Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.234
Filtrar
1.
Gene ; 764: 145098, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32861881

RESUMO

Neocaridina denticulate sinensis is a small freshwater economic shrimp, as well as excellent laboratory model for their short life cycle and easy availability. However, the response of N. denticulate sinensis to pervasive copper pollution in aquatic environments has not been deeply investigated yet. Herein, we preformed Illumina sequencing technology to mine the alterations of cephalothorax transcriptome under 2.5 µmol/L of Cu2+ after 48 h. 122,512 unigenes were assembled and 219 unigenes were identified as significantly differentially expressed genes (DEGs) between control and Cu2+ treatment groups. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses and molting, such as endocytosis, Fc gamma R-mediated phagocytosis and chitin metabolic process. Seven genes were chosen for qPCR verification, and the results showed that the transcriptome sequencing data were consistent with the qPCR results. This is the first report of transcriptome information about N. denticulate sinensis. These results provided a direction for the future research of resistance to Cu2+ in this shrimp, and simultaneously enriched gene information of N. denticulate sinensis.


Assuntos
Cobre/toxicidade , Decápodes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Frutos do Mar , Poluentes Químicos da Água/toxicidade , Animais , Quitina/metabolismo , Decápodes/efeitos dos fármacos , Decápodes/imunologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Muda/efeitos dos fármacos , Muda/genética , Fagocitose/efeitos dos fármacos , Fagocitose/genética , RNA-Seq , Transcriptoma/efeitos dos fármacos
2.
Acta Biomed ; 91(13-S): e2020008, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33170174

RESUMO

BACKGROUND AND AIM: The recent COVID-19 pandemic caused by SARS-CoV-2 affected more than six million people and caused thousands of deaths. The lack of effective drugs or vaccines against SARS-CoV-2 further worsened the situation. This review is focused on the identification of molecules that may inhibit viral entry into host cells by endocytosis. METHODS: We performed the literature search for these natural compounds in the articles indexed in PubMed. RESULTS: Natural products against viral infections have been gaining importance in recent years. Specific natural compounds like phytosterols, polyphenols, flavonoids, citrus, galangal, curcuma and hydroxytyrosol are being analyzed to understand whether they could inhibit SARS-CoV-2. CONCLUSIONS: We reviewed natural compounds with potential antiviral activity against SARS-CoV-2 that could be used as a treatment for COVID-19.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Fatores Biológicos/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Endocitose/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Humanos , Pandemias
3.
Acta Biomed ; 91(13-S): e2020009, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33170175

RESUMO

BACKGROUND AND AIM OF THE WORK: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current pandemics of coronavirus disease. This virus is able to attack the cells of the airway epithelium by binding to the transmembrane angiotensin I converting enzyme 2 (ACE2). We developed an oral spray that could inhibit the SARS-CoV-2 endocytosis. The spray contains hydroxytyrosol for its anti-viral, anti-inflammatory and anti-oxidant properties, and α-cyclodextrin for its ability to deplete sphingolipids, that form the lipid rafts where ACE2 localizes. The aim of the present pilot multi-centric open non-controlled observational study was to evaluate the safety profile of the "Endovir Stop" spray. METHODS: An MTT test was performed to evaluate cytotoxicity of the spray in two human cell lines. An oxygen radical absorbance capacity assay was performed to evaluate the antioxidant capacity of the spray. The spray was also tested on 87 healthy subjects on a voluntary basis. RESULTS: The MTT test revealed that the spray is not cytotoxic. The ORAC assay showed a good antioxidant capacity for the spray. Endovir Stop tested on healthy volunteers showed the total absence of side effects and drug interactions during the treatment. CONCLUSIONS: We demonstrated that Endovir Stop spray is safe. The next step would be the administration of the efficacy of the spray by testing it to a wider range of people and see whether there is a reduced infection rate of SARS-CoV-2 in the treated subjects than in the non-treated individuals.


Assuntos
Antivirais/efeitos adversos , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Endocitose/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Pneumonia Viral/tratamento farmacológico , alfa-Ciclodextrinas/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Células CACO-2 , Técnicas de Cultura de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sprays Orais , Pandemias , Álcool Feniletílico/efeitos adversos , Projetos Piloto , Adulto Jovem
4.
Acta Biomed ; 91(13-S): e2020022, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33170176

RESUMO

BACKGROUND AND AIM OF THE WORK: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current pandemics. This virus attacks the cells by binding to the transmembrane angiotensin I converting enzyme 2. In this study, we experimented a food supplement containing alpha-cyclodextrin and hydroxytyrosol for the improvement of the defenses against the SARS-CoV-2. Hydroxytyrosol has anti-viral properties and is able to reduce the serum lipids in mice. α-cyclodextrin has the ability to deplete sphingolipids and phospholipids from the cellular membranes. The aim of the present preliminary open non-controlled interventional study was to evaluate the efficacy of alpha-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2. METHODS: Fifty healthy volunteers at a higher risk of SARS-CoV-2 infection from Northern Cyprus and six positive individuals for SARS-CoV-2 were enrolled in this study. The in silico prediction was performed using D3DOCKING to evaluate the interactions of hydroxytyrosol and alpha-cyclodextrin with proteins involved in the SARS-CoV-2 endocytosis. RESULTS: The 50 volunteers did not become positive in 15 days for SARS-CoV-2 after the administration of the compound for two weeks, despite they were at higher risk of infection than the general population. Interestingly, in the cohort of six positive patients, two patients were administered the spray and became negative after five days, despite the viral load was higher in the treated subjects than the untreated patients who became negative after ten days. In addition, we identified possible interactions among hydroxytyrosol and alpha-cyclodextrin with the protein Spike and the human proteins ACE2 and TMPRSS2. CONCLUSIONS: We reported on the results of the possible role of alpha-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2. The next step will be the administration of the compound to a larger cohort in a controlled study to confirm the reduction of the infection rate of SARS-CoV-2 in the treated subjects.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Pandemias/prevenção & controle , Álcool Feniletílico/análogos & derivados , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , alfa-Ciclodextrinas/uso terapêutico , Adulto , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Chipre , Endocitose/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sprays Orais , Álcool Feniletílico/uso terapêutico , Projetos Piloto , Pneumonia Viral/diagnóstico , Carga Viral
5.
Mol Cell ; 80(2): 210-226.e7, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002424

RESUMO

Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.


Assuntos
Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , RNA Bacteriano/genética , Sequências Repetitivas de Ácido Nucleico/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Contagem de Colônia Microbiana , Endocitose/efeitos dos fármacos , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Helicobacter pylori/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Níquel/farmacologia , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Genética/efeitos dos fármacos
6.
Int J Nanomedicine ; 15: 6167-6182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922000

RESUMO

Background: Among the novel cancer treatment strategies, combination therapy is a cornerstone of cancer therapy. Materials and Methods: Here, combination therapy with targeted polymer, magnetic hyperthermia and chemotherapy was presented as an effective therapeutic technique. The DOX-loaded PLA-PEG-FA magnetic nanoparticles (nanocarrier) were prepared via a double emulsion method. The nanocarriers were characterized by particle size, zeta potential, morphology, saturation magnetizations and heat generation capacity, and the encapsulation efficiency, drug content and in-vitro drug release for various weight ratios of PLA:DOX. Then, cytotoxicity, cellular uptake and apoptosis level of nanocarrier-treated cells for HeLa and CT26 cells were investigated by MTT assay, flow cytometry, and apoptosis detection kit. Results and Conclusions: The synthesized nanoparticles were spherical in shape, had low aggregation and considerable magnetic properties. Meanwhile, the drug content and encapsulation efficiency of nanoparticles can be achieved by varying the weight ratios of PLA:DOX. The saturation magnetizations of nanocarriers in the maximum applied magnetic field were 59/447 emu/g and 28/224 emu/g, respectively. Heat generation capacity of MNPs and nanocarriers were evaluated in the external AC magnetic field by a hyperthermia device. The highest temperature, 44.2°C, was measured in the nanocarriers suspension at w/w ratio 10:1 (polymer:DOX weight ratio) after exposed to the magnetic field for 60 minutes. The encapsulation efficiency improved with increasing polymer concentration, since the highest DOX encapsulation efficiency was related to the nanocarriers' suspension at w/w ratio 50:1 (79.6 ± 6.4%). However, the highest DOX loading efficiency was measured in the nanocarriers' suspension at w/w ratio 10:1 (5.14 ± 0.6%). The uptake efficiency and apoptosis level of nanocarrier-treated cells were higher than those of nanocarriers (folic acid free) and free DOX-treated cells in both cell lines. Therefore, this targeted nanocarrier may offer a promising nanosystem for cancer-combined chemotherapy and hyperthermia.


Assuntos
Doxorrubicina/farmacologia , Ácido Fólico/farmacologia , Hipertermia Induzida , Nanopartículas de Magnetita/química , Neoplasias/terapia , Polietilenoglicóis/química , Animais , Apoptose/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Tamanho da Partícula , Polietilenoglicóis/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
7.
Int J Nanomedicine ; 15: 6311-6324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922003

RESUMO

Background: Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) and its over expression in tumor tissues contributes to the increase of interstitial fluid pressure (IFP) and hinders the penetration of nanoparticles into solid tumors. Materials and Methods: We here reported a tumoral microenvironment responsive multistage drug delivery system (NPs-EPI/HAase) which was formed layer by layer via electrostatic interaction with epirubicin (EPI)-loaded PEG-b-poly(2-(diisopropylamino)ethyl methacrylate)-b-poly(2-guanidinoethylmethacrylate) (mPEG-PDPA-PG, PEDG) micelles (NPs-EPI) and hyaluronidase (HAase). In this paper, we focused on the hyaluronidase-combined nanoparticles (NPs-EPI/HAase) for tumor penetration in tumor spheroid and solid tumor models in vitro and in vivo. Results: Our results showed that NPs-EPI/HAase effectively degrade the HA in ECM and facilitate deep penetration of NPs-EPI into solid tumor. Moreover, NPs-EPI mainly employed clathrin-mediated and macropinocytosis-mediated endocytic pathways for cellular uptake and were subsequently directed to the lysosomes for further drug release triggered by proton sponge effect. Compared with NPs-EPI, the HAase coating group showed an enhanced tumoral drug delivery efficacy and inhibition of tumor growth. Conclusion: Overall, our studies demonstrated that coating nanoparticles with HAase can provide a simple but efficient strategy for nano-drug carriers to enhance solid tumor penetration and chemotherapeutic efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Hialuronoglucosaminidase/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Endocitose/efeitos dos fármacos , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Humanos , Antígeno Ki-67/metabolismo , Masculino , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias/patologia , Polímeros/química , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
8.
Int J Nanomedicine ; 15: 6451-6468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922011

RESUMO

Background: Non-small cell lung cancer (NSCLC) is one of the most lethal types of cancer with highly infiltrating. Chemotherapy is far from satisfactory, vasculogenic mimicry (VM) and angiogenesis results in invasion, migration and relapse. Purpose: The objective of this study was to construct a novel CPP (mmp) modified vinorelbine and dioscin liposomes by two new functional materials, DSPE-PEG2000-MAL and CPP-PVGLIG-PEG5000, to destroy VM channels, angiogenesis, EMT and inhibit invasion and migration. Methods and Results: The targeting liposomes could be enriched in tumor sites through passive targeting, and the positively charged CPP was exposed and enhanced active targeting via electrostatic adsorption after being hydrolyzed by MMP2 enzymes overexpressed in the tumor microenvironment. We found that CPP (mmp) modified vinorelbine and dioscin liposomes with the ideal physicochemical properties and exhibited enhanced cellular uptake. In vitro and in vivo results showed that CPP (mmp) modified vinorelbine and dioscin liposomes could inhibit migration and invasion of A549 cells, destroy VM channels formation and angiogenesis, and block the EMT process. Pharmacodynamic studies showed that the targeting liposomes had obvious accumulations in tumor sites and magnificent antitumor efficiency. Conclusion: CPP (mmp) modified vinorelbine plus dioscin liposomes could provide a new strategy for NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral , Células A549 , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Galinhas , Endocitose/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Hidrólise , Lipossomos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos , Vinorelbina/farmacologia , Vinorelbina/uso terapêutico
9.
Int J Nanomedicine ; 15: 6153-6165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884269

RESUMO

Background: Although pH and redox sensitiveness have been extensively investigated to improve therapeutic efficiency, the effect of disulfide bonds location and pH-triggered charge-reversal on cascade-targeting still need to be further evaluated in cancer treatment with multi-responsive nanoparticles. Purpose: The aim of this study was to design multi-responsive DOX@MSNs-COS-NN-CMC, DOX@MSNs-COS-SS-CMC and DOX@MSNs-COS-CMC-SS and systematically investigate the effects of disulfide bonds location and charge-reversal on the cancer cell specificity, endocytosis mechanisms and antitumor efficiency. Results: In vitro drug release rate of DOX@MSNs-COS-SS-CMC in tumor environments was 7-fold higher than that under normal physiological conditions after 200 h. Furthermore, the fluorescence intensity of DOX@MSNs-COS-SS-CMC and DOX@MSNs-COS-CMC-SS was 1.9-fold and 1.3-fold higher than free DOX at pH 6.5 and 10 mM GSH. In addition, vesicular transport might be a factor that affects the uptake efficiency of DOX@MSNs-COS-SS-CMC and DOX@MSNs-COS-CMC-SS. The clathrin-mediated endocytosis and endosomal escape of DOX@MSNs-COS-SS-CMC enhanced cellular internalization and preserved highly controllable drug release into the perinuclear of HeLa cells. DOX@MSNs-COS-SS-CMC exhibited a synergistic chemotherapy in preeminent tumor inhibition and less side effects of cardiotoxicity. Conclusion: The cascade-targeting of charge-reversal and disulfide bonds shielding would be a highly personalized strategy for cervical cancer treatment.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Multifuncionais/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Quitosana/química , Dissulfetos/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas Multifuncionais/administração & dosagem , Oxirredução , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Life Sci ; 261: 118369, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882265

RESUMO

Exosomes hold great potential for cancer treatment to deliver therapeutics due to its inherent low immunogenicity. Exosomes are biocompatible cell-exocytosed secreted vesicles by most cell types, which can be used to construct novel biomanufacturing platform for drug delivery and cancer therapy. In this study, we implemented nano-sized vesicles which were secreted by mesenchymal stem cell (MSC), to encapsulate doxorubicin (DOX) through electroporation method (DOX@exosome). DOX was loaded into exosomes, with an encapsulation efficiency of up to 35% and separated by ultracentrifugation. Subsequently, carboxylic acid-end MUC1 aptamer was used to covalently decorate the surface amine groups of the exosomes via amide bond formation to provide selective guided drug delivery (DOX@exosome-apt). The data showed that the DOX@exosome-apt provided highly efficient DOX transportation to MUC1-positive cancer cells in vitro as confirmed by MTT and flow cytometry experiments. Moreover, in vivo study on ectopic model of C26 (mouse colon adenocarcinoma) in BALB/c mice indicated that the single dose intravenous injection of DOX@exosome-apt significantly suppress tumor growth in comparison with free DOX. Ex vivo fluorescent imaging also verified the desirable biodistribution of DOX@exosome-apt by exhibiting higher tumor accumulation and faster liver clearance in comparison with DOX@exosome and free DOX. It could be concluded that MUC1 aptamer-decorated exosomes can be implemented therapeutically for the safe and versatile delivery of DOX to colon adenocarcinoma, thus offering valuable platform for clinical applications.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Doxorrubicina/uso terapêutico , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Aptâmeros de Peptídeos/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Physiol Biochem ; 54(4): 767-790, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32830930

RESUMO

The pandemic of the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 at the end of 2019 marked the third outbreak of a highly pathogenic coronavirus affecting the human population in the past twenty years. Cross-species zoonotic transmission of SARS-CoV-2 has caused severe pathogenicity and led to more than 655,000 fatalities worldwide until July 28, 2020. Outbursts of this virus underlined the importance of controlling infectious pathogens across international frontiers. Unfortunately, there is currently no clinically approved antiviral drug or vaccine against SARS-CoV-2, although several broad-spectrum antiviral drugs targeting multiple RNA viruses have shown a positive response and improved recovery in patients. In this review, we compile our current knowledge of the emergence, transmission, and pathogenesis of SARS-CoV-2 and explore several features of SARS-CoV-2. We emphasize the current therapeutic approaches used to treat infected patients. We also highlight the results of in vitro and in vivo data from several studies, which have broadened our knowledge of potential drug candidates for the successful treatment of patients infected with and discuss possible virus and host-based treatment options against SARS-CoV-2.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Betacoronavirus/fisiologia , Coronaviridae/patogenicidade , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Previsões , Genoma Viral , Saúde Global , Humanos , Imunidade Coletiva , Imunização Passiva , Pandemias/prevenção & controle , Peptídeo Hidrolases/farmacologia , Peptídeo Hidrolases/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , RNA Viral/genética , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Virais , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zoonoses
12.
Int J Nanomedicine ; 15: 4825-4845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753868

RESUMO

Background: Nanosized drug delivery systems (NDDSs) have shown excellent prospects in tumor therapy. However, insufficient penetration of NDDSs has significantly impeded their development due to physiological instability and low passive penetration efficiency. Methods: Herein, we prepared a core cross-linked pullulan-modified nanosized system, fabricated by visible-light-induced diselenide bond cross-linked method for transporting ß-Lapachone and doxorubicin prodrug (boronate-DOX, BDOX), to improve the physiological stability of the NDDSs for efficient passive accumulation in tumor blood vessels (ß-Lapachone/BDOX-CCS). Additionally, ultrasound (US) was utilized to transfer ß-Lapachone/BDOX-CCS around the tumor vessel in a relay style to penetrate the tumor interstitium. Subsequently, ß-Lapachone enhanced ROS levels by overexpressing NQO1, resulting in the transformation of BDOX into DOX. DOX, together with abundant levels of ROS, achieved synergistic tumor therapy. Results: In vivo experiments demonstrated that ultrasound (US) + cross-linked nanosized drug delivery systems (ß-Lapachone/BDOX-CCS) group showed ten times higher DOX accumulation in the tumor interstitium than the non-cross-linked (ß-Lapachone/BDOX-NCS) group. Conclusion: Thus, this strategy could be a promising method to achieve deep penetration of NDDSs into the tumor.


Assuntos
Doxorrubicina/uso terapêutico , Nanopartículas/química , Naftoquinonas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Ultrassonografia , Animais , Ácidos Borônicos/química , Permeabilidade Capilar/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Reagentes para Ligações Cruzadas/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Feminino , Glucanos/química , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Naftoquinonas/farmacocinética , Tamanho da Partícula , Pró-Fármacos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual/efeitos dos fármacos
13.
Int J Nanomedicine ; 15: 4877-4898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753869

RESUMO

Background: Although dynamics and uses of modified nanoparticles (NPs) as orally administered macromolecular drugs have been researched for many years, measures of molecule stability and aspects related to important transport-related mechanisms which have been assessed in vivo remain as relatively under characterized. Thus, our aim was to develop a novel type of oral-based delivery system for insulin and to overcome barriers to studying the stability, transport mechanisms, and efficacy in vivo of the delivery system. Methods: NPs we developed and tested were composed of insulin (INS), dicyandiamide-modified chitosan (DCDA-CS), cell-penetrating octaarginine (r8), and hydrophilic hyaluronic acid (HA) and were physically constructed by electrostatic self-assembly techniques. Results: Compared to free-insulin, levels of HA-DCDA-CS-r8-INS NPs were retained at more desirable measures of biological activity in our study. Further, our assessments of the mechanisms for NPs suggested that there were high measures of cellular uptake that mainly achieved through active transport via lipid rafts and the macropinocytosis pathway. Furthermore, investigations of NPs indicated their involvement in caveolae-mediated transport and in the DCDA-CS-mediated paracellular pathway, which contributed to increasing the efficiency of sequential transportation from the apical to basolateral areas. Accordingly, high efficiency of absorption of NPs in situ for intestinal loop models was realized. Consequently, there was a strong induction of a hypoglycemic effect in diabetic rats of NPs via orally based administrations when compared with measures related to free insulin. Conclusion: Overall, the dynamics underlying and influenced by HA-DCDA-CS-r8-INS may hold great promise for stability of insulin and could help overcome interference by the epithelial barrier, and thus showing a great potential to improve the efficacy of orally related treatments.


Assuntos
Quitosana/química , Ácido Hialurônico/química , Insulina/administração & dosagem , Nanopartículas Multifuncionais/química , Nanopartículas/química , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Morte Celular/efeitos dos fármacos , Quitosana/síntese química , Diabetes Mellitus Experimental/tratamento farmacológico , Impedância Elétrica , Endocitose/efeitos dos fármacos , Guanidinas/síntese química , Guanidinas/química , Humanos , Ácido Hialurônico/síntese química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Insulina/uso terapêutico , Absorção Intestinal/efeitos dos fármacos , Masculino , Muco/metabolismo , Nanopartículas/ultraestrutura , Ratos , Solubilidade , Suínos
14.
Cells ; 9(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854430

RESUMO

An outbreak of the novel coronavirus (CoV) SARS-CoV-2, the causative agent of COVID-19 respiratory disease, infected millions of people since the end of 2019, led to high-level morbidity and mortality and caused worldwide social and economic disruption. There are currently no antiviral drugs available with proven efficacy or vaccines for its prevention. An understanding of the underlying cellular mechanisms involved in virus replication is essential for repurposing the existing drugs and/or the discovery of new ones. Endocytosis is the important mechanism of entry of CoVs into host cells. Endosomal maturation followed by the fusion with lysosomes are crucial events in endocytosis. Late endosomes and lysosomes are characterized by their acidic pH, which is generated by a proton transporter V-ATPase and required for virus entry via endocytic pathway. The cytoplasmic cAMP pool produced by soluble adenylyl cyclase (sAC) promotes V-ATPase recruitment to endosomes/lysosomes and thus their acidification. In this review, we discuss targeting the sAC-specific cAMP pool as a potential strategy to impair the endocytic entry of the SARS-CoV-2 into the host cell. Furthermore, we consider the potential impact of sAC inhibition on CoV-induced disease via modulation of autophagy and apoptosis.


Assuntos
Inibidores de Adenilil Ciclases/uso terapêutico , Adenilil Ciclases/metabolismo , Betacoronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , AMP Cíclico/antagonistas & inibidores , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Int J Nanomedicine ; 15: 4899-4918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764924

RESUMO

Purpose: The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. Methods: Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. Results: Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. Conclusion: Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Paclitaxel/química , Paclitaxel/farmacologia
16.
PLoS One ; 15(8): e0237448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790800

RESUMO

We established that Endosidin2 (ES2) affected the trafficking routes of both newly synthesized and endocytic pools of PIN-FORMED2 (PIN2) in Arabidopsis root epidermal cells. PIN2 populations accumulated in separated patches, which gradually merged into large and compact ES2 aggregates (ES2As). FM4-64 endocytic tracer labeled ES2As as well. Both PIN2 pools also appeared in vacuoles. Accelerated endocytosis of PIN2, its aggregation in the cytoplasm, and redirection of PIN2 flows to vacuoles led to a substantial reduction of the abundance of this protein in the plasma membrane. Whereas PIN-FORMED3 and PIN-FORMED4 also aggregated in the cytoplasm, SYT1 was not sensitive to ES2 treatment and did not appear either in the cytoplasmic aggregates or vacuoles. Ultrastructural analysis revealed that ES2 affects the Golgi apparatus so that stacks acquired cup-shape and even circular shape surrounded by several vesicles. Abnormally shaped Golgi stacks, stack remnants, multi-lamellar structures, separated Golgi cisterna rings, tubular structures, and vesicles formed discrete clusters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endocitose/efeitos dos fármacos , Limoninas/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Parede Celular/metabolismo , Citoplasma/metabolismo , Complexo de Golgi/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico/efeitos dos fármacos , Sinaptotagmina I/metabolismo
17.
Am J Physiol Renal Physiol ; 319(4): F592-F602, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799672

RESUMO

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for water reabsorption by the kidney collecting ducts. Under control conditions, most AQP2 resides in the recycling endosomes of principal cells, where it answers to vasopressin with trafficking to the apical plasma membrane to increase water reabsorption. Upon vasopressin withdrawal, apical AQP2 retreats to the early endosomes before joining the recycling endosomes for the next vasopressin stimulation. Prior studies have demonstrated a role of AQP2 S269 phosphorylation in reducing AQP2 endocytosis, thereby prolonging apical AQP2 retention. Here, we studied where in the cells S269 was phosphorylated and dephosphorylated in response to vasopressin versus withdrawal. In mpkCCD collecting cells, vacuolar protein sorting 35 knockdown slowed vasopressin-induced apical AQP2 trafficking, resulting in AQP2 accumulation in the recycling endosomes where S269 was phosphorylated. Rab7 knockdown, which impaired AQP2 trafficking from the early to recycling endosomes, reduced vasopressin-induced S269 phosphorylation. Rab5 knockdown, which impaired AQP2 endocytosis, did not affect vasopressin-induced S269 phosphorylation. Upon vasopressin withdrawal, S269 was not dephosphorylated in Rab5 knockdown cells. In contrast, S269 dephosphorylation upon vasopressin withdrawal was completed in Rab7 or vacuolar protein sorting 35 knockdown cells. We conclude that S269 is dephosphorylated during Rab5-mediated AQP2 endocytosis before AQP2 joins the recycling endosomes upon vasopressin withdrawal. While in the recycling endosomes, AQP2 can be phosphorylated at S269 in response to vasopressin before apical trafficking.


Assuntos
Aquaporina 2/metabolismo , Endocitose , Endossomos/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Linhagem Celular , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Camundongos , Fosforilação , Transporte Proteico , Serina , Vasopressinas/farmacologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
18.
Life Sci ; 261: 118361, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861796

RESUMO

AIM: Antibody-conjugated nanoparticles have attracted much attention in the field of cancer treatment due to the enhancement of the tumor cell response to anticancer drugs as well as reducing the side effects of chemotherapeutic agents on healthy tissues. However, most studies in this field generally mentioned the specific cellular uptake of conjugated nanoparticles. In this study, we loaded doxorubicin (DXR: as an effective antineoplastic agent) in PLGA-PEG (D,L-lactic-co-glycolic acid)-(polyethylene glycol) biocompatible polymeric nanoparticles (NPs) and then conjugated with anti-EGFRvIII antibody. The resulting nanoparticles had remarkable sensitivity to pH decrease and were capable of targeting specific cells. MATERIALS AND METHODS: To this aim, PLGA-PEG-COOH was used for the synthesis of nanoparticles and stabilized by polyvinyl alcohol (PVA) according to the nanoprecipitation method. The carboxylic groups on the surface of PLGA-PEG NPs were activated by EDC/NHS and covalently conjugated to amino groups of the monoclonal antibody. The prepared NPs were characterized by Zetasizer and transmission electron microscopy (TEM). The resulting NPs were evaluated in terms of entrapment efficiency (EE), drug loading efficiency (DLE), drug-release profile, and cell internalization. Intrinsic cytotoxicity was assessed by the MTT, apoptosis (Annexin V-PI) and cell cycle assays. KEY FINDINGS: The in vitro drug release assessment of conjugated particles (MAb-DXR-PLGA NPs) showed a slow sustained DXR release in physiological pH (7.4) values, while the initial drug release was markedly higher (the 1.9 fold) in acidic pH (6.5) ranges. The selectivity for cellular internalization of MAb-DXR-PLGA NPs into U87MG vIII cells (overexpressing EGFRvIII) in comparison with U87MG cells (lacking EGFRvIII expression) was also confirmed. The MTT assay demonstrated that the cytotoxicity of MAb-DXR-PLGA NPs against U87MG vIII cells was more pronounced when compared with BSA-DXR-PLGA NPs. The results of the MTT assay were also confirmed by apoptosis and cell cycle assays. SIGNIFICANCE: Our findings suggest that the designed anti-EGFRvIII MAb-DXR-PLGA NPs could be considered as a proper option for targeted drug delivery systems due to pH sensitivity and specific cellular internalization.


Assuntos
Anticorpos Monoclonais/farmacologia , Doxorrubicina/farmacologia , Endocitose , Receptores ErbB/imunologia , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura
19.
Int J Med Sci ; 17(12): 1803-1810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714083

RESUMO

Since the end of 2019, a new type of coronavirus pneumonia (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout the world. Previously, there were two outbreaks of severe coronavirus caused by different coronaviruses worldwide, namely Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This article introduced the origin, virological characteristics and epidemiological overview of SARS-CoV-2, reviewed the currently known drugs that may prevent and treat coronavirus, explained the characteristics of the new coronavirus and provided novel information for the prevention and treatment of COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Amidas/farmacologia , Amidas/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , Cloroquina/análogos & derivados , Cloroquina/uso terapêutico , Clorpromazina/uso terapêutico , Coronavirus/genética , Infecções por Coronavirus/genética , Ciclofilinas/antagonistas & inibidores , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Medicamentos de Ervas Chinesas/uso terapêutico , Endocitose/efeitos dos fármacos , Humanos , Soros Imunes , Indutores de Interferon/uso terapêutico , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pneumonia Viral/genética , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Vacinas Virais/uso terapêutico
20.
Int J Nanomedicine ; 15: 4063-4078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606664

RESUMO

Background: Among various theories for the origin of cancer, the "stemness phenotype model" suggests a dynamic feature for tumor cells in which non-cancer stem cells (non-CSCs) can inter-convert to CSCs. Differentiation with histone-deacetylase inhibitor, vorinostat (SAHA), can induce stem cells to differentiate as well as enforces non-CSCs to reprogram to CSCs. To avoid this undesirable effect, one can block the Wnt-ßcatenin pathway. Thus, a dual delivery system of SAHA and a Wnt-ßcatenin blocker will be beneficial in the induction of differentiation of CSCs. Protein corona (PC) formation in nanoparticle has a biologic milieu, and despite all problematic properties, it can be employed as a medium for dual loading of the drugs. Materials and Methods: We prepared sphere gold nanoparticles (GNPs) with human plasma protein corona loaded with SAHA as differentiating agent and PKF118-310 (PKF) as a Wnt-ßcatenin antagonist. The MCF7 breast cancer stem cells were treated with NPs and the viability and differentiation were evaluated by Western blotting and sphere formation assay. Results: We found that both drugs loaded onto corona-capped GNPs had significant cytotoxicity in comparison to bare GNP-corona. Data demonstrated an increase in stem cell population and upregulation of mesenchymal marker, Snail by SAHA-loaded GNPs treatment; however, the combination of PKF loaded GNPs along with SAHA-loaded GNPs resulted in a reduction of stem cell populations and Snail marker. We have shown that in MCF7 and its CSCs simultaneous treatment with SAHA and PKF118-310 induced differentiation and inhibition of Snail induction. Conclusion: Our study reveals the PC-coated GNPs as a biocompatible career for both hydrophilic (PKF) and hydrophobic (SAHA) agents which can decrease breast cancer stem cell populations along with reduced stemness state regression.


Assuntos
Neoplasias da Mama/patologia , Carcinogênese/patologia , Ouro/química , Nanopartículas Metálicas/química , Células-Tronco Neoplásicas/patologia , Coroa de Proteína/química , Vorinostat/farmacologia , Proteínas Wnt/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células MCF-7 , Nanosferas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Espectrofotometria Ultravioleta , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA