RESUMO
Antimicrobial bacterial cellulose (BC) membranes incorporated with carbon dots (CDs) were developed to improve the shelf life and ensure the safety of minced beef during 9 days of storage at 4 °C. An ex-situ method was used to develop BC-CDs with different CDs loading capacities (16.50, 22.50, and 38.50 mg/cm3). Only BC-CDs38.50 membrane exhibited toxicity in human embryonic kidney cells, and BC-CDs membranes had the slowest release rate of CDs in 95% ethanol. Significant differences were noted in the chemical and sensory attributes of samples packaged with BC-CDs16.50 and BC-CDs22.50, compared to the control. The microbial counts in samples with BC-CDs were significantly lower than those in samples with pristine BC membranes or the control. Notably, the BC-CDs22.50 membrane exhibited a substantial reduction (4.7 log10 CFU/g) in Escherichia coli counts by the end of storage. These findings highlight the potential of BC-CDs membranes as effective antimicrobial materials in meat packaging.
Assuntos
Anti-Infecciosos , Carne Vermelha , Animais , Bovinos , Humanos , Celulose/química , Embalagem de Alimentos/métodos , Carbono/química , Carne Vermelha/microbiologia , Escherichia coliRESUMO
Electrospinning is a relatively simple technology capable to produce nano- and micron-scale fibers with different properties depending on the electrospinning conditions. This review critically investigates the fabrication of electrospun plant protein nanofibers (EPPNFs) that can be used in food and food packaging applications. Recent progress in the development and optimization of electrospinning techniques for production of EPPNFs is discussed. Finally, current challenges to the implementation of EPPNFs in food and food packaging applications are highlighted, including potential safety and scalability issues. The production of plant protein nanofibers and microfibers is likely to increase in the future as many industries wish to replace synthetic materials with more sustainable, renewable, and environmentally friendly biopolymers. It is therefore likely that EPPNFs will find increasing applications in various fields including active food packaging and drug delivery.
Assuntos
Embalagem de Alimentos , Nanofibras , Sistemas de Liberação de Medicamentos , Alimentos , Proteínas de PlantasRESUMO
Active packaging that prolongs food shelf life, maintaining its quality and safety, is an increasing industrial demand, especially if integrated in a circular economy model. In this study, the fabrication and characterization of sustainable cellulose-based active packaging using food-industry waste and natural extracts as antioxidant agents was assessed. Grape marc, olive pomace and moringa leaf extracts obtained by supercritical fluid, antisolvent and maceration extraction in different solvents were compared for their antioxidant power and phenolic content. Grape and moringa macerates in acetone and methanol, as the most efficient and cost-effective extracts, were incorporated in the packaging as coatings or in-between layers. Both systems showed significant free-radical protection in vitro (antioxidant power 50%) and more than 50% prevention of ground beef lipid peroxidation over 16 days by indirect TBARS and direct in situ Raman microspectroscopy measurements. Therefore, these systems are promising for industrial applications and more sustainable farm-to-fork food production systems.
Assuntos
Antioxidantes , Moringa oleifera , Bovinos , Animais , Embalagem de Alimentos , Aditivos Alimentares , Alimentos , Resíduos IndustriaisRESUMO
Microbial contamination is a crucial problem that is difficult to solve for the meat industry. Therefore, this study explored the antibacterial efficacy of phenyllactic acid (PLA) against Pseudomonas lundensis (PL) and Brochothrix thermosphacta (BT) solely and in combination (PL + BT). It also provided insights into its synergistic preservation effect during inoculation in chilled (4 °C) fresh pork loins under air (AP) and modified atmosphere packaging (MAP). The minimum inhibitory concentration (MIC) of PLA was 10 mg/mL. Growth kinetics, scanning electron microscopy (SEM), zeta potential, and cell viability investigations showed that PLA treatment exhibited reduced bacterial growth, aided morphological alterations, and leakage in cell membrane integrity in vitro. Nonetheless, PLA and MAP (70 %N2/30 %CO2) showed an excellent synergistic antibacterial ability against spoilage indicators(total glucose, pH, TVB-N, and TBARS), bacterial counts than AP, without impairing organoleptic acceptability. These results demonstrate the broad antibacterial efficacy of PLA as a biopreservative for the meat industry.
Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Embalagem de Alimentos/métodos , Microbiologia de Alimentos , Carne/microbiologia , Brochothrix , Antibacterianos/farmacologia , Atmosfera , Poliésteres/farmacologia , Conservação de Alimentos/métodos , Contagem de Colônia MicrobianaRESUMO
Rapid decrease in antibacterial efficacy of existing active packages is difficult to promisingly prevent microbial infection during the storage of perishable products. Here, we pioneered an advanced ZnO-doped hollow carbon-encapsulated curcumin (ZHC-Cur)-chitosan (CS) slow-release film (ZHC-Cur-CS) with "nano-barricade" structure through demand-oriented tailoring of the structure and components of zeolitic imidazolate framework-8 (ZIF-8) carrier. Such an exquisite structure realized the effective sustained release of Curcumin through the dual complexity of diffusion pathway by the disordered hierarchical pore structure and steric hindrance. Prepared ZHC-Cur-CS film exhibited boosting bactericidal and antioxidant abilities by virtue of the functional synergy between curcumin and ZnO. Thus, ZHC-Cur-CS film demonstrated excellent preservation performance by significantly prolonging the shelf life of Citrus (â¼2.4 times). Furthermore, the upgraded mechanical strength, improved barrier ability, and proven safety laid the foundation for its practical application. These satisfactory properties underscore the applicability of ZHC-Cur-CS film for the efficient preservation of perishable products.
Assuntos
Quitosana , Curcumina , Óxido de Zinco , Antioxidantes/química , Curcumina/química , Óxido de Zinco/química , Antibacterianos/química , Quitosana/química , Embalagem de AlimentosRESUMO
In the context of food waste and human diseases caused by food pollution, color renderement intelligent packaging came into being. Improving its indicator stability and sensitivity is essential for application. On the basis of our previous work, corn starch/polyvinyl alcohol was used as the matrix, the synthesized zirconium-based UiO-66 and anthocyanin-loaded ovalbumin-carboxymethylcellulose nanocomposites were embedded in to stabilize anthocyanins and improve gas adsorption performance of film. The study found that incorporating appropriate amount of UiO-66 (3%) in films resulted in uniform distribution and formation of holes. Mechanical properties, water stability and barrier properties were significantly improved, and gas adsorption capacity increased by approximately 10 times. More crucially, films that incorporate UiO-66 can react more quickly and visibly to lower concentrations of ammonia gas. The color change of SP/OVA-CMC-ACNs/3% UiO-66 film was noticeable (from purple to gray and then to green) when applied to monitor freshness of shrimp and pork.
Assuntos
Eliminação de Resíduos , Amido , Animais , Humanos , Amônia , Alimentos , Antocianinas , Embalagem de Alimentos/métodos , Concentração de Íons de HidrogênioRESUMO
The current study aimed to develop a sustainable solution to extend the shelf life of chicken meat by developing starch-based functional film embedded with polyphenolic extract of waste petioles of betel leaf (BLP). The results showed that loading of the extract significantly (p < 0.05) improved flexibility, thickness, water solubility, DPPH radical scavenging activity, and UV light protection ability by enhancing intermolecular interactions among potato starch, guar gum, and the extract. The developed film showed optimum mechanical and water barrier properties at a 4% BLP extract concentration computed through TOPSIS method (A multi-criteria decision-making approach). During the shelf life study, the extract embedded film maintained the quality of chicken meat for up to 12 days at refrigerated temperature. Biodegradation time of the extract-blended films was considerably decreased to 14 days from 28 days for the native film, indicating suitable alternative to non-biodegradable film for storing the raw meat.
Assuntos
Piper betle , Polifenóis , Animais , Galinhas , Amido/química , Permeabilidade , Água/química , Carne , Embalagem de Alimentos/métodosRESUMO
Per-poly fluoroalkyl substances (PFASs) are a group of synthetic fluorine compounds used in food packaging materials to repel water and fats. This study assessed the chemical migration of PFAS from different food contact materials, including cardboard, recycled cardboard, biopolymer, paper and Teflon trays, from various markets. Migration assays were conducted using Tenax® as a food simulant, which was optimized by subjecting it to three consecutive extractions with 3 mL of ethanol within an hour. The resulting extractions were combined and concentrated to 0.5 mL using a nitrogen stream. The analysis was performed using ultrahigh performance liquid chromatography (UPLC) coupled with ion-mobility (IMS) quadrupole-time-of-flight (QTOF) mass spectrometry, which provided a powerful and novel tool for identifying a library of targets containing collision cross section values (CCS) and increasing confidence in subsequent identifications. Eleven PFAS compounds belonging to the family of perfluorocarboxylic acid, perfluorosulfonic acid and perfluorooctanesulfonamidoacetic acid substances (PFCAs, PFSAs and FOSAAs) were found in packaging samples obtained from China, with migrant concentrations ranging 3.2 and 22.3 µg/kg. In contrast, no detectable levels of PFAS were observed in packaging samples obtained in Spain. All trays tested were deemed to be suitable for use as food contact materials due to the fact that their migrant values were lower than 0.025 mg/kg for PFOA and its salts, and lower than a maximum concentration of 1 mg/kg for PFOA-related compounds.
Assuntos
Fluorocarbonos , Embalagem de Alimentos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica , Fluorocarbonos/análiseRESUMO
Real-time and on-site food spoilage monitoring is still a challenging issue to prevent food poisoning. At the onset of food spoilage, microbial and enzymatic activities lead to the formation of volatile amines. Monitoring of these amines with conventional methods requires sophisticated, costly, labor-intensive, and time consuming analysis. Here, anthocyanins rich red cabbage extract (ARCE) based colorimetric sensing system was developed with the incorporation of embedded machine learning in a smartphone application for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light. The color change of FG-UV-CD100 films with varying ammonia vapor concentrations was captured in different light sources with smartphones of various brands, and a comprehensive dataset was created to train machine learning (ML) classifiers to be robust and adaptable to ambient conditions, resulting in 98.8% classification accuracy. Meanwhile, the ML classifier was embedded into our Android application, SmartFood++, enabling analysis in about 0.1 s without internet access, unlike its counterpart using cloud operation via internet. The proposed system was also tested on a real fish sample with 99.6% accuracy, demonstrating that it has a great advantage as a potent tool for on-site real-time monitoring of food spoilage by non-specialized personnel.
Assuntos
Embalagem de Alimentos , Smartphone , Animais , Embalagem de Alimentos/métodos , Colorimetria , Antocianinas , Concentração de Íons de Hidrogênio , AminasRESUMO
The aim of study was to produce the blackseed protein for applications as a protein dispersion alone or an emulsifier to design of multi-layer film based on furcellaran and chitosan. The protein extraction of blackseed by-product resulted in a blackseed by-product protein isolate (BBPI) with a yield of 73% protein. The obtained BBPI resulted in a high polyphenols content (1543 mg/ml), antioxidant property (DPPH, 67%) and emulsification properties (encapsulation up to 96%), leading to a stable emulsions at pH 10 and 12. For the first time, innovative, active triple-layer films have been developed in the 1st furcellaran layer with BBPI stabilised emulsion or BBPI aqueous extract alone, followed by a 2nd layer of furcellaran and citric acid matrix, and a 3rd layer of chitosan and gelatin matrix. Compared to the control, the tested films showed improved the water behaviour, UV-Vis barrier and increased antioxidant activity for the DPPH parameter (>70%).
Assuntos
Quitosana , Quitosana/química , Embalagem de Alimentos , Emulsões , Antioxidantes/química , Polifenóis/química , Água/químicaRESUMO
Food packaging is innovating towards more environmental-friendly polymers and broader applications of bioactive compounds. In this study, active packaging materials were successfully prepared by incorporating chlorogenic acid (CGA) nanoparticles into pullulan/gelatin polymer matrixes. The rhamnolipid (RL) and/or CGA were combined with chitosan (CS) to synthesize active nanoparticles by the ionic crosslinking method. The film containing CS/RL/CGA nanoparticles (F/CRC) exhibited both ultrahigh visible light (400-760 nm) transmittance (approximately 90%) and UVA (320-400 nm)-blocking efficiency (89.06%). Its fluorescent properties can be used for anti-counterfeiting. Significantly, the bacterial inhibition rates of F/CRC against E. coli and S. aureus were 92.14% and 98.72%. F/CRC also showed good antioxidant capability and biosafety. Finally, the packaging test further indicated that F/CRC could delay the browning of bananas and the bacteria growth of chicken samples. This work presents a green and feasible route to produce functional materials with UV-shielding properties for packaging applications.
Assuntos
Quitosana , Nanopartículas , Embalagem de Alimentos/métodos , Ácido Clorogênico , Escherichia coli , Staphylococcus aureus , Biopolímeros , Polímeros , Antibacterianos/farmacologiaRESUMO
Researchers have made significant discoveries in addressing the limitations of essential oils (EOs) in food packaging using encapsulation systems combined with nanoparticles (NPs). This study aimed to develop a unique coating for beef preservation using nanostructured lipid carriers (NLCs). The optimal formulation of NLCs was determined based on size, zeta potential, and loading rate, achieving a content of 71.4% savory EO. A composite coating containing NPs was then created using different concentrations of NLCs (0, 0.85%, 1.7%, 2.55%, and 3.4%). The antimicrobial effectiveness of the coatings was assessed using well-diffusion assays to identify the best coating (17 mm). This optimized coating was applied to beef samples for 12 days, and extensive evaluation was conducted over time. The results demonstrated that the encapsulation percentage was higher than 98.7%. The optimal coating (CMC-OM-ZnO NPs-NLCs 3.4%) significantly reduced microbial growth (total count: over 1.6 log CFU/g), pH, thiobarbituric acid value (TBA), and total volatile nitrogen (TVN) compared with the control samples (P < 0.05). Overall, this novel bioactive packaging enriched with lipidic and inorganic nanomaterials represents an innovative way to improve meat products' oxidative and microbial stability.
Assuntos
Filmes Comestíveis , Nanocompostos , Óleos Voláteis , Carne Vermelha , Animais , Bovinos , Conservação de Alimentos/métodos , Carne , Embalagem de Alimentos/métodos , Óleos Voláteis/químicaRESUMO
MgO/Ag nanoparticles (NPs) were surface-modified with titanate coupling agent titaniumtriisostearoylisopropoxide (NDZ-130). A new antibacterial biofilm for food packaging was synthesized by combining the modified MgO/Ag NPs with poly (butylene succinate-co-terephthalate) (PBST). The modification improved the compatibility between the MgO/Ag NPs and the PBST matrix. The effects of the modified MgO/Ag NPs on biofilm mechanical, barrier, thermal, antibacterial and food preservation properties were evaluated. Compared with the PBST/MgO/Ag composite film, the modified PBST/MgO/Ag composite film showed an increase in tensile strength (TS) of 8.71% and elongation at break (EB) of 16.66%, additionally decreasing water vapor permeability (WVP) by 42.86%. The composite film also exhibited over 95% inhibition of Staphylococcus aureus and Escherichia coli. The modified PBST/MgO/Ag composite film avoided microbial contamination and preserved cherry tomatoes while maintaining moisture and firmness for six days. All results indicated that the prepared biofilms have a high potential for use as food packaging films.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Magnésio/farmacologia , Prata/farmacologia , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Biofilmes , Escherichia coli , SuccinatosRESUMO
This study aimed to develop pectin-based films by incorporating Schiff base compounds (SPS) synthesized by phenylalanine and syringaldehyde. The SEM images showed good compatibility between SPS and pectin matrix. The interaction of SPS and pectin matrix was analyzed by FTIR and XRD. Results indicated that the cross-linking effects between SPS and pectin matrix improved the thermal stability, water resistance and light shielding ability of the films. The incorporation of SPS in the films scavenged more than 80% of DPPH and ABTS free radicals, exhibited sustained antimicrobial ability against S. aureus, E. coli and B. cinerea, and showed significant color changes as pH-responsive films. Especially, the intelligent active coating/films inhibited the quality deterioration of cherry tomatoes and fresh-cut mangoes, and monitored the freshness of fresh-cut mangoes during storage. Therefore, the SPS/PE films have a potential application in maintaining fruit quality and monitoring the freshness of fresh-cut fruit.
Assuntos
Frutas , Pectinas , Pectinas/química , Frutas/química , Escherichia coli , Staphylococcus aureus , Bases de Schiff , Concentração de Íons de Hidrogênio , Embalagem de Alimentos/métodosRESUMO
In this study, an active films of polyvinyl alcohol (PVA) films, incorporated with sodium nitrite were developed, characterized and applied to pork stored for six days at 25 °C. As for the film characterization by FTIR, no chemical interactions were observed between nitrite and PVA under the studied conditions. The physical properties of the PVA films were not altered by the presence of nitrite. PVA films incorporated with 100 ppm nitrite reduced TBARS values of refrigerated pork from 0.63 µmol MDA/g (control) to 0.49 µmol MDA/g (PVA 01). Color changes were observed in all meat samples packaged with the film. It is concluded that the presence of nitrite does not interfere in the physical properties of the PVA films and that the developed films have an active potential for application in pork in natura.
Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Álcool de Polivinil/química , Nitritos , Carne Vermelha/análise , Embalagem de AlimentosRESUMO
The electrospun gelatin nanofibers containing black elderberry (BE) extract, Au nanoparticles (AuNPs) and SnO2 were fabricated as intelligent packaging layer for Hake fish (Merluccius merluccius) fillets. Image analysis confirmed the formation of continuous ultrafine fibers. Differences between nanofibers were evaluated in terms of thermal stability, and chemical composition during storage. Fourier transform infrared spectrums indicated strong bonding interactions between gelatin and other compounds. Thermal analysis results showed that the addition of AuNPs contributed to the thermal stabilization of the gelatin chain. L, a, and b values of nanofibers were also measured. A rapid color change occurred after exposure to volatiles with the highest difference in L (52.29 %) of the sample containing gelatin, BE, SnO2 and AuNPs (p < 0.05). This study showed that the absorption of volatiles on nanofibers can be detected from color changes of nanofibers. The outcomes of this study can be applied for intelligent packaging layer in seafood products.
Assuntos
Gadiformes , Nanopartículas Metálicas , Nanofibras , Perciformes , Sambucus nigra , Animais , Ouro , Embalagem de Alimentos/métodos , Gelatina/química , Nanofibras/química , PeixesRESUMO
Gelatin-sodium alginate-based active packaging films were formulated by including date pits extracts (DPE), as bioactive compound, in raw minced beef meat packaging. The DPE effects at 0.37, 0.75 and 1.5% (w/w, DPE/ gelatin-sodium alginate) on physical, optical, antioxidant and antibacterial properties of established films were assessed. Findings showed that film lightness decreased with the incorporation of DPE. Physical, antioxidant and anti-food-borne pathogens capacities were enhanced by increasing DPE concentration in the films. For 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the films with 1.5% DPE had the greatest levels (94 and 88%, respectively). DPE films (1.5%) also exhibited the highest anti-Listeria moncytogenes activity, with an inhibition zone of 25 mm. Moreover, during 14 days at 4 °C, the bio-preservative impact of gelatin-sodium alginate film impregnated with DPE at three levels on microbial, chemical, and sensory characteristics of meat beef samples was evaluated. By the end of the storage, DPE at 1.5% enhanced the instrumental color, delayed chemical oxidation and improved sensory traits. By chemometric techniques (principal component analysis (PCA) and heat maps), all data allowed to obtain helpful information by segregating all the samples at each storage time. PCA and heat maps could connect oxidative chemical changes, instrumental color parameters, and microbiological properties to sensory attributes. These data offer an approach to well interpreting the sensory quality and how they are affected by chemical and microbiological changes in the studied meat samples. Our findings indicated the potential of the gelatin-sodium alginate film incorporated with DPE for enhancing meat safety and quality.
Assuntos
Alginatos , Antioxidantes , Animais , Bovinos , Antioxidantes/farmacologia , Alginatos/química , Embalagem de Alimentos/métodos , Gelatina/química , Extratos Vegetais/farmacologiaRESUMO
The migration of microplastics (MPs) from plastic food packaging has received increasing attention. Despite numerous studies quantifying MPs released from food packaging, there is lack of systematic investigation on migration of MPs from food packages under US Food and Drug Administration (FDA)'s guidance for food contact substances. Herein, we aimed to determine the quantity and size distribution of MPs migrating from water and food plastic containers following US Food and Drug Administration (FDA)'s guidance using Raman microscopy. Six commonly used water and food containers made of polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) were treated using distilled water and food stimulants (10% and 50% ethanol) under various conditions. A range of 23,702 to 490,330 particles per liter MPs with 77%- 92% smaller than 5 µm were detected, in which the PP food container exhibited the highest release of MPs when incubated with 50% ethanol at 130 °C for 15 min (equivalent to heating fatty food in a microwave). The temperature and food types were key attributes for elevating MP migration in general. Further comparison observed direct microwave (534,109 particles per liter) heating led to a significantly higher release of MPs compared to the FDA-suggested method (155,572 particles per liter). Part of MPs (12-63%) failed to be identified by Raman microscopy due to small particle size. Our estimation suggests that individuals might inhale up to 4511 MPs per kg per day. This research offers vital insights into MP migration from food and water containers, aiding in the development of relevant guidelines and facilitating MPs' risk assessment and management.
Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/análise , Embalagem de Alimentos , Microscopia , Monitoramento Ambiental , Polipropilenos , Água Potável/análise , Etanol , Poluentes Químicos da Água/análiseRESUMO
Antimicrobial biodegradable packaging is in high demand as a one-two punch against microbiological and plastic hazards. Two quaternary ammonium salts (QAS) with different N-alkyl chain lengths were used for starch/poly (butylene adipate-co-terephthalate) (PBAT) blown antimicrobial films. Dioctadecyl dimethyl ammonium chloride (D1821) contributed to a homogeneous film morphology at 5% w/w level, while micro-pores occurred with didodecyl dimethyl ammonium chloride (D1221). Increasing QAS content weakened hydrogen bonding interactions. D1821 promoted the formation of intercalated structure of nano-clays, and improved the strength, thermal stability, barrier, and surface hydrophobicity of the films. Conversely, adding D1221 decreased the mechanical properties, and significantly enhanced the surface hydrophilicity. The films with 3% and 5% w/w D1221 obviously inhibited the growth of both Staphylococcus aureus and Escherichia coli, while those with D1821 cannot show clear zone against the Gram-negative. 5% w/w D1221-loaded film delayed the growth of microorganisms in beef, of which the total viable count was 5.75 lg CFU/g after 21-day chilling storage. Findings supported that QAS had the potential for manufacturing starch/PBAT antimicrobial packaging, but the release kinetics and cytotoxicity still need to be systematically explored before application.
Assuntos
Anti-Infecciosos , Poliésteres , Poliésteres/química , Sais , Amido/química , Cloreto de Amônio , Embalagem de Alimentos , Adipatos/químicaRESUMO
Chitosan is considered the second most ubiquitous polysaccharide next to cellulose. It has gained prominence in various industries including biomedicine, textile, pharmaceutical, cosmetic, and notably, the food industry over the last few decades. The polymer's continual attention within the food industry can be attributed to the increasing popularity of greener means of packaging and demand for foods incorporated with natural alternatives instead of synthetic additives. Its antioxidant, antimicrobial, and film-forming abilities reinforced by the polymer's biocompatible, biodegradable, and nontoxic nature have fostered its usage in food packaging and preservation. Microbial activity and lipid oxidation significantly influence the shelf-life of meat, resulting in unfavorable changes in nutritional and sensory properties during storage. In this review, the scientific studies published in recent years regarding potential applications of chitosan in meat products; and their effects on shelf-life extension and sensory properties are discussed. The utilization of chitosan in the form of films, coatings, and additives in meat products has supported the extension of shelf-life while inducing a positive impact on their organoleptic properties. The nature of chitosan and its compatibility with various materials make it an ideal biopolymer to be used in novel arenas of food technology.