Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.316
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445223

RESUMO

Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1ß, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1ß was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.


Assuntos
Benzoxazóis/farmacologia , Encéfalo/metabolismo , Endotoxemia , Isoquinolinas/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Receptores de Ácidos Lisofosfatídicos , Animais , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/patologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo
2.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200709

RESUMO

Sepsis is characterized by multiple-organ dysfunction caused by the dysregulated host response to infection. Until now, however, the role of the Wnt signaling has not been fully characterized in multiple organs during sepsis. This study assessed the suppressive effect of a Wnt signaling inhibitor, Wnt-C59, in the kidney, lung, and liver of lipopolysaccharide-induced endotoxemic mice, serving as an animal model of sepsis. We found that Wnt-C59 elevated the survival rate of these mice and decreased their plasma levels of proinflammatory cytokines and organ-damage biomarkers, such as BUN, ALT, and AST. The Wnt/ß-catenin and NF-κB pathways were stimulated and proinflammatory cytokines were upregulated in the kidney, lung, and liver of endotoxemic mice. Wnt-C59, as a Wnt signaling inhibitor, inhibited the Wnt/ß-catenin pathway, and its interaction with the NF-κB pathway, which resulted in the inhibition of NF-κB activity and proinflammatory cytokine expression. In multiple organs of endotoxemic mice, Wnt-C59 significantly reduced the ß-catenin level and interaction with NF-κB. Our findings suggest that the anti-endotoxemic effect of Wnt-C59 is mediated via reducing the interaction between ß-catenin and NF-κB, consequently suppressing the associated cytokine upregulation in multiple organs. Thus, Wnt-C59 may be useful for the suppression of the multiple-organ dysfunction during sepsis.


Assuntos
Benzenoacetamidas/farmacologia , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Piridinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Animais , Citocinas/genética , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , beta Catenina/metabolismo
3.
Clin Transl Gastroenterol ; 12(6): e00348, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34092777

RESUMO

INTRODUCTION: Patients with community-acquired pneumonia display enhanced levels of lipopolysaccharides (LPS) compared with controls, suggesting that low-grade endotoxemia may be implicated in vascular disturbances. It is unknown whether this occurs in patients with coronavirus 2019 (COVID-19) and its impact on thrombotic complications. METHODS: We measured serum levels of zonulin, a marker of gut permeability, LPS, and D-dimer in 81 patients with COVID-19 and 81 healthy subjects; the occurrence of thrombotic events in COVID-19 during the intrahospital stay was registered. RESULTS: Serum LPS and zonulin were higher in patients with COVID-19 than in control subjects and, in COVID-19, significantly correlated (R = 0.513; P < 0.001). Among the 81 patients with COVID-19, 11 (14%) experienced thrombotic events in the arterial (n = 5) and venous circulation (n = 6) during a median follow-up of 18 days (interquartile range 11-27 days). A logistic regression analysis showed that LPS (P = 0.024) and D-dimer (P = 0.041) independently predicted thrombotic events. DISCUSSION: The study reports that low-grade endotoxemia is detectable in patients with COVID-19 and is associated with thrombotic events. The coexistence of low-grade endotoxemia with enhanced levels of zonulin may suggest enhanced gut permeability as an underlying mechanism.


Assuntos
COVID-19 , Endotoxemia , Haptoglobinas/metabolismo , Mucosa Intestinal , Precursores de Proteínas/metabolismo , SARS-CoV-2 , Trombose , Biomarcadores/sangue , COVID-19/sangue , COVID-19/complicações , COVID-19/fisiopatologia , Correlação de Dados , Endotoxemia/diagnóstico , Endotoxemia/metabolismo , Endotoxemia/virologia , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Lipopolissacarídeos/análise , Masculino , Pessoa de Meia-Idade , Permeabilidade , Pneumonia Viral/diagnóstico , Pneumonia Viral/etiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Trombose/sangue , Trombose/diagnóstico , Trombose/etiologia
4.
Clin Transl Gastroenterol ; 12(6): e00367, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34092778

RESUMO

Severe acute respiratory syndrome coronavirus 2 infection has been associated with both endotoxemia and thrombosis of small and large vessels, but the relationship between these 2 phenomena has not been pursued. Oliva et al. in this issue of Clinical and Translational Gastroenterology demonstrate an association between the 2 findings and suggest that increased intestinal permeability is a possible mechanism to explain the endotoxemia. Although the evidence to support this hypothesis is only suggestive, the role of the small intestine in the illness produced by the virus needs to be further explored.


Assuntos
COVID-19 , Endotoxemia , Intestino Delgado , SARS-CoV-2 , Trombose , COVID-19/sangue , COVID-19/complicações , COVID-19/fisiopatologia , Correlação de Dados , Endotoxemia/diagnóstico , Endotoxemia/metabolismo , Endotoxemia/virologia , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/virologia , Permeabilidade , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Trombose/sangue , Trombose/diagnóstico , Trombose/etiologia
5.
Arch Biochem Biophys ; 705: 108900, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964247

RESUMO

Mitochondria play an essential role in inflammatory processes such as sepsis or endotoxemia, contributing to organ-cellular redox metabolism, emerging as the energy hub of the cell, and as an important center of action of second messengers. In this work, we aimed to elucidate the energy state, redox balance, and mitochondrial remodeling status in cerebral cortex in an experimental model of endotoxemia. Female Sprague-Dawley rats were subjected to a single dose of LPS (ip 8 mg kg-1 body weight) for 6 h. State 3 O2 consumption was observed increased, ATP production and P/O ratio were observed decreased, probably indicating an inefficient oxidative phosphorylation process. O2- production and both systemic and tissue NO markers were observed increased in treated animals. The existence of nitrated proteins suggests an alteration in the local redox balance and possible harmful effects over energetic processes. Increases in PGC-1α and mtTFA expression, and in OPA-1 expression, suggest an increase in de novo formation of mitochondria and fusion of pre-existing mitochondria. The observed elongation of mitochondria correlates with the occurrence of mild mitochondrial dysfunction and increased levels of systemic NO. Our work presents novel results that contribute to unravel the mechanism by which the triad endotoxemia-redox homeostasis-energy management interact in the cerebral cortex, leading to propose a relevant mechanism for future developing therapeutics with the aim of preserving this organ from inflammatory and oxidative damage.


Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Endotoxemia/metabolismo , Endotoxemia/patologia , Metabolismo Energético , Dinâmica Mitocondrial , Animais , Feminino , Fosforilação Oxidativa , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925019

RESUMO

Periodontitis is considered a promoter of many systemic diseases, but the signaling pathways of this interconnection remain elusive. Recently, it became evident that certain microbial challenges promote a heightened response of myeloid cell populations to subsequent infections either with the same or other pathogens. This phenomenon involves changes in the cell epigenetic and transcription, and is referred to as ''trained immunity''. It acts via modulation of hematopoietic stem and progenitor cells (HSPCs). A main modulation driver is the sustained, persistent low-level transmission of lipopolysaccharide from the periodontal pocket into the peripheral blood. Subsequently, the neutrophil phenotype changes and neutrophils become hyper-responsive and prone to boosted formation of neutrophil extracellular traps (NET). Cytotoxic neutrophil proteases and histones are responsible for ulcer formations on the pocket epithelium, which foster bacteremia and endoxemia. The latter promote systemic low-grade inflammation (SLGI), a precondition for many systemic diseases and some of them, e.g., atherosclerosis, diabetes etc., can be triggered by SLGI alone. Either reverting the polarized neutrophils back to the homeostatic state or attenuation of neutrophil hyper-responsiveness in periodontitis might be an approach to diminish or even to prevent systemic diseases.


Assuntos
Doença/etiologia , Endotoxemia/imunologia , Neutrófilos/fisiologia , Periodontite/complicações , Animais , Endotoxemia/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Periodontite/imunologia , Periodontite/metabolismo
7.
Vet Immunol Immunopathol ; 233: 110197, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33550189

RESUMO

Nasal secretory fluid proteomes (NSPs) can provide valuable information about the physiopathology and prognosis of respiratory tract diseases. This study aimed to determine changes in NSP by using proteomics in calves treated with lipopolysaccharide (LPS) or LPS + choline. Healthy calves (n = 10) were treated with LPS (2 µg/kg/iv). Five minutes after LPS injection, the calves received a second iv injection with saline (n = 5, LPS + saline group) or saline containing 1 mg/kg choline (n = 5, LPS + choline group). Nasal secretions were collected before (baseline), at 1 h and 24 h after the treatments and analysed using label-free liquid chromatography-tandem mass spectrometry (LCMS/MS). Differentially expressed proteins (>1.2-fold-change) were identified at the different time points in each group. A total of 52 proteins were up- and 46 were downregulated at 1 h and 24 h in the LPS + saline group. The upregulated proteins that showed the highest changes after LPS administration were small ubiquitin-related modifier-3 (SUMO3) and glutathione peroxidase-1 (GPX1), whereas the most downregulated protein was E3 ubiquitin-protein ligase (TRIM17). Treatment with choline reduced the number of upregulated (32 proteins) and downregulated proteins (33 proteins) in the NSPs induced by LPS. It can be concluded that the proteome composition of nasal fluid in calves changes after LPS, reflecting different pathways, such as the activation of the immunological response, oxidative stress, ubiquitin pathway, and SUMOylation. Choline treatment alters the NSP response to LPS.


Assuntos
Colina/farmacologia , Endotoxemia/veterinária , Mucosa Nasal/metabolismo , Proteínas/metabolismo , Animais , Secreções Corporais/efeitos dos fármacos , Secreções Corporais/metabolismo , Bovinos , Interações Medicamentosas , Endotoxemia/genética , Endotoxemia/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/administração & dosagem , Mucosa Nasal/efeitos dos fármacos , Proteínas/genética , Proteoma/efeitos dos fármacos , Proteoma/genética
8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33563757

RESUMO

Sepsis is a major cause of mortality in intensive care units, which results from a severely dysregulated inflammatory response that ultimately leads to organ failure. While antibiotics can help in the early stages, effective strategies to curtail inflammation remain limited. The high mobility group (HMG) proteins are chromosomal proteins with important roles in regulating gene transcription. While HMGB1 has been shown to play a role in sepsis, the role of other family members including HMGXB4 remains unknown. We found that expression of HMGXB4 is strongly induced in response to lipopolysaccharide (LPS)-elicited inflammation in murine peritoneal macrophages. Genetic deletion of Hmgxb4 protected against LPS-induced lung injury and lethality and cecal ligation and puncture (CLP)-induced lethality in mice, and attenuated LPS-induced proinflammatory gene expression in cultured macrophages. By integrating genome-wide transcriptome profiling and a publicly available ChIP-seq dataset, we identified HMGXB4 as a transcriptional activator that regulates the expression of the proinflammatory gene, Nos2 (inducible nitric oxide synthase 2) by binding to its promoter region, leading to NOS2 induction and excessive NO production and tissue damage. Similar to Hmgxb4 ablation in mice, administration of a pharmacological inhibitor of NOS2 robustly decreased LPS-induced pulmonary vascular permeability and lethality in mice. Additionally, we identified the cell adhesion molecule, ICAM1, as a target of HMGXB4 in endothelial cells that facilitates inflammation by promoting monocyte attachment. In summary, our study reveals a critical role of HMGXB4 in exacerbating endotoxemia via transcriptional induction of Nos2 and Icam1 gene expression and thus targeting HMGXB4 may be an effective therapeutic strategy for the treatment of sepsis.


Assuntos
Endotoxemia/metabolismo , Animais , Células Endoteliais/metabolismo , Endotoxemia/etiologia , Endotoxemia/genética , Feminino , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transcriptoma
9.
Carbohydr Polym ; 256: 117594, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483079

RESUMO

Ganoderma lucidum has been shown to have anti-obesity effects. However, polysaccharide extracted from the sporoderm-broken spores of Ganoderma lucidum (BSGLP) against obesity and its underlying mechanisms have never been reported. In the current study, we showed that BSGLP inhibited high-fat diet (HFD)-induced obesity, hyperlipidemia, inflammation, and fat accumulation in C57BL/6 J mice. BSGLP improved HFD-induced gut microbiota dysbiosis, maintained intestinal barrier function, increased short-chain fatty acids production and GPR43 expression, ameliorated endotoxemia, manifested by reduced serum lipopolysaccharide level, and increased ileum expression of tight junction proteins and antimicrobial peptides. Fecal microbiota transplantation study confirmed that BSGLP-induced microbiota change is responsible, at least in part, for obesity inhibition. Besides, BSGLP notably alleviated HFD-induced upregulation of TLR4/Myd88/NF-κB signaling pathway in adipose tissue. Collectively, our study showed for the first time that BSGLP might be used as a prebiotic agent to inhibit obesity and hyperlipidemia through modulating inflammation, gut microbiota, and gut barrier function.


Assuntos
Ganoderma/efeitos dos fármacos , Microbioma Gastrointestinal , Inflamação/tratamento farmacológico , Obesidade/tratamento farmacológico , Polissacarídeos/química , Animais , Peso Corporal , Biologia Computacional , Dieta Hiperlipídica , Disbiose , Endotoxemia/metabolismo , Fezes/microbiologia , Teste de Tolerância a Glucose , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Inflamação/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Pós , RNA Ribossômico 16S/metabolismo , Esporos Fúngicos
10.
Nat Immunol ; 22(2): 154-165, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398185

RESUMO

Inflammatory caspase sensing of cytosolic lipopolysaccharide (LPS) triggers pyroptosis and the concurrent release of damage-associated molecular patterns (DAMPs). Collectively, DAMPs are key determinants that shape the aftermath of inflammatory cell death. However, the identity and function of the individual DAMPs released are poorly defined. Our proteomics study revealed that cytosolic LPS sensing triggered the release of galectin-1, a ß-galactoside-binding lectin. Galectin-1 release is a common feature of inflammatory cell death, including necroptosis. In vivo studies using galectin-1-deficient mice, recombinant galectin-1 and galectin-1-neutralizing antibody showed that galectin-1 promotes inflammation and plays a detrimental role in LPS-induced lethality. Mechanistically, galectin-1 inhibition of CD45 (Ptprc) underlies its unfavorable role in endotoxin shock. Finally, we found increased galectin-1 in sera from human patients with sepsis. Overall, we uncovered galectin-1 as a bona fide DAMP released as a consequence of cytosolic LPS sensing, identifying a new outcome of inflammatory cell death.


Assuntos
Alarminas/metabolismo , Endotoxemia/imunologia , Galectina 1/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Alarminas/deficiência , Alarminas/genética , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Feminino , Galectina 1/sangue , Galectina 1/deficiência , Galectina 1/genética , Células HeLa , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antígenos Comuns de Leucócito/metabolismo , Lipopolissacarídeos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Necroptose , Proteínas de Ligação a Fosfato/deficiência , Proteínas de Ligação a Fosfato/genética , Células RAW 264.7 , Sepse/sangue , Sepse/diagnóstico , Transdução de Sinais , Regulação para Cima
11.
Eur J Immunol ; 51(2): 380-392, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33080044

RESUMO

Despite the availability of antibiotics, current therapies to treat sepsis are still ineffective and many clinical trials aimed at neutralizing specific inflammatory cytokines have failed, suggesting the urgent need for new treatments. Using two models of LPS-induced endotoxemia and cecal ligation and puncture (CLP)-induced sepsis, we investigated the effects of C1q/TNF-related protein 4(CTRP4) on septic lethality and sepsis-induced inflammation. The effects of CTRP4 on survival, inflammation, organ damage, and bacterial clearance were assessed. Here, we found that CTRP4 decreased the mortalities of mice and alleviated pathological lung injury in mice model. In vivo depletion and adoptive transfer studies showed CTRP4-expressing macrophages as the key cell type inhibiting LPS-induced septic shock. The mechanism associated with the CTRP4 deficiency involved promoting of TLR4 internalization and activation of downstream pathways that resulted in a lethal, prolonged proinflammatory cytokine storm. Treatment of macrophages with exogenous CTRP4 abrogated proinflammatory cytokine production. Our results showed CTRP4 regulates inflammatory response and could be a promising strategy to treat septic shock.


Assuntos
Adipocinas/metabolismo , Anti-Inflamatórios/metabolismo , Endotoxemia/metabolismo , Macrófagos/metabolismo , Choque Séptico/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Choque Séptico/induzido quimicamente
12.
Biomed Pharmacother ; 135: 111084, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33383371

RESUMO

BACKGROUND AND PURPOSE: Inflammation has been considered a precipitating event that contributes to neurocognitive dysfunction in minimal hepatic encephalopathy (MHE). Inhibition TLR-4 related inflammation can effectively improve neurocognitive dysfunction of MHE. Our previous study showed that Babao Dan (BBD) effectively inhibited inflammation and ameliorated neurocognitive function in rats with acute hepatic encephalopathy (HE) and chronic HE. The mechanism may lie in the regulation of TLR4 signaling pathway. Therefore, this study aimed to evaluate the role of BBD in the treatment of MHE patients with cirrhosis and to elucidate the underlying mechanism by which BBD regulated TLR4 pathway to alleviate inflammation. METHODS: A randomized controlled trial (n = 62) was conducted to evaluate the clinical efficacy between BBD plus lactulose (n = 31) and lactulose alone (n = 31) in MHE patients by testing neurocognitive function (NCT-A and DST), blood ammonia, liver function (ALT, AST and TBIL) and blood inflammation (IL-1ß, IL-6 and TNF-α). Afterward, we detected NO, inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and the phosphorylation of P65, JNK, ERK as well as P38 in LPS-activated rat primary bone marrow-derived macrophages (BMDMs), peritoneal macrophages (PMs), and mouse primary BMDMs/PMs/microglia/astrocytes, to investigate the underlying mechanism of BBD inhibiting inflammation through TLR4 pathway. Also, the survival rate of mice, liver function (ALT, AST), blood inflammation (IL-1ß, IL-6 and TNF-α), inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and histopathological changes in the liver, brain and lung were measured to assess the anti-inflammatory effect of BBD on neurocognitive function in endotoxin shock/endotoxemia mice. RESULTS: BBD combined with lactulose significantly ameliorated neurocognitive function by decreasing NCT-A (p<0.001) and increasing DST (p<0.001); inhibited systemic inflammation by decreasing IL-1ß (p<0.001), IL-6(p<0.001) and TNF-α (p<0.001); reduced ammonia level (p = 0.005), and improved liver function by decreasing ALT(p = 0.043), AST(p = 0.003) and TBIL (p = 0.026) in MHE patients. Furthermore, BBD inhibited gene and protein expression of IL-1ß, IL-6 and TNF-α as well as NO in rat primary BMDMs/PMs, and mouse primary BMDMs/PMs/microglia/astrocytes in a dose-dependent manner. BBD inhibited the activation of mouse primary BMDMs/PMs/microglia/astrocytes by regulating TLR4 pathway involving the phosphorylation of P65, JNK, ERK and P38. Also, BBD reduced the mortality of mice with endotoxin shock/endotoxemia; serum levels of ALT, AST, IL-1ß, IL-6 and TNF-α; gene expression of IL-1ß, IL-6 and TNF-α in the liver, brain and lung, and tissue damage in the liver and lung. CONCLUSION: Our study provided for the first time clinical and experimental evidence supporting the use of BBD in MHE, and revealed that BBD could play a crucial role in targeting and regulating TLR4 inflammatory pathway to improve neurocognitive function in MHE patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Encefalopatia Hepática/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Idoso , Animais , Anti-Inflamatórios/efeitos adversos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , China , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/efeitos adversos , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Feminino , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/fisiopatologia , Encefalopatia Hepática/psicologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pessoa de Meia-Idade , Gravidez , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Resultado do Tratamento
13.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287422

RESUMO

Sepsis is a major cause of mortality in critically ill patients and associated with cardiac dysfunction, a complication linked to immunological and metabolic aberrations. Cardiac neutrophil infiltration and subsequent release of myeloperoxidase (MPO) leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to chemically modify plasmalogens (ether-phospholipids) abundantly present in the heart. This reaction gives rise to the formation of reactive lipid species including aldehydes and chlorinated fatty acids. During the present study, we tested whether endotoxemia increases MPO-dependent lipid oxidation/modification in the mouse heart. In hearts of lipopolysaccharide-injected mice, we observed significantly higher infiltration of MPO-positive cells, increased fatty acid content, and formation of 2-chlorohexadecanal (2-ClHDA), an MPO-derived plasmalogen modification product. Using murine HL-1 cardiomyocytes as in vitro model, we show that exogenously added HOCl attacks the cellular plasmalogen pool and gives rise to the formation of 2-ClHDA. Addition of 2-ClHDA to HL-1 cardiomyocytes resulted in conversion to 2-chlorohexadecanoic acid and 2-chlorohexadecanol, indicating fatty aldehyde dehydrogenase-mediated redox metabolism. However, a recovery of only 40% indicated the formation of non-extractable (protein) adducts. To identify protein targets, we used a clickable alkynyl analog, 2-chlorohexadec-15-yn-1-al (2-ClHDyA). After Huisgen 1,3-dipolar cycloaddition of 5-tetramethylrhodamine azide (N3-TAMRA) and two dimensional-gel electrophoresis (2D-GE), we were able to identify 51 proteins that form adducts with 2-ClHDyA. Gene ontology enrichment analyses revealed an overrepresentation of heat shock and chaperone, energy metabolism, and cytoskeletal proteins as major targets. Our observations in a murine endotoxemia model demonstrate formation of HOCl-modified lipids in the heart, while pathway analysis in vitro revealed that the chlorinated aldehyde targets specific protein subsets, which are central to cardiac function.


Assuntos
Aldeídos/metabolismo , Endotoxemia/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Peroxidase/metabolismo , Animais , Biomarcadores , Química Click , Endotoxemia/etiologia , Ácidos Graxos/metabolismo , Ácido Hipocloroso/metabolismo , Lipopolissacarídeos/administração & dosagem , Camundongos , Proteoma , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo
14.
Elife ; 92020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33305733

RESUMO

The extent of non-coding RNA alterations in patients with sepsis and their relationship to clinical characteristics, soluble mediators of the host response to infection, as well as an advocated in vivo model of acute systemic inflammation is unknown. Here we obtained whole blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged with lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation microarray analysis of leukocyte RNA we found that long non-coding RNA and, to a lesser extent, small non-coding RNA were significantly altered in sepsis relative to health. Long non-coding RNA expression, but not small non-coding RNA, was largely recapitulated in human endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as previously unobserved pathways, including non-sensory olfactory receptor activity. We provide a benchmark dissection of the blood leukocyte 'regulome' that can facilitate prioritization of future functional studies.


Assuntos
Estado Terminal , Leucócitos/metabolismo , RNA não Traduzido/metabolismo , Sepse/metabolismo , Idoso , Estudos de Casos e Controles , Endotoxemia/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
15.
Front Immunol ; 11: 570920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324396

RESUMO

B cell-activating factor (BAFF) production is increased in septic patients. However, the specific role of BAFF in sepsis remains unknown. This study was designed to investigate the expression and function of BAFF in an experimental endotoxemia model and to identify the potential mechanisms. We established an endotoxemia mouse (6-8 weeks, 20-22 g) model by administering 30 mg/kg lipopolysaccharide (LPS). BAFF levels in the circulating system and organ tissues were measured 4 and 8 h after LPS injection. Survival rates in the endotoxemia mice were monitored for 72 h after BAFF blockade. The effects of BAFF blockade on systemic and local inflammation, organ injuries, and intestinal barrier function were also evaluated 4 h after LPS treatment. BAFF production was systemically and locally elevated after LPS challenge. BAFF blockade improved the survival rate, systemic inflammation, and multi-organ injuries. Moreover, BAFF blockade attenuated both intestinal inflammation and impaired intestinal permeability. BAFF blockade upregulated ZO-1 and occludin protein levels via the NF-κB/MLCK/MLC signaling pathway. These results suggested that BAFF blockade protects against lethal endotoxemia at least partially by alleviating inflammation, multi-organ injuries, and improving intestinal barrier function and provides a novel focus for further research on sepsis and experimental evidence for clinical therapy.


Assuntos
Fator Ativador de Células B/metabolismo , Endotoxemia/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Fator Ativador de Células B/imunologia , Células Cultivadas , Modelos Animais de Doenças , Endotoxemia/imunologia , Humanos , Inflamação/imunologia , Mucosa Intestinal/patologia , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ocludina/metabolismo , Transdução de Sinais , Proteína da Zônula de Oclusão-1/metabolismo
16.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114200

RESUMO

Plant-extracted triterpenoids belong to a class of bioactive compounds with pleotropic functions, including antioxidant, anti-cancer, and anti-inflammatory effects. In this work, we investigated the anti-inflammatory and anti-oxidative activities of a semisynthetic derivative of 18ßH-glycyrrhetinic acid (18ßH-GA), soloxolone methyl (methyl 2-cyano-3,12-dioxo-18ßH-olean-9(11),1(2)-dien-30-oate, or SM) in vitro on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and in vivo in models of acute inflammation: LPS-induced endotoxemia and carrageenan-induced peritonitis. SM used at non-cytotoxic concentrations was found to attenuate the production of reactive oxygen species and nitric oxide (II) and increase the level of reduced glutathione production by LPS-stimulated RAW264.7 cells. Moreover, SM strongly suppressed the phagocytic and migration activity of activated macrophages. These effects were found to be associated with the stimulation of heme oxigenase-1 (HO-1) expression, as well as with the inhibition of nuclear factor-κB (NF-κB) and Akt phosphorylation. Surprisingly, it was found that SM significantly enhanced LPS-induced expression of the pro-inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in RAW264.7 cells via activation of the c-Jun/Toll-like receptor 4 (TLR4) signaling axis. In vivo pre-exposure treatment with SM effectively inhibited the development of carrageenan-induced acute inflammation in the peritoneal cavity, but it did not improve LPS-induced inflammation in the endotoxemia model.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Triterpenos Pentacíclicos/administração & dosagem , Peritonite/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/metabolismo , Glutationa/metabolismo , Ácido Glicirretínico/química , Heme Oxigenase-1/genética , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Proteínas de Membrana/genética , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Peritonite/induzido quimicamente , Peritonite/genética , Peritonite/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
17.
J Agric Food Chem ; 68(42): 11710-11725, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33034193

RESUMO

The responses of gut microbiota to dietary proteins have been studied previously. However, the effects of dietary proteins supplemented with a high-fat diet (HFD) on the metabolite biomarkers associated with non-alcoholic fatty liver disease (NAFLD) are not well understood. To understand the underlying mechanisms, C57BL/6J mice were fed with either a low-fat diet with casein (LFC) or an HFD with casein (HFC), fish (HFF), or mutton proteins (HFM), and their cecal microbiota and liver metabolites were analyzed. At the phylum level, the HFD group had a relatively higher abundance of Firmicutes compared to the LFC-diet group. At the genus level, the HFF-diet group had the highest abundance of Lactobacillus and Akkermansia compared to the HFC- and HFM-diet groups. Furthermore, mice fed with the HFF diet had significantly reduced levels of hepatic metabolites involved in oxidative stress and bile acid metabolism. Thus, meat proteins in HFD interact in the host to create distinct responses in the gut microbiota and its metabolites.


Assuntos
Proteínas na Dieta/efeitos adversos , Endotoxemia/imunologia , Microbioma Gastrointestinal , NF-kappa B/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas na Dieta/metabolismo , Endotoxemia/etiologia , Endotoxemia/metabolismo , Endotoxemia/microbiologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Estresse Oxidativo , Receptor 4 Toll-Like/genética
18.
Front Immunol ; 11: 1892, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973783

RESUMO

Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBß), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.


Assuntos
Endotoxemia/metabolismo , Imunidade Inata , Fígado/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores Etários , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , Fígado/imunologia , Masculino , Camundongos Endogâmicos ICR , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Transdução de Sinais , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Nat Commun ; 11(1): 4561, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917873

RESUMO

The protein high-mobility group box 1 (HMGB1) is released into the extracellular space in response to many inflammatory stimuli, where it is a potent signaling molecule. Although research has focused on downstream HMGB1 signaling, the means by which HMGB1 exits the cell is controversial. Here we demonstrate that HMGB1 is not released from bone marrow-derived macrophages (BMDM) after lipopolysaccharide (LPS) treatment. We also explore whether HMGB1 is released via the pore-forming protein gasdermin D after inflammasome activation, as is the case for IL-1ß. HMGB1 is only released under conditions that cause cell lysis (pyroptosis). When pyroptosis is prevented, HMGB1 is not released, despite inflammasome activation and IL-1ß secretion. During endotoxemia, gasdermin D knockout mice secrete HMGB1 normally, yet secretion of IL-1ß is completely blocked. Together, these data demonstrate that in vitro HMGB1 release after inflammasome activation occurs after cellular rupture, which is probably inflammasome-independent in vivo.


Assuntos
Proteína HMGB1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Animais , Modelos Animais de Doenças , Endotoxemia/metabolismo , Feminino , Proteína HMGB1/genética , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Piroptose , Transdução de Sinais
20.
Cardiovasc Ther ; 2020: 9397109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821285

RESUMO

Chronic systemic inflammation contributes to cardiovascular disease (CVD) and correlates with the abundance of acute phase response (APR) proteins in the liver and plasma. Bromodomain and extraterminal (BET) proteins are epigenetic readers that regulate inflammatory gene transcription. We show that BET inhibition by the small molecule apabetalone reduces APR gene and protein expression in human hepatocytes, mouse models, and plasma from CVD patients. Steady-state expression of serum amyloid P, plasminogen activator inhibitor 1, and ceruloplasmin, APR proteins linked to CVD risk, is reduced by apabetalone in cultured hepatocytes and in humanized mouse liver. In cytokine-stimulated hepatocytes, apabetalone reduces the expression of C-reactive protein (CRP), alpha-2-macroglobulin, and serum amyloid P. The latter two are also reduced by apabetalone in the liver of endotoxemic mice. BET knockdown in vitro also counters cytokine-mediated induction of the CRP gene. Mechanistically, apabetalone reduces the cytokine-driven increase in BRD4 BET occupancy at the CRP promoter, confirming that transcription of CRP is BET-dependent. In patients with stable coronary disease, plasma APR proteins CRP, IL-1 receptor antagonist, and fibrinogen γ decrease after apabetalone treatment versus placebo, resulting in a predicted downregulation of the APR pathway and cytokine targets. We conclude that CRP and components of the APR pathway are regulated by BET proteins and that apabetalone counters chronic cytokine signaling in patients.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Quinazolinonas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteína C-Reativa/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Endotoxemia/genética , Endotoxemia/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas , Componente Amiloide P Sérico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , alfa-Macroglobulinas/genética , alfa-Macroglobulinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...