Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Nat Commun ; 12(1): 1526, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750781

RESUMO

The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.


Assuntos
El Niño Oscilação Sul/efeitos adversos , Florestas , Árvores , Clima Tropical , Arecaceae , Ásia Sudeste , Bornéu , Mudança Climática , Secas , Ecologia , Humanos , Malásia , Folhas de Planta , Floresta Úmida
2.
Sci Total Environ ; 766: 144234, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418256

RESUMO

Droughts have increased in frequency, duration, and severity across most of the tropics but their effect on forest communities remain not fully understood. Here we assessed the effects of a severe El Niño-induced drought event on dominant and low abundance understory plant species and the consequent impacts on ecosystem functions in the South American Atlantic Forest. We established 20 permanent plots with contrasting vegetation structure and topography. In each plot, we measured the stem diameter at breast height (DBH) of every understory woody plant (i.e. 1 to 10 cm stem diameter) before and after a severe 4-year drought event to calculate relative growth and mortality rates after drought. Litter biomass, litter nutrient content and soil nutrients, as well as tree canopy cover, were also quantified. High stem density reduced survival to drought for both dominant and low abundance understory woody species. The growth rate of dominant and low abundance species was lower on steeper slopes during the drought. Dominant species were the main contributor of litter biomass production whereas low abundance species were important drivers of litter quality. Overall, our findings suggest that habitats with low tree density and larger trees on flat areas, such as in valleys, can act as refuges for understory plant species during drought periods. These habitats are resource-rich, providing nutrients and water during unfavorable drought periods and might improve forest resilience to climate change in the long term.


Assuntos
Secas , Ecossistema , El Niño Oscilação Sul , Florestas , Árvores
3.
J Environ Manage ; 280: 111707, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349512

RESUMO

The objectives of this study are: (i) to evaluate the space-temporal variability of fire foci by environmental satellites, CHIRPS and remote sensing products based on applied statistics, and (ii) to identify the relational pattern between the distribution of fire foci and the environmental, meteorological, and socioeconomic variables in the mesoregions of Minas Gerais (MG) - Brazil. This study used a time series of fire foci from 1998 to 2015 via BDQueimadas. The temporal record of fire foci was evaluated by Mann-Kendall (MK), Pettitt (P), Shapiro-Wilk (SW), and Bartlett (B) tests. The spatial distribution by burned area (MCD64A1-MODIS) and the Kernel density - (radius 20 km) were estimated. The environmental variables analyzed were: rainfall (mm) and maximum temperature (°C), besides proxies to vegetation canopy: NDVI, SAVI, and EVI. PCA was applied to explain the interaction between fire foci and demographic, environmental, and geographical variables for MG. The MK test indicated a significant increasing trend in fire foci in MG. The SW and B tests were significant for non-normality and homogeneity of data. The P test pointed to abrupt changes in the 2001 and 2002 cycles (El Niño and La Niña moderated), which contributes to the annual increase and in winter and spring, which is identified by the Kernel density maps. Burned areas highlighted the northern and northwestern regions of MG, Triângulo Mineiro, Jequitinhonha, and South/Southwest MG, in the 3rd quarter (increased 17%) and the 4th quarter (increased 88%). The PCA resulted in three PCs that explained 71.49% of the total variation. The SAVI was the variable that stood out, with 11.12% of the total variation, followed by Belo Horizonte, the most representative in MG. We emphasize that the applied conceptual theoretical model defined here can act in the environmental management of fire risk. However, public policies should follow the technical-scientific guidelines in the mitigation of the resulting socioeconomic - environmental damages.


Assuntos
Fogo , Brasil , El Niño Oscilação Sul , Estações do Ano
4.
Sci Total Environ ; 763: 144205, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33360958

RESUMO

El Niño events have great impacts on marine ecosystems worldwide, ranging from low trophic plankton production to fishery resources. Understanding how ecosystems respond to El Niño is the key to the success of ecosystem-based fisheries management (EBFM). However, few studies have focussed on the ecosystems respond to this natural perturbation in China seas, and the selection of effective ecological network analyses (ENA) indicators to evaluate the ecosystem response under El Niño conditions needs to be assessed. In this study, we constructed Ecopath models for Haizhou Bay in ENSO-neutral (2013) and El Niño (2015) years. Comprehensive analyses were conducted to evaluate ENA indicators in terms of sensitivity to the ecosystem variations, robustness to the model parameters uncertainties, and statistical check. Results showed that there were obvious variations in the species composition and biomass in the Haizhou Bay ecosystem under the El Niño event. Four optimal ENA indicators were selected, including total system throughput, total primary production, total system non-cycled throughflow, and ascendency. The indicators further showed a shrunken ecosystem size, increased energetic efficiency, and less organised ecosystem under the El Niño event. These findings enhance our understanding of ecosystem dynamics and underscore the need for precautionary management under El Niño conditions. Moreover, this work can be helpful in guiding the further selection of ENA indicators for evaluating and managing marine ecosystems during El Niño events elsewhere and thusly contribute to the implementation of EBFM.


Assuntos
Ecossistema , El Niño Oscilação Sul , Baías , China , Pesqueiros
5.
Ambio ; 50(1): 174-189, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32152905

RESUMO

The 2015-2016 El Niño had large impacts globally. The effects were not as great as anticipated in Kenya, however, leading some commentators to call it a 'non-event'. Our study uses a novel combination of participatory Climate Vulnerability and Capacity Analysis tools, and new and existing social and biophysical data, to analyse vulnerability to, and the multidimensional impacts of, the 2015-2016 El Niño episode in southern coastal Kenya. Using a social-ecological systems lens and a unique dataset, our study reveals impacts overlooked by conventional analysis. We show how El Niño stressors interact with and amplify existing vulnerabilities to differentially impact local ecosystems and people. The policy significance of this finding is that the development of specific national capacities to deal with El Niño events is insufficient; it will be necessary to also address local vulnerabilities to everyday and recurrent stressors and shocks to build resilience to the effects of El Niño and other extremes in climate and weather.


Assuntos
Ecossistema , El Niño Oscilação Sul , Humanos , Quênia , Tempo (Meteorologia)
6.
PLoS One ; 15(12): e0243794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315952

RESUMO

A suite of factors may have contributed to declines in the titi (sooty shearwater; Ardenna grisea) population in the New Zealand region since at least the 1960s. Recent estimation of the magnitude of most sources of non-natural mortality has presented the opportunity to quantitatively assess the relative importance of these factors. We fit a range of population dynamics models to a time-series of relative abundance data from 1976 until 2005, with the various sources of mortality being modelled at the appropriate part of the life-cycle. We present estimates of effects obtained from the best-fitting model and using model averaging. The best-fitting models explained much of the variation in the abundance index when survival and fecundity were linked to the Southern Oscillation Index, with strong decreases in adult survival, juvenile survival and fecundity being related to El Niño-Southern Oscillation (ENSO) events. Predation by introduced animals, harvesting by humans, and bycatch in fisheries also appear to have contributed to the population decline. It is envisioned that the best-fitting models will form the basis for quantitative assessments of competing management strategies. Our analysis suggests that sustainability of the New Zealand titi population will be most influenced by climate, in particular by how climate change will affect the frequency and intensity of ENSO events in the future. Removal of the effects of both depredation by introduced predators and harvesting by humans is likely to have fewer benefits for the population than alleviating climate effects.


Assuntos
Aves/fisiologia , Modelos Teóricos , Animais , Conservação dos Recursos Naturais , El Niño Oscilação Sul , Pesqueiros , Humanos , Nova Zelândia , Dinâmica Populacional , Comportamento Predatório
8.
Nature ; 585(7824): 225-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908268

RESUMO

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Assuntos
Atmosfera/química , Butadienos/análise , Butadienos/química , Mapeamento Geográfico , Hemiterpenos/análise , Hemiterpenos/química , Imagens de Satélites , África , Austrália , Brasil , Conjuntos de Dados como Assunto , El Niño Oscilação Sul , Formaldeído/química , Radical Hidroxila/análise , Radical Hidroxila/química , Ciclo do Nitrogênio , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxirredução , Estações do Ano , Sudeste dos Estados Unidos
9.
Environ Monit Assess ; 192(10): 654, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32965608

RESUMO

The objective is to evaluate the fire foci dynamics via environmental satellites and their relationship with socioenvironmental factors and meteorological systems in the state of Alagoas, Brazil. Data considered the period between 2000 and 2017 and was obtained from CPTEC/INPE. Annual and monthly analyzes were performed based on descriptive, exploratory (boxplot) and multivariate statistics analyzes (cluster analysis (CA), principal component analysis (PCA)) and Poisson regression models (based on 2000 and 2010 census data). CA based on the Ward method identified five fire foci homogeneous groups (G1 to G5), while Coruripe did not classify within any group (NA); therefore, the CA technique was consistent (CCC = 0.772). Group G1 is found in all regions of Alagoas, while G2, G5, and NA groups are found in Baixo São Francisco, Litoral, and Zona da Mata regions. Most fire foci were observed in the Litoral region. Seasonally, the largest records were from October to December months for all groups, influenced by the sugarcane harvesting period. The G4 group and Coruripe accounted for 60,767 foci (32.1%). The highest number of fire foci occurred in 2012 and 2015 (between 8000 and 9000 foci), caused by the action of the El Niño-Southern Oscillation. The Poisson regression showed that the dynamics of fire foci are directly associated with the Gini index and Human Development Index (models 1 and 3). Based on the PCA, the three components captured 78.8% of the total variance explained, and they were strongly influenced by the variables: population, GDP, and demographic density. The municipality of Maceió has the largest contribution from the fire foci, with values higher than 40%, and in PC1 and PC2 are related to urban densification and population growth.


Assuntos
Monitoramento Ambiental , Fogo , Brasil , Cidades , El Niño Oscilação Sul , Humanos
10.
PLoS One ; 15(9): e0238405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936809

RESUMO

In the California Current Ecosystem, El Niño acts as a natural phenomenon that is partially representative of climate change impacts on marine bacteria at timescales relevant to microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the "blob") and an El Niño event resulted in prolonged ocean warming in the Southern California Bight (SCB). To determine whether this "marine heatwave" resulted in shifts in microbial populations, we sequenced the rpoC1 gene from the biogeochemically important picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies of ecotypes commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and ecotype trends appeared to operate on differing temporal scales. In contrast to ecotype trends, most microdiverse populations were static and possibly reflect local habitat conditions. The only exceptions were microdiversity from Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-heatwave composition by the end of this study. This research demonstrates that extended warming in the SCB can result in persistent changes in key microbial populations.


Assuntos
El Niño Oscilação Sul , Prochlorococcus/isolamento & purificação , Água do Mar/microbiologia , Synechococcus/isolamento & purificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Biodiversidade , California , Mudança Climática , Ecossistema , Ecótipo , Genes Bacterianos , Microbiota/genética , Oceano Pacífico , Filogenia , Prochlorococcus/genética , Prochlorococcus/crescimento & desenvolvimento , Estações do Ano , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento , Temperatura
11.
Proc Natl Acad Sci U S A ; 117(39): 24127-24137, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32900937

RESUMO

El Niño-Southern Oscillation has been treated as a disruptor of environmental and socioeconomic equilibrium both in ancient times and in modern-day Peru. Recent work in the coastal desert plain, known as the Pampa de Mocan, challenges this view by demonstrating that prehispanic irrigation systems were designed to incorporate floods and convert them into productive waters. Archaeological investigations in this landscape reveal a 2,000-y history of floodwater farming embedded in conventional canal systems. Together with a pollen record recovered from a prehispanic well, these data suggest that the Pampa de Mocan was a flexible landscape, capable of taking advantage of El Niño floodwaters as well as river water. In sharp contrast to modern-day flood mitigation efforts, ancient farmers used floodwaters to develop otherwise marginal landscapes, such as the Pampa de Mocan, which in turn mitigated risk during El Niño years. These archaeological data speak to contemporary policy debates in the face of increasingly intense and frequent natural disasters and question whether El Niño Southern Oscillation events should be approached as a form of temporary disorder or as a form of periodic abundance.


Assuntos
Irrigação Agrícola/história , Agricultura/história , El Niño Oscilação Sul , Plantas , Arqueologia , Etnobotânica , História Antiga , Peru , Pólen
12.
Int J Biometeorol ; 64(12): 2153-2160, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902724

RESUMO

Leaf diseases affect crop yields. In sunflower crops, leaf spot severity can reach 100%, but the magnitude of the yield loss caused by the disease is not known. This study aimed to evaluate the effect of Alternaria and Septoria leaf spot severity on sunflower yield across different years in a humid subtropical climate. We conducted 37 experiments in Santa Maria, RS, Brazil, over 7 years. The hybrids Embrapa 122, Helio 358, Aguará 03, and Altis 99 were sowed and managed according to national crop recommendations. Severity assessments for Alternaria and Septoria spots were performed at 2- to 7-day intervals using a diagrammatic scale. We evaluated the effects of Alternaria and Septoria leaf spot severity on crop yield using upper limit graphs. The 37 experiments comprised 13 normal season crops (August to October) and 24 late season crops (November to February). The results were also classified according to the contemporaneous phases of the ENSO (El Niño Southern Oscillation): El Niño, La Niña, and Neutral. In normal season crops, severities of up to 24% do not result in yield decrease. After this, each 1% increment in disease severity produces a decrease of 66 kg ha-1 on sunflower yield. In late season crops, the reduction in productivity occurs at severities greater than 34%, with a decrease of 50 kg ha-1 for each 1% increase in combined disease severity. The highest severity values and lowest yields, both in the normal and late season crops, occurred in El Niño years.


Assuntos
Helianthus , Alternaria , Brasil , El Niño Oscilação Sul , Estações do Ano
13.
Environ Sci Pollut Res Int ; 27(28): 34906-34926, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661979

RESUMO

Although the number of cholera infection decreased universally, climate change can potentially affect both incidence and prevalence rates of disease in endemic regions. There is considerable consistent evidence, explaining the associations between cholera and climatic variables. However, it is essentially required to compare and interpret these relationships globally. The aim of the present study was to carry out a systematic review in order to identify and appraise the literature concerning the relationship between nonanthropogenic climatic variabilities such as extreme weather- and ocean-related variables and cholera infection rates. The systematic literature review of studies was conducted by using determined search terms via four major electronic databases (PubMed, Web of Science, Embase, and Scopus) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. This search focused on published articles in English-language up to December 31, 2018. A total of 43 full-text studies that met our criteria have been identified and included in our analysis. The reviewed studies demonstrated that cholera incidence is highly attributed to climatic variables, especially rainfall, temperature, sea surface temperature (SST) and El Niño Southern Oscillation (ENSO). The association between cholera incidence and climatic variables has been investigated by a variety of data analysis methodologies, most commonly time series analysis, generalized linear model (GLM), regression analysis, and spatial/GIS. The results of this study assist the policy-makers who provide the efforts for planning and prevention actions in the face of changing global climatic variables.


Assuntos
Cólera , Mudança Climática , El Niño Oscilação Sul , Humanos , Incidência , Prevalência
14.
Glob Chang Biol ; 26(8): 4284-4301, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32558115

RESUMO

Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease-induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955-2018) across extant marine mammals (n = 129) in relation to key life-history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%-21%), with 72% (n = 36; 95% CI 56%-84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%-41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus-induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2  = 9.6, p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2  = 19.85, p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43, p = 2.7e-04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28, p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.


Assuntos
Caniformia , Mudança Climática , Animais , Surtos de Doenças , Ecossistema , El Niño Oscilação Sul , Mamíferos
15.
Environ Monit Assess ; 192(7): 449, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32572813

RESUMO

The need to validate the quality of evapotranspiration estimates is essential for this parameter which has extended its use. For this, it is necessary to evaluate both new remote sensing products that expand the areas of estimated evapotranspiration and empirical equations that provide estimates with different data requirements. In order to examine this problem, the present study compared the estimates of evapotranspiration obtained by remote sensing of the MOD16A2 product and seven empirical equations with the estimates obtained through the FAO-56 reference method, with data obtained from six meteorological stations in the State of Rio de Janeiro, Brazil. Data cover the period from 2007 to 2013, which contains different phases of the El Niño-Southern Oscillation phenomenon. The methods proposed by Valiantzas were those that obtained the best performances when compared with FAO-56 with R2 over 90%. The non-parametric analysis of Mann-Kendall for the six seasons was mostly not significant; only the station of Resende showed a tendency of significant growth during the El Niño episode (Z = 0.283 and p value = 0.050). The mangrove and forest classes were the ones that obtained the highest averages (3.75 mm d-1 and 3.62 mm d-1), where the gradient of evapotranspiration can be observed in the South-Northeast portions. The MOD16A2 orbital product was inferior to the methods that used surface meteorological station data.


Assuntos
El Niño Oscilação Sul , Monitoramento Ambiental , Brasil , Florestas , Estações do Ano
16.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1487-1495, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32530225

RESUMO

The ENSO events affect climate and fire danger of China. It would be helpful for improving fire danger forecast to understand the impacts of ENSO events on fire weather for various ecological zones in the country. We calculated the fire weather index (FWI) using the daily climatic dataset (V3.0) of international exchange weather stations in China during 1951-2016. The burned areas in forests for each ecological zone in 2001-2016 were derived from MODIS fire products. Temperature, precipitation, FWI and burned areas in fire season were estimated for each ecological zone by ENSO events (weak, medium, strong, and super strong El Niño events and weak, medium, and strong La Niña events). The results showed that there were 19 El Niño events and 14 La Niña events during 1950-2016. The average daily maximum temperature of the spring fire season increased significantly in the northwestern region with the influence of strong or super strong El Niño event, while the temperature reduced significantly in the medium El Niño event for mid-temperate semi-arid grassland. Precipitation in fire season generally increased in El Niño events in southern and southwestern forest regions. It would be reduced in most areas affected by the low and medium intensity La Niña event, but be increased during the strong La Nina event. The fire weather indices of southern forest regions decreased due to the weak El Niño event. The FWI of the northern forest regions increased with the strong or super strong El Niño event, and reduced in the southern and southwestern forest areas. There was a significant spatial difference on the FWI for some ecological zones with the impacts of the El Niño/La Niña events. The burned areas showed a consistent change trend with seasonal severity rating (SSR) during 2001-2016 when the SSR changed significantly for the regions of deciduous broad-leaved forest in humid/semihumid areas of warm temperate zone, broad-leaved forest in the middle north subtropical humid areas, and broad-leaved forest in tropical and subtropical humid areas. The burned areas in the rest regions were not affected by the ENSO events.


Assuntos
Incêndios Florestais , China , El Niño Oscilação Sul , Estações do Ano , Tempo (Meteorologia)
17.
Sci Total Environ ; 738: 139808, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531596

RESUMO

The extreme climate events such as El Nino seriously threaten crop production and agro-ecological sustainability because of the aggravated environmental stresses worldwide, particularly in sub-Saharan Africa. To address this issue, we investigated the effects of dual plastic film and straw mulching in ridge-furrow (RF) system on wheat productivity, soil carbon and nitrogen stocks in a semiarid area in Kenya from 2015 to 2017. The experimental site represents a typical semiarid continental monsoon climate, and soil type is chromic vertisols. Field experiment with randomized block design consisted of six RF treatments as follows: 1) dual black plastic film and straw mulching (RFbS), 2) dual transparent plastic film and straw mulching (RFtS), 3) sole black plastic film mulching (RFb), 4) sole transparent plastic mulching RF (RFt), 5) sole straw mulching (RFS) and 6) no mulching (CK). The results indicated that seasonal dynamics of rainfall and air temperature fit in with the weather type of El Nino over four growing seasons. RFbS, RFtS, RFb and RFt significantly increased soil water storage (SWS), topsoil temperature, aboveground biomass, grain yield and water use efficiency across four growing seasons (p < 0.05) as compared with CK. Among all the treatments, RFbS and RFtS achieved the greatest SWS, AgB, grain yield and WUE, owing to improved soil hydro-thermal status in both treatments. Critically, RFbS and RFtS significantly improved soil organic carbon and total nitrogen, soil bulk density and the C:N ratio following four growing seasons, comparing with other treatments (p < 0.05). Besides, RFbS and RFtS gave the highest economic returns among all treatments. For the first time, we found that dual plastic film and straw mulching could serve as a sustainable land management to boost wheat productivity and improve soil quality under El Nino in semiarid areas of SSA.


Assuntos
Solo , Triticum , Agricultura , Carbono , China , El Niño Oscilação Sul , Quênia , Plásticos , Água/análise , Zea mays
18.
J Parasitol ; 106(3): 578-581, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32434216

RESUMO

Heptacyclus buthi was harvested from fish hosts in rocky intertidal zones of Sonoma and Marin Counties, California, in October 2008 (n = 162) and October 2010 (n = 51). The size of the leeches was quantified using a method that approximated the sagittal cross-section of each specimen. Size-frequency curves were modeled to estimate the number of size-class cohorts in each year. If H. buthi is an annual species like many of its relatives, the single cohort modeled for in 2010 and the comparable "older" cohort in 2008, both with a broad range of sizes, may represent 1 component of its reproductive life history. A second, younger, more-numerous, less-variable cohort modeled from the 2008 sample may represent a second reproductive bout during that year that was prevented in the subsequent La Niña period of 2010-2011.


Assuntos
Sanguessugas/crescimento & desenvolvimento , Sanguessugas/fisiologia , Animais , California , Estudos de Coortes , El Niño Oscilação Sul , Peixes , Sanguessugas/classificação , Modelos Biológicos , Água do Mar , Temperatura
19.
PLoS One ; 15(5): e0232737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392234

RESUMO

The oceanographic conditions of the Pacific Ocean are largely modified by El Niño (EN), affecting several ecological processes. Parasites and other marine organisms respond to environmental variation, but the influence of the EN cycle on the seasonal variation of parasitic copepods has not been yet evaluated. We analysed the relation between infection parameters (prevalence and mean intensity) of the widespread parasitic copepods Caligus bonito and Charopinopsis quaternia in the dolphinfish Coryphaena hippurus and oceanography during the strong 2015-16 EN. Fish were collected from capture fisheries on the Ecuadorian coast (Tropical Eastern Pacific) over a 2-year period. Variations of sea surface temperature (SST), salinity, chlorophyll a (Chl-a), Oceanic Niño Index (ONI), total host length (TL) and monthly infection parameters of both copepod species were analysed using time series and cross-correlations. We used the generalised additive models for determine the relationship between environmental variables and infection parameters. The total body length of the ovigerous females and the length of the eggs of C. bonito were measured in both periods. Infection parameters of both C. bonito and Ch. quaternia showed seasonal and annual patterns associated with the variation of environmental variables examined (SST, salinity, Chl-a and ONI 1+2). Infection parameters of both copepod species were significantly correlated with ONI 1+2, SST, TL and Chl-a throughout the GAMLSS model, and the explained deviance contribution ranged from 16%-36%. Our results suggest than an anomaly higher than +0.5°C triggers a risen in infection parameters of both parasitic copepods. This risen could be related to increases in egg length, female numbers and the total length of the ovigerous females in EN period. This study provides the first evidence showing that tropical parasitic copepods are sensitive to the influence of EN event, especially from SST variations. The observed behaviour of parasitic copepods likely affects the host populations and structure of the marine ecosystem at different scales.


Assuntos
Copépodes/fisiologia , El Niño Oscilação Sul , Infecções/epidemiologia , Infecções/parasitologia , Perciformes/parasitologia , Clima Tropical , Animais , Feminino , Modelos Biológicos , Óvulo/fisiologia , Oceano Pacífico , Prevalência , Fatores de Tempo
20.
PLoS Negl Trop Dis ; 14(5): e0008324, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463829

RESUMO

Local anomalies in rainfall and temperature induced by El Niño and La Niña episodes could change the structure of the vector community. We aimed to estimate the effect of the El Niño-La Niña cycle in the potential distribution of cutaneous leishmaniasis (CL) vector species in Colombia and to compare the richness of the vectors with the occurrence of CL in the state of Norte de Santander. The potential distributions of four species were modeled using a MaxEnt algorithm for the following episodes: La Niña 2010-2011, Neutral 2012-2015 and El Niño 2015-2016. The relationship between the potential richness of the vectors and the occurrence of CL in Norte de Santander was evaluated with a log-binomial regression model. During the El Niño 2015-2016 episode, Lutzomyia ovallesi and Lutzomyia panamensis increased their distribution into environmentally suitable areas, and three vector species (Lutzomyia gomezi, Lutzomyia ovallesi and Lutzomyia panamensis) showed increases in the range of their altitudinal distribution. During the La Niña 2010-2011 episode, a reduction was observed in the area suitable for occupation by Lutzomyia gomezi and Lutzomyia spinicrassa. During the El Niño 2015-2016 episode, the occurrence of at least one CL case was related to a higher percentage of rural localities showing a richness of vectors = 4. The anomalies in rainfall and temperature induced by the episodes produced changes in the potential distribution of CL vectors in Colombia. In Norte de Santander, during Neutral 2012-2015 and El Niño 2015-2016 episodes, a higher probability of at least one CL case was related to a higher percentage of areas with a greater richness of vectors. The results help clarify the effect of the El Niño-La Niña cycle in the dynamics of CL in Colombia and emphasize the need to monitor climate variability to improve the prediction of new cases.


Assuntos
El Niño Oscilação Sul , Insetos Vetores/crescimento & desenvolvimento , Leishmaniose Cutânea/epidemiologia , Psychodidae/crescimento & desenvolvimento , Animais , Colômbia/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...