nCeO2). Our results show adverse effects on life-history parameters of D. magna exposed to the selected nanomaterials within the range of reported environmental concentrations. We argue that conforming to OECD test guidelines and accompanying guidance for nanomaterials is feasible when performing D. magna reproduction tests and can minimize unnecessary duplication of similar experiments, even when extensions to the standardized test setup are added.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Animais , Daphnia , Ecotoxicologia/métodos , Nanoestruturas/toxicidade , Reprodução , Poluentes Químicos da Água/toxicidade
6.
Chemosphere ; 298: 134263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35271903

RESUMO

The practice of burning household waste including different types of plastic is illegal in Hungary, still an existing problem. As environmental consequences are hardly known, this study attempts to give an initial estimation of the ecotoxicity generated during controlled combustion of different waste types. These samples included polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PU), oriented strand board (OSB) and rag (RAG). Ecotoxicological profiling was completed using the following test battery: Vibrio fischeri bioluminescence inhibition assay, Daphnia magna immobility test and the seedling emergence assay. Also, genotoxicity of plastic waste samples was assessed using the SOS Chromotest. Concerning main pollutants in the samples, the samples could be distinguished as 'PAH-type' and 'heavy metal-type' samples. PVC, PU and PS samples showed the highest toxicity in the Vibrio and Daphnia assays. The PVC sample was characterized by an extremely high cadmium concentration (22.4 µg/L), PS, PP and PU samples on the contrary had high total PAH content. While Vibrio and Daphnia showed comparable sensitivity, the phytotoxicity assay had no response for any of the samples tested. Samples originating from the controlled burning of different plastic types such as PU, PVC, PS and PP were classified as genotoxic, PS sample showed extremely high genotoxicity. Genotoxicity expressed as SOSIF showed strong correlation with most of the PAHs detected.


Assuntos
Plásticos , Cloreto de Polivinila , Aliivibrio fischeri , Animais , Daphnia , Ecotoxicologia
7.
Chemosphere ; 298: 134279, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35283142

RESUMO

Fish consumption has many health benefits, but exposure to contaminants, such as mercury (Hg), in fish tissue can be detrimental to human health. The Tanana River drainage, Alaska, USA supports the largest recreational harvest of burbot (Lota lota) in the state, yet information to evaluate the potential risks of consumption by humans is lacking. To narrow this knowledge gap, we sought to (i) quantify the concentrations of total Hg ([THg]) in burbot muscle and liver tissue and the ratio between the two tissues, (ii) assess the effect of age, length, and sex on [THg] in muscle and liver tissue, (iii) evaluate if [THg] in muscle tissue varied based on trophic information, and (iv) compare observed [THg] to consumption guidelines and statewide baseline data. The mean [THg] was 268.2 ng/g ww for muscle tissue and 62.3 ng/g ww for liver tissue. Both muscle [THg] and liver [THg] values were positively associated with fish length. Trophic information (δ15N and δ13C) was not significantly related to measured [THg] in burbot muscle, which is inconsistent with typical patterns of biomagnification observed in other fishes. All burbot sampled were within the established categories for consumption recommendations determined by the State of Alaska for women of childbearing age and children. Our results provide the necessary first step towards informed risk assessment of burbot consumption in the Tanana drainage and offer parallels to fisheries and consumers throughout the subarctic and Arctic region.


Assuntos
Gadiformes , Mercúrio , Poluentes Químicos da Água , Alaska , Animais , Ecotoxicologia , Monitoramento Ambiental , Feminino , Peixes , Humanos , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
J Hazard Mater ; 432: 128712, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35316637

RESUMO

The rapid increase of neonicotinoid insecticides (NNIs) leads to the resistance to target organisms and risks to non-target organisms in the ecosystem. Thus, we designed a multi-criteria framework for resistance to target organisms, exposure risks to non-target organisms under spraying and soil or seed treatment scenarios, and ruled out the NNIs on the priority control lists. The resistance and cross-resistance, as well as the toxicity (i.e., acute, chronic, and combined toxicities) were characterized and evaluated. Results showed that the cross-resistance between two NNIs (i.e., CLO and FLU) was 1.8 times higher than their single resistance. A medium to extra-high toxicity level of NNIs was found in non-target organisms. Regulation strategies for NNIs resistance and toxicity were also proposed. The best synergist blocking and control scheme for resistance and toxicity was screened out when three main synergists (i.e., TPP: DEM: PBO) with the ratio of 1:1:1. Four NNIs (i.e., NPM, IMI, ACE, TMX) used in grain crops and six NNIs (i.e., NPM, IMI, ACE, TMX, CLO, THI) used in vegetable crops were determined as the ruled-out pesticides on the priority control lists. This study highlights the adverse effects of NNIs on the ecosystem and human health which should not be overlooked.


Assuntos
Inseticidas , Ecossistema , Ecotoxicologia , Humanos , Resistência a Inseticidas , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides/toxicidade
10.
Arch Environ Contam Toxicol ; 82(3): 429-438, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35332359

RESUMO

Behavioral endpoints are important parameters to assess the effects of toxicants on aquatic animals. These endpoints are useful in ecotoxicology because several toxicants modify the animal behavior, which may cause adverse effects at higher levels of ecological organization. However, for the development of new bioassays and for including the behavior in ecotoxicological risk assessment, the comparison of sensitivity between different behavioral endpoints is necessary. Additionally, some toxicants remain in aquatic environments for a few hours or days, which may lead to animal recovery after toxicant exposure. Our study aimed to assess the effect of unionized ammonia on the movement and feeding behaviors of the aquatic gastropod Potamopyrgus antipodarum (Tateidae, Mollusca) and its recovery after exposure. Four treatments were used: a control and three nominal concentrations of unionized ammonia (0.25, 0.5 and 1 mg N-NH3/L). Each treatment was replicated eight times, with six animals in each replicate. Animals were exposed to unionized ammonia for 48 h (exposure period) and, subsequently, to control water for 144 h (post-exposure period). Two movement variables were monitored without food and five feeding behavioral variables were monitored in the presence of food. Some of the feeding behavioral variables showed higher sensitivity (LOEC = 0.25-0.5 mg N-NH3/L) than the movement behavior variables monitored without food (LOEC = 1 mg N-NH3/L). After exposure to unionized ammonia, animals showed a recovery of most behavioral endpoints. The inclusion of post-exposure period and feeding behaviors in bioassays may make studies more realistic, which is crucial for a proper ecotoxicological risk assessment.


Assuntos
Amônia , Poluentes Químicos da Água , Amônia/toxicidade , Animais , Bioensaio , Ecotoxicologia , Caramujos , Poluentes Químicos da Água/toxicidade
11.
J Environ Sci Health B ; 57(3): 201-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35193456

RESUMO

Abamectin (avermectin B1, ABM) has been widely used as a biocide in agriculture, veterinary and medicine around the world. Yet, there is still a lack of knowledge about the ecotoxicological effects of ABM. In this study, we investigated the acute toxicity and sub-lethal (20% and 60% LD50) biochemical responses of ABM on the non-target land snail, Theba pisana. Mortality of snails increased with the dose increase, resulting 48 h- LD50 value of 1.048 µg/snail. The biochemical results showed a decrease in glycogen content and lipids for two sub-lethal doses after all time intervals, whereas increased the level of total proteins after exposure to 60% LD50 ABM. Overall, the tested sub-lethal doses significantly decreased the total energy reserves. ABM-exposure to snails elevated γ-Glutamyl transferase and Lactate dehydrogenase activities at all-time intervals. A significant increase of Glutathione-S-transferase activity was also recorded in snails exposed to 20% and 60% LD50 after 7 days and all time intervals, respectively. However, ABM inhibited the activity of Aspartate aminotransferase and Alanine aminotransferase after 7 days of exposure. Our investigation provides new insights into the disturbances of energy reserves and enzyme activities in T. pisana that are sensitive and may be used as biomarkers for assessing ABM toxicity.


Assuntos
Desinfetantes , Desinfetantes/toxicidade , Ecotoxicologia , Glutationa Transferase/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade
12.
Environ Sci Pollut Res Int ; 29(21): 31002-31024, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35113376

RESUMO

Laboratory testing with spiked sediments with organic contaminants is a valuable tool for ecotoxicologists to study specific processes such as effects of known concentrations of toxicants, interactions of the toxicants with sediment and biota, and uptake kinetics. Since spiking of the sediment may be performed by using different strategies, a plethora of procedures was proposed in the literature for spiking organic chemicals onto sediments to perform ecotoxicological analyses. In this paper, we reviewed the scientific literature intending to characterise the kind of substrates that were used for spiking (i.e. artificial or field-collected sediment), how the substrates were handled before spiking and amended with the organic chemical, how the spiked sediment was mixed to allow the homogenisation of the chemical on the substrate and finally how long the spiked sediment was allowed to equilibrate before testing. What emerged from this review is that the choice of the test species, the testing procedures and the physicochemical properties of the organic contaminant are the primary driving factors affecting the selection of substrate type, sediment handling procedures, solvent carrier and mixing method. Finally, we provide recommendations concerning storage and characterization of the substrate, equilibrium times and verification of both equilibration and homogeneity.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Ecotoxicologia , Sedimentos Geológicos/química , Compostos Orgânicos , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 825: 154069, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217047

RESUMO

Mercury (Hg) is a global, persistent and inevitable pollutant, the toxicity of which is mostly reflected in its species including inorganic Hg (InHg) and methyl mercury (MeHg). Using diffusive gradients in thin films (DGT) is deemed as a reliable technique to determine the bioavailability of pollutants. This study is the first attempt to assess the integrated toxicity of mercury species mixtures in sediments to the aquatic biota based on the DGT technique. In the course, the Daya Bay under serious anthropogenic influences was selected as the study case. The results showed that the DGT concentrations of InHg and MeHg were detected as 0.30-1.93 µg/L and 0.28-1.94 µg/L respectively in the surface sediments collected from the Daya Bay. In terms of the toxicity of single mercury species, the risk quotient (RQ) values of InHg and MeHg significantly exceeded 1, indicating that the adverse effects of InHg and MeHg should not be ignored. In terms of the integrated toxicity of mercury species mixtures, the probabilistic biological risk assessment results demonstrate that Daya Bay features low (3.32%) probability of toxic effects in its surface sediments to the aquatic biota.


Assuntos
Poluentes Ambientais , Mercúrio , Poluentes Químicos da Água , Biota , Ecotoxicologia , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Mar Drugs ; 20(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200611

RESUMO

Palytoxin (PLTX) is a highly toxic polyether identified in various marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. In addition to adverse effects in humans, negative impacts on different marine organisms have been often described during Ostreopsis blooms and the concomitant presence of PLTX and its analogues. Considering the increasing frequency of Ostreopsis blooms due to global warming, PLTX was investigated for its effects on Artemia franciscana, a crustacean commonly used as a model organism for ecotoxicological studies. At concentrations comparable to those detected in culture media of O. cf. ovata (1.0-10.0 nM), PLTX significantly reduced cysts hatching and induced significant mortality of the organisms, both at larval and adult stages. Adults appeared to be the most sensitive developmental stage to PLTX: significant mortality was recorded after only 12 h of exposure to PLTX concentrations > 1.0 nM, with a 50% lethal concentration (LC50) of 2.3 nM (95% confidence interval = 1.2-4.7 nM). The toxic effects of PLTX toward A. franciscana adults seem to involve oxidative stress induction. Indeed, the toxin significantly increased ROS levels and altered the activity of the major antioxidant enzymes, in particular catalase and peroxidase, and marginally glutathione-S-transferase and superoxide dismutase. On the whole, these results indicate that environmentally relevant concentrations of PLTX could have a negative effect on Artemia franciscana population, suggesting its potential ecotoxicological impact at the marine level.


Assuntos
Acrilamidas/toxicidade , Artemia/efeitos dos fármacos , Venenos de Cnidários/toxicidade , Toxinas Marinhas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acrilamidas/administração & dosagem , Animais , Venenos de Cnidários/administração & dosagem , Relação Dose-Resposta a Droga , Ecotoxicologia , Dose Letal Mediana , Estágios do Ciclo de Vida , Toxinas Marinhas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
16.
Environ Toxicol Chem ; 41(4): 954-960, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35226391

RESUMO

Environmental contamination with nano- and microplastic (NMP) particles is an emerging global concern. The derivation of species sensitivity distributions (SSDs) is an essential step in estimating a hazardous concentration for 5% of the species (HC5), and this HC5 value is often used as a "safe" concentration in ecological risk assessment, that is, predicted-no-effect concentration. Although properties of plastics such as particle size can affect toxic effect concentrations, such influences have not yet been quantitatively considered in estimating SSDs for NMP particles. We illustrate a log-normal SSD using chronic lowest-observed-effect concentrations (LOECs) of NMP particles from readily available toxicity data sets, considering the influence of particle size, polymer type, and freshwater or marine test media by adopting Bayesian hierarchical modeling techniques. Results of the hierarchical SSD modeling suggest that the SSD mean was negatively associated with particle size and was lower in marine media than in freshwater media. The posterior medians of the HC5 estimated from the LOEC-based SSD varied by a factor of 10 depending on these factors (e.g., 1.8-20 µg/L for the particle size range of 0.1-5000 µm in the marine environment). Hierarchical SSD modeling allows us to clarify the influences of important factors such as NMP properties on effect concentrations, thereby helping to guide more relevant ecological risk assessments for NMP. Environ Toxicol Chem 2022;41:954-960. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microplásticos , Poluentes Químicos da Água , Teorema de Bayes , Ecotoxicologia , Microplásticos/toxicidade , Plásticos , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-35183764

RESUMO

The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.


Assuntos
Ecotoxicologia , Rotíferos , Animais , Invertebrados/genética , Filogenia , Receptores Acoplados a Proteínas G/genética , Rotíferos/genética
18.
Methods Mol Biol ; 2425: 589-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188648

RESUMO

This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.


Assuntos
Ecossistema , Ecotoxicologia , Simulação por Computador , Relação Quantitativa Estrutura-Atividade , Medição de Risco
19.
Artigo em Inglês | MEDLINE | ID: mdl-35162233

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants routinely detected in aquatic ecosystems. It is, therefore, necessary to assess the link between deleterious marine biota PAH effects, especially in commercialized and consumed animals, environmental health status, and potential human health risks originating from the consumption of contaminated seafood products. Thus, this review seeks to verify the relationships of ecotoxicological studies in determining effect and safety concentrations on animals routinely consumed by humans. METHODS: A total of 52 published studies between 2011 and 2021, indexed in three databases, were selected following the PICO methodology, and information on test animals, evaluated PAH, and endpoints were extracted. RESULTS: Benzo(a)pyrene and phenanthrene were the most investigated PAHs in terms of biomarkers and test organisms, and mussels were the most evaluated bioindicator species, with an emphasis on reproductive responses. Furthermore, despite the apparent correlation between environmental PAH dynamics and effects on aquatic biota and human health, few assessments have been performed in a multidisciplinary manner to evaluate these three variables together. CONCLUSIONS: The links between human and environmental sciences must be strengthened to enable complete and realistic toxicity assessments as despite the application of seafood assessments, especially to mussels, in bioassays, the connection between toxicological animal responses and risks associated with their consumption is still understudied.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Ecotoxicologia , Monitoramento Ambiental/métodos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
20.
Environ Sci Technol ; 56(8): 4788-4794, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35196004

RESUMO

The significance of neurotoxicological risks associated with anthropogenic pollution is gaining increasing recognition worldwide. In this regard, perturbations in behavioral traits upon exposure to environmentally relevant concentrations of neurotoxic and neuro-modulating contaminants have been linked to diminished ecological fitness of many aquatic species. Despite an increasing interest in behavioral testing in aquatic ecotoxicology there is, however, a notable gap in understanding of the neurophysiological foundations responsible for the altered behavioral phenotypes. One of the canonical approaches to explain the mechanisms of neuro-behavioral changes is functional analysis of neuronal transmission. In aquatic animals it requires, however, invasive, complex, and time-consuming electrophysiology techniques. In this perspective, we highlight emerging prospects of noninvasive, in situ electrophysiology based on multielectrode arrays (MEAs). This technology has only recently been pioneered for the detection and analysis of transient electrical signals in the central nervous system of small model organisms such as zebrafish. The analysis resembles electroencephalography (EEG) applications and provides an appealing strategy for mechanistic explorative studies as well as routine neurotoxicity risk assessment. We outline the prospective future applications and existing challenges of this emerging analytical strategy that is poised to bring new vistas for aquatic ecotoxicology such as greater mechanistic understanding of eco-neurotoxicity and thus more robust risk assessment protocols.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Organismos Aquáticos , Ecotoxicologia , Eletrofisiologia , Estudos Prospectivos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...