Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.491
Filtrar
1.
Mem Inst Oswaldo Cruz ; 114: e190160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31411312

RESUMO

Human enteroviruses (EVs) are associated with a wide spectrum of human diseases. Here we report the complete genome sequences of one EV-C99 strain and one E29 strain obtained from children suffering from acute gastroenteritis, without symptoms of enteroviral syndromes. This is the first report of EV-C99 in South America, and the second E29 genome described worldwide. Continuous surveillance on EVs is vital to provide further understanding of the circulation of new or rare EV serotypes in the country. The present study also highlights the capacity of EVs to remain in silent circulation in populations.


Assuntos
Enterovirus Humano B/genética , Enterovirus Humano C/genética , Infecções por Enterovirus/virologia , Idoso , Brasil , Pré-Escolar , Enterovirus Humano B/isolamento & purificação , Enterovirus Humano C/isolamento & purificação , Fezes/virologia , Humanos , Masculino , Filogenia , RNA Viral/genética
2.
Pol J Microbiol ; 68(2): 165-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257789

RESUMO

Hand, foot, and mouth disease (HFMD) is caused by various serotypes of Enterovirus genus. Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) were known to be the only responsible agents for these epidemics; however, this opinion was challenged after the detection that coxsackievirus A6 (CV-A6) was the responsible species for the outbreak in Finland in 2008. HFMD is frequently seen in Turkey, and no detailed study on its clinical and microbiological epidemiology has previously been reported. The present study addresses this question. Twenty-seven patient samples collected between 2015 and 2017 were included in the study. Typing was conducted by RT-PCR and the sequencing applied directly to patient's samples and as well as to the viral cultures with pan-enterovirus and serotype-specific primers. The presence of Enterovirus in 12 of 27 HFMD samples was shown with RT-PCR. The causative agent for three of these 12 samples was CV-A16, one of the most frequent two serotypes around the world, and the remaining nine samples was CV-A6. The findings of the study are relevant since it pertains to the molecular epidemiology of HFMD in Turkey, a gateway country where different serotypes might be circulating and transmitted. The findings also support the notion that CV-A6 cases are rising in number, which has caused more severe clinical features and widespread rashes in recent outbreaks.Hand, foot, and mouth disease (HFMD) is caused by various serotypes of Enterovirus genus. Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) were known to be the only responsible agents for these epidemics; however, this opinion was challenged after the detection that coxsackievirus A6 (CV-A6) was the responsible species for the outbreak in Finland in 2008. HFMD is frequently seen in Turkey, and no detailed study on its clinical and microbiological epidemiology has previously been reported. The present study addresses this question. Twenty-seven patient samples collected between 2015 and 2017 were included in the study. Typing was conducted by RT-PCR and the sequencing applied directly to patient's samples and as well as to the viral cultures with pan-enterovirus and serotype-specific primers. The presence of Enterovirus in 12 of 27 HFMD samples was shown with RT-PCR. The causative agent for three of these 12 samples was CV-A16, one of the most frequent two serotypes around the world, and the remaining nine samples was CV-A6. The findings of the study are relevant since it pertains to the molecular epidemiology of HFMD in Turkey, a gateway country where different serotypes might be circulating and transmitted. The findings also support the notion that CV-A6 cases are rising in number, which has caused more severe clinical features and widespread rashes in recent outbreaks.


Assuntos
Enterovirus Humano B/isolamento & purificação , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/virologia , Epidemiologia Molecular/métodos , Animais , Linhagem Celular , Cercopithecus aethiops , Criança , Pré-Escolar , Enterovirus Humano B/classificação , Enterovirus Humano B/genética , Feminino , Humanos , Lactente , Masculino , Tipagem Molecular , Turquia/epidemiologia , Células Vero
3.
Cell Physiol Biochem ; 53(1): 121-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31230428

RESUMO

Infections with Coxsackievirus B3 and other members of the enterovirus genus are a common reason for myocarditis and sudden cardiac death in modern society. Despite intensive scientific efforts to cure enterovirus infections, there is still no standardized treatment option. The complexity of Coxsackievirus B3´s effects on the host cell make well defined studies on this topic very challenging. However, recent publications report newly found effects of CVB3´s structural and non-structural proteins on infected cells. For the first time, the viral capsid protein VP1 was shown to have direct influence on the viral life-cycle. By shortening the G0 and the G2 phase and simultaneously prolonging the G1 and G1-S phase, the translation of viral proteins is enhanced and the production of viable CVB3 particles is promoted. Coxsackievirus B3´s viroporin, protein 2B, was recently studied in more detail as well. Structural and physiological analyses identified two hydrophilic α-helices in the structure of 2B, enabling it to insert into cellular membranes of host cells. As main target of 2B the endoplasmatic reticulum was identified. The insertion of 2B into the ER membranes leads to an uncontrolled calcium outflow into the cytoplasm. Additional insertion of 2B into the cell membrane leads to host cell destabilization and in the end to release of viral progeny. The importance of the Coxsackievirus B3´s proteases 2A and 3C in pathogenicity is observed since years. Recently, DAP5 and eIf4G were identified as new cleavage targets for protease 2A. Cleavage of DAP-5 into DAP5-N and DAP5-C changes the gene expression of the host cell and promotes cell death. Additionally, protease 3C targets and cleaves procaspase 8 promoting the mitochondrial apoptosis pathway and cell death. Recent studies identified significant effects of CVB3 on mitochondria of infected cells. Mouse cardiomyocytes showed decreased activities of respiratory chain complexes I-III and changed transcription of important subunits of the complexes I-IV. A disrupted energy metabolism may be one of the main causes of cardiac insufficiency and death in CVB3 infected patients. In addition to a modified energy metabolism, CVB3 affects cardiac ion channels, KCNQ1 in particular. SGK1, which is an important mediator in KCNQ1 membrane insertions, is highly upregulated during CVB3 infections. This results in an increased insertion of KCNQ1 into the cell membrane of cardiac cells. Under stress conditions, this KCNQ1 overshoot may lead to a disturbed cardiac action potential and therefore to sudden cardiac death, as it is often observed in CVB3 infected persons.


Assuntos
Infecções por Coxsackievirus/patologia , Enterovirus Humano B/fisiologia , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coxsackievirus/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Enterovirus Humano B/patogenicidade , Humanos , Canal de Potássio KCNQ1/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Proteínas não Estruturais Virais/metabolismo
4.
BMC Infect Dis ; 19(1): 466, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126252

RESUMO

BACKGROUND: Coxsackievirus B3 (CV-B3) is usually associated with aseptic meningitis and myocarditis; however, the association between CV-B3 and hand, foot, and mouth disease (HFMD) has not been clearly demonstrated, and the phylogenetic dynamics and transmission history of CV-B3 have not been well summarized. METHOD: Two HFMD outbreaks caused by CV-B3 were described in Hebei Province in 2012 and in Shandong Province in 2016 in China. To analyze the epidemiological features of two CV-B3 outbreaks, a retrospective analysis was conducted. All clinical specimens from CV-B3 outbreaks were collected and disposed according to the standard procedures supported by the WHO Global Poliovirus Specialized Laboratory. EV genotyping and phylogenetic analysis were performed to illustrate the genetic characteristics of CV-B3 in China and worldwide. RESULTS: Two transmissible lineages (lineage 2 and 3) were observed in Northern China, which acted as an important "reservoir" for the transmission of CV-B3. Sporadic exporting and importing of cases were observed in almost all regions. In addition, the global sequences of CV-B3 showed a tendency of geographic-specific clustering, indicating that geographic-driven adaptation plays a major role in the diversification and evolution of CV-B3. CONCLUSIONS: Overall, our study indicated that CV-B3 is a causative agent of HFMD outbreak and revealed the phylogenetic dynamics of CV-B3 worldwide, as well as provided an insight on CV-B3 outbreaks for effective intervention and countermeasures.


Assuntos
Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/virologia , Evolução Biológica , China/epidemiologia , Análise por Conglomerados , Infecções por Coxsackievirus/epidemiologia , Surtos de Doenças , Enterovirus Humano B/fisiologia , Humanos , Filogenia , Estudos Retrospectivos
5.
Virol J ; 16(1): 63, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068194

RESUMO

BACKGROUND: Hand, foot, and mouth disease (HFMD) is a common childhood disease, which is usually caused by enterovirus A (EV-A) serotypes. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the main etiologic agents. Multiple serotypes of enterovirus B serotypes (EV-B) have been detected in outbreaks or sporadic cases of HFMD. RESULTS: During HFMD surveillance in Yunnan, China in 2013, two echovirus 33 (E-33) isolates were recovered in cell culture and typed by molecular methods from the cerebrospinal fluid (CSF) and feces of two sporadic cases of HFMD complicated by meningitis. Sequence analysis indicated that the study isolates, YNK35 and YNA12, formed an independent branch, and belonged to E-33 genotype H. Recombination analysis indicated multiple recombination events in the genomic sequence of isolate YNK35. The recombination mainly occurred in the non-structural coding region of P2 and P3, and involved intra-species recombination of species B. CONCLUSION: In this study, the complete sequences of two E-33 isolates were determined. This is the first report of severe HFMD associated with E-33 in Yunnan China, and it enriches the number of full-length genome sequences of E-33 in the GenBank database.


Assuntos
Enterovirus Humano B/genética , Doença de Mão, Pé e Boca/complicações , Doença de Mão, Pé e Boca/virologia , Meningite/virologia , Recombinação Genética , China/epidemiologia , Enterovirus Humano B/isolamento & purificação , Monitoramento Epidemiológico , Feminino , Variação Genética , Genoma Viral , Doença de Mão, Pé e Boca/líquido cefalorraquidiano , Humanos , Lactente , Masculino , Filogenia , Sorogrupo , Sequenciamento Completo do Genoma
6.
PLoS Pathog ; 15(4): e1007674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958867

RESUMO

Viral myocarditis is a serious disease, commonly caused by type B coxsackieviruses (CVB). Here we show that innate immune protection against CVB3 myocarditis requires the IFIT (IFN-induced with tetratricopeptide) locus, which acts in a biphasic manner. Using IFIT locus knockout (IFITKO) cardiomyocytes we show that, in the absence of the IFIT locus, viral replication is dramatically increased, indicating that constitutive IFIT expression suppresses CVB replication in this cell type. IFNß pre-treatment strongly suppresses CVB3 replication in wild type (wt) cardiomyocytes, but not in IFITKO cardiomyocytes, indicating that other interferon-stimulated genes (ISGs) cannot compensate for the loss of IFITs in this cell type. Thus, in isolated wt cardiomyocytes, the anti-CVB3 activity of IFITs is biphasic, being required for protection both before and after T1IFN signaling. These in vitro findings are replicated in vivo. Using novel IFITKO mice we demonstrate accelerated CVB3 replication in pancreas, liver and heart in the hours following infection. This early increase in virus load in IFITKO animals accelerates the induction of other ISGs in several tissues, enhancing virus clearance from some tissues, indicating that-in contrast to cardiomyocytes-other ISGs can offset the loss of IFITs from those cell types. In contrast, CVB3 persists in IFITKO hearts, and myocarditis occurs. Thus, cardiomyocytes have a specific, biphasic, and near-absolute requirement for IFITs to control CVB infection.


Assuntos
Proteínas de Transporte/fisiologia , Infecções por Coxsackievirus/prevenção & controle , Enterovirus Humano B/patogenicidade , Miocardite/prevenção & controle , Miócitos Cardíacos/enzimologia , Animais , Células Cultivadas , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/metabolismo , Miocardite/virologia , Replicação Viral
7.
Microb Cell Fact ; 18(1): 66, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947747

RESUMO

BACKGROUND: Oral vaccine is highly desired for infectious disease which is caused by pathogens infection through the mucosal surface. The design of suitable vaccine delivery system is ongoing for the antigen protection from the harsh gastric environment and target to the Peyer's patches to induce sufficient mucosal immune responses. Among various potential delivery systems, bacterial inclusion bodies have been widely used as delivery systems in the field of nanobiomedicine. However, a large number of heterologous complex proteins could be difficult to propagate in E. coli and fusion partners are often used to enhance target protein expression. As a safety concern the fusion protein need to be removed from the target protein to get tag-free protein, especially for the production of protein antigen in vaccinology. Until now, there is no report on how to remove fusion tag from inclusion body particles in vitro and in vivo. Coxsackievirus B3 (CVB3) is a leading causative agent of viral myocarditis and orally protein vaccine is high desired for CVB3-induced myocarditis. In this context, we explored a tag-free VP1 inclusion body nanoparticles production protocol though a truncated Ssp DnaX mini-intein spontaneous C-cleavage in vivo and also exploited the VP1 inclusion bodies as an oral protein nanoparticle vaccine to protect mice against CVB3-induced myocarditis. RESULTS: We successfully produced the tag-free VP1 inclusion body nanoparticle antigen of CVB3 and orally administrated to mice. The results showed that the tag-free VP1 inclusion body nanoparticles as an effective antigen delivery system targeting to the Peyer's patches had the capacity to induce mucosal immunity as well as to efficiently protect mice from CVB3 induce myocarditis without any adjuvant. Then, we proposed the use of VP1 inclusion body nanoparticles as good candidate for oral vaccine to against CVB3-induced myocarditis. CONCLUSIONS: Our tag-free inclusion body nanoparticles production procedure is easy and low cost and may have universal applicability to produce a variety of tag-free inclusion body nanoparticles for oral vaccine.


Assuntos
Proteínas do Capsídeo/imunologia , Enterovirus Humano B/imunologia , Miocardite/prevenção & controle , Vacinas Virais/imunologia , Administração Oral , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Enterovirus Humano B/química , Enterovirus Humano B/genética , Humanos , Imunidade nas Mucosas , Inteínas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/imunologia , Miocardite/virologia , Nanopartículas/química , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/genética
8.
Nat Commun ; 10(1): 1138, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850609

RESUMO

Viruses from the genus Enterovirus are important human pathogens. Receptor binding or exposure to acidic pH in endosomes converts enterovirus particles to an activated state that is required for genome release. However, the mechanism of enterovirus uncoating is not well understood. Here, we use cryo-electron microscopy to visualize virions of human echovirus 18 in the process of genome release. We discover that the exit of the RNA from the particle of echovirus 18 results in a loss of one, two, or three adjacent capsid-protein pentamers. The opening in the capsid, which is more than 120 Å in diameter, enables the release of the genome without the need to unwind its putative double-stranded RNA segments. We also detect capsids lacking pentamers during genome release from echovirus 30. Thus, our findings uncover a mechanism of enterovirus genome release that could become target for antiviral drugs.


Assuntos
Capsídeo/ultraestrutura , Enterovirus Humano B/ultraestrutura , Genoma Viral , RNA Viral/genética , Vírion/ultraestrutura , Desenvelopamento do Vírus/genética , Animais , Capsídeo/química , Cercopithecus aethiops , Microscopia Crioeletrônica , Enterovirus Humano B/genética , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA Viral/química , Vírion/genética
10.
Transbound Emerg Dis ; 66(3): 1360-1369, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864242

RESUMO

Senecavirus A (SVA) belonging to the family Picornaviridae, genus Senecavirus was incidentally isolated in 2002 from the PER.C6 (transformed foetal retinoblast) cell line. However, currently, this virus is associated with vesicular disease in swine and it has been reported in countries such as the United States of America, Canada, China, Thailand and Colombia. In Brazil, the SVA was firstly reported in 2015 in outbreaks of vesicular disease in swine, clinically indistinguishable of Foot-and-mouth disease, a contagious viral disease that generates substantial economic losses. In the present work, it was standardized a diagnostic tool for SVA based on RNA reverse transcriptase droplet digital PCR (RT-ddPCR) using one-step and two-step approaches. Analytical sensitivity and specificity were done in parallel with real-time PCR, RT-qPCR (one-step and two-step) for comparison of sensitivity and specificity of both methods. In the standardization of RT-ddPCR, the double-quenched probe and the temperature gradient were crucial to reduce background and improve amplitude between positive and negative droplets. The limit of detection and analytical specificity of techniques of one-step techniques showed superior performance than two-step methods described here. Additionally, the results showed 94.2% concordance (p < 0.001) for RT-ddPCR and RT-qPCR using the one-step assay approach and biological samples from Brazilian outbreaks of Senecavirus A. However, ddRT-PCR had a better performance than RT-PCR when swine serum pools were tested. According to the results, the one-step RT-ddPCR and RT-qPCR is highlighted to be used as an auxiliary diagnostic tool for Senecavirus A and for viral RNA absolute quantification in biological samples (RT-ddPCR), being a useful tool for vesicular diseases control programs.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/veterinária , Infecções por Picornaviridae/veterinária , Picornaviridae/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Doenças dos Suínos/epidemiologia , Animais , Brasil/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/isolamento & purificação , Picornaviridae/genética , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , RNA Viral/análise , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia , Doença Vesicular Suína/epidemiologia , Doença Vesicular Suína/virologia
11.
J Water Health ; 17(1): 124-136, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30758309

RESUMO

Currently guidelines for disinfection of water with free chlorine, while primarily developed for potable water, are often used for virus disinfection of nitrified recycled water of >1 NTU (Nephelometric Turbidity Unit). More information is needed on the disinfection efficacy of free chlorine for viruses in waters of varying turbidity and pH due to significant reuse of treated wastewater of varying quality. In this study, disinfection efficacy in nitrified/denitrified activated sludge treated wastewater was investigated for coxsackievirus B5 (CB5), an enterovirus known to be highly resistant to free chlorine. The required chlorine contact times (CT) values (mg.min/L) for inactivation of CB5 were established in treated wastewater at 10 °C and of varying turbidity (0.2, 2, 5 and 20 NTU) and pH (7, 8 and 9). CTs were calculated to achieve 1 to 4 log10 inactivation. Robust data is presented in support of the chlorine CT values required to inactivate a chlorine-resistant virus in a range of turbidities and pHs in treated wastewaters. The testing method used a conservative approach and the data presented have been used to develop the free chlorine virus inactivation guildelines for recycled water in Victoria and South Australia, Australia.


Assuntos
Cloro/toxicidade , Desinfetantes/toxicidade , Enterovirus Humano B , Águas Residuárias/virologia , Purificação da Água/métodos , Desinfecção , Austrália do Sul , Vitória , Inativação de Vírus
12.
Virol Sin ; 34(1): 50-58, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30790201

RESUMO

Echovirus 18 (E18), a serotype of Enterovirus B (EV-B) species, is an important pathogen in aseptic meningitis. E18 had rarely been detected in mainland China, but became the predominant pathogen associated with viral encephalitis (VE) and meningitis in Hebei province for the first time in 2015. To investigate the molecular epidemiology and genetic characteristics of E18 in mainland China, sixteen E18 strains from patient throat swabs with hand, foot, and mouth disease (HFMD) in six provinces in China collected between 2015 and 2016, and four E18 strains isolated from 18 patient cerebrospinal fluid specimens with VE in Hebei Province in 2015 were obtained and sequenced. Combined with the sequences from the GenBank database, we performed an extensive genetic analysis. Phylogenetic analysis of VP1 gene sequences revealed that all E18 strains from mainland China after 2015 belonged to subgenotype C2. There were no obvious specific differences in phylogenetic and variation analyses of E18 genome sequences between HFMD and VE/meningitis strains. Potential multiple recombination may have occurred in the 5'-untranslated region and in the P2 and P3 nonstructural protein-encoding regions of E18 strains from China. The current E18 strains were potential multiple-recombinant viruses. Overall, these findings supported that E18 caused HFMD, VE, and meningitis, although there were no significant associations between clinical features and viral genomic characteristics.


Assuntos
Enterovirus Humano B/genética , Infecções por Enterovirus/epidemiologia , Genoma Viral , Genótipo , Proteínas do Capsídeo/genética , China/epidemiologia , Surtos de Doenças , Encefalite Viral/epidemiologia , Enterovirus Humano B/patogenicidade , Infecções por Enterovirus/virologia , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Meningite Viral/epidemiologia , Filogenia , RNA Viral/genética , Recombinação Genética
13.
Proc Natl Acad Sci U S A ; 116(9): 3758-3763, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808762

RESUMO

Echoviruses are amongst the most common causative agents of aseptic meningitis worldwide and are particularly devastating in the neonatal population, where they are associated with severe hepatitis, neurological disease, including meningitis and encephalitis, and even death. Here, we identify the neonatal Fc receptor (FcRn) as a pan-echovirus receptor. We show that loss of expression of FcRn or its binding partner beta 2 microglobulin (ß2M) renders cells resistant to infection by a panel of echoviruses at the stage of virus attachment, and that a blocking antibody to ß2M inhibits echovirus infection in cell lines and in primary human intestinal epithelial cells. We also show that expression of human, but not mouse, FcRn renders nonpermissive human and mouse cells sensitive to echovirus infection and that the extracellular domain of human FcRn directly binds echovirus particles and neutralizes infection. Lastly, we show that neonatal mice expressing human FcRn are more susceptible to echovirus infection by the enteral route. Our findings thus identify FcRn as a pan-echovirus receptor, which may explain the enhanced susceptibility of neonates to echovirus infections.


Assuntos
Enterovirus Humano B/genética , Antígenos de Histocompatibilidade Classe I/genética , Receptores Fc/genética , Receptores Virais/genética , Microglobulina beta-2/genética , Animais , Infecções por Echovirus/genética , Infecções por Echovirus/imunologia , Infecções por Echovirus/virologia , Enterovirus Humano B/patogenicidade , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Ligação Proteica , Microglobulina beta-2/imunologia
14.
Virology ; 529: 169-176, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30711774

RESUMO

Coxsackievirus B is a significant human pathogen and is a leading cause of myocarditis. We and others have observed that certain enteroviruses including coxsackievirus B cause infected cells to shed extracellular vesicles containing infectious virus. Recent reports have shown that vesicle-bound virus can infect more efficiently than free virus. Though microRNAs are differentially regulated in cells following infection, few have been associated with the vesicles shed from infected cells. Here we report exclusive trafficking of specific microRNAs into viral vesicles compared to vesicles from non-infected cells. We found that the most highly-expressed unique microRNA in viral vesicles was miR-590-5p, which facilitates prolonged viral replication by blocking apoptotic factors. Cells over-expressing this miR were significantly more susceptible to infection. This may be a mechanism by which coxsackievirus B boosts subsequent rounds of infection by co-packaging virus and a select set of pro-viral microRNAs in extracellular vesicles.


Assuntos
Enterovirus Humano B/fisiologia , MicroRNAs/fisiologia , Replicação Viral/fisiologia , Enterovirus Humano B/genética , Células HeLa , Humanos , RNA Mensageiro/metabolismo
15.
Microb Pathog ; 128: 245-249, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30633983

RESUMO

(1) Many studies demonstrated that olive oil and the leaves have several biological activities, but the works on olive twigs remain very limited. In this report, we investigated for anti-coxsackievirus B-3 (CVB-3) and anti-herpes virus type 2 (HSV-2) activities of olive twigs from two Tunisian varieties: Chemlali (CM) and Chétoui (CT). Extraction from the olive twigs was carried out using successively hexane, dichloromethane, ethyl acetate and methanol. The obtained extracts were evaluated for their anti-CVB-3 and anti-HSV-2 activities by MTT and plaque reduction assays, respectively. Only hexane extracts exhibited significant activity with a selectivity index of 6.32±0.67 and 5.24±0.82 for CM and CT, respectively. The active compound was isolated through bio-guided assays using Thin Layer Chromatography (TLC) and identified as 2,4-di-tert-butylphenol (2,4-DTBP) by gas chromatography coupled with mass spectrometry (GC-MS). This work is the first study that demonstrated an antiviral activity of both olive twigs and DTBP.


Assuntos
Antivirais/química , Antivirais/isolamento & purificação , Olea/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Herpesvirus Humano 2/efeitos dos fármacos , Azeite de Oliva , Fenóis/química , Fenóis/farmacologia , Folhas de Planta/química , Óleos Vegetais/química , Tunísia
16.
Basic Res Cardiol ; 114(2): 11, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30673858

RESUMO

Coxsackieviruses of group B (CVB) are well-known causes of acute and chronic myocarditis. Chronic myocarditis can evolve into dilated cardiomyopathy (DCM) characterized by fibrosis and cardiac remodeling. Interleukin-1ß (IL-1ß) plays a decisive role in the induction of the inflammatory response as a consequence of viral replication. In this study, we analyzed the effects of IL-1ß neutralization on the transition of acute to chronic myocarditis in a mouse model of CVB3 myocarditis. Mice were treated with an anti-murine IL-1ß antibody as a surrogate for Canakinumab at different time points post CVB3 infection. Treatment was performed in the early phase (day 1-14 pi, day 3-14 pi) or at a later stage of myocarditis (day 14-28 pi). Subsequently, the hearts were examined histologically, immunohistochemically and by molecular biology. A significant reduction of viral replication, cardiac damage and inflammation was found after administration of the antibody in the early phase and in the later phase of infection. Furthermore, less collagen I deposition and a considerable reduction of fibrosis were found in antibody-treated mice. Using microarray analysis, a significant upregulation of various extracellular matrix and fibrosis-associated molecules was found in CVB3-infected mice, including TGF-ß, TIMP-1 and MMP12, as well as diverse matricellular proteins, whereas, these molecules were significantly downregulated in all IL-1ß antibody-treated infected mice. Neutralization of IL-1ß at different stages of enteroviral infection prevents the development of chronic viral myocarditis by reducing inflammation, interstitial fibrosis and adverse cardiac remodeling. These findings are relevant for the treatment of patients with acute and chronic myocarditis.


Assuntos
Interleucina-1beta/antagonistas & inibidores , Miocardite/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Doença Crônica , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Enterovirus Humano B , Camundongos , Miocardite/metabolismo , Miocardite/virologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Am J Case Rep ; 20: 48-52, 2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30635548

RESUMO

BACKGROUND Renal cell carcinoma is the most commonly diagnosed primary malignant tumor of the kidney in adults, and includes the variant of chromophobe renal cell carcinoma. Despite new targeted therapies that improve progression-free survival (PFS) and overall survival (OS) for early-stage renal cell carcinoma, the 5-year survival for patients with stage IV renal cell carcinoma remains below 10%, and the 50% OS is less than one year. Metastatic renal cell carcinoma can be resistant to cytotoxic chemotherapy. This report is of a case of stage IV chromophobe renal cell carcinoma that responded well to treatment with the oncolytic ECHO-7 virus, Rigvir®. CASE REPORT In December 2015, a 59-year-old man presented with a right-sided chromophobe renal cell carcinoma stage IV (pT1N0M1) with adrenal gland metastasis. He underwent right nephro-adrenalectomy followed by treatments with Rigvir® (≥106 TCID50/ml) by intramuscular (i.m.) injection on three consecutive days. Treatment with Rigvir® continued once per week for three months, and from March 2016, once per month, with continued treatment until computed tomography (CT) scans confirmed that the tumor metastases had stabilized. CONCLUSIONS This case report has demonstrated that the oncolytic ECHO-7 virus, Rigvir® should be evaluated further as a potential treatment for advanced renal carcinoma.


Assuntos
Carcinoma de Células Renais/terapia , Enterovirus Humano B , Neoplasias Renais/terapia , Terapia Viral Oncolítica/métodos , Neoplasias das Glândulas Suprarrenais/secundário , Neoplasias das Glândulas Suprarrenais/terapia , Adrenalectomia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/secundário , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Nefrectomia
18.
Arch Virol ; 164(3): 853-860, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30600351

RESUMO

Coxsakievirus (CV) B4, CVB5, and CVA9 belong to the species Enterovirus B. These viruses can cause viral encephalitis, aseptic meningitis, pancreatitis, flaccid paralysis, dilated myocarditis, and hand, foot, and mouth disease (HFMD). In order to analyze the evolution of CVB4, CVB5, and CVA9, we analyzed all of the available genome sequences of Enterovirus B (EVB) isolates and found that there were 12 putative recombination events that produced CVB4, 13 putative recombination events that produced CVB5, and 10 putative recombination events that produced CVA9. These recombination events involved 17 EVB serotypes as major or minor parents. The most active Echovirus (EchoV) appears to have been involved in 20 of the 35 recombination events, acting as one of the parental viruses of circulating CVB4, CVB5, and CVA9 strains. Our study indicates that EchoV plays a major role in recombination in the CVB group, and Echov_E30 is the most active in CVB4, whereas Echov_E3 and Echov_E25 are the most active in CVA9.


Assuntos
Enterovirus Humano B/genética , Infecções por Enterovirus/virologia , Vírus Reordenados/genética , Recombinação Genética , Enterovirus Humano B/classificação , Enterovirus Humano B/fisiologia , Humanos , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Proteínas Virais/genética
19.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669342

RESUMO

Adenosine deaminases acting on RNA (ADAR) are enzymes that regulate RNA metabolism through post-transcriptional mechanisms. ADAR1 is involved in a variety of pathological conditions including inflammation, cancer, and the host defense against viral infections. However, the role of ADAR1p150 in vascular disease remains unclear. In this study, we examined the expression of ADAR1p150 and its role in viral myocarditis (VMC) in a mouse model. VMC mouse cardiomyocytes showed significantly higher expression of ADAR1p150 compared to the control samples. Coimmunoprecipitation verified that ADAR1p150 forms a complex with Dicer in VMC. miRNA-222, which is involved in many cardiac diseases, is highly expressed in cardiomyocytes in VMC. In addition, the expression of miRNA-222 was promoted by ADAR1p150/Dicer. Among the target genes of miRNA-222, the expression of phosphatase-and-tensin (PTEN) protein was significantly reduced in VMC. By using a bioinformatics tool, we found a potential binding site of miRNA-222 on the PTEN gene's 3'-UTR, suggesting that miRNA-222 might play a regulatory role. In cultured cells, miR-222 suppressed PTEN expression. Our findings suggest that ADAR1p150 plays a key role in complexing with Dicer and promoting the expression of miRNA-222, the latter of which suppresses the expression of the target gene PTEN during VMC. Our work reveals a previously unknown role of ADAR1p150 in gene expression in VMC.


Assuntos
Adenosina Desaminase/metabolismo , Infecções por Coxsackievirus/complicações , Enterovirus Humano B , MicroRNAs/genética , Miocardite/etiologia , Miocardite/metabolismo , PTEN Fosfo-Hidrolase/genética , Ribonuclease III/metabolismo , Animais , Sobrevivência Celular/genética , Células Cultivadas , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/fisiologia , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Imuno-Histoquímica , Masculino , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Ligação Proteica , Interferência de RNA
20.
Phytochemistry ; 158: 135-141, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529974

RESUMO

Five undescribed cycloartane-type triterpenoids, which were isolated for the first time from the genus, and a flavonoid glycoside together with 11 known compounds were isolated from the burs of Castanea crenata. The structures were elucidated based on the spectroscopic analysis of 1D and 2D NMR and MS data. All isolated compounds were evaluated for antiviral activities against HRV1B-, CVB3-, and PR8-infected cells. Most kaempferol derivatives showed statistically significant antiviral activities against HRV1B-infected cells. Among the tested compounds, kaempferol-3-O-[2″,6″-di-O-Z-p-coumaroyl]-ß-d-glucopyranoside exhibited the most consistent and effective antiviral activities against all infections.


Assuntos
Antivirais/farmacologia , Fagaceae/química , Triterpenos/química , Animais , Antivirais/química , Antivirais/isolamento & purificação , Cercopithecus aethiops , Avaliação Pré-Clínica de Medicamentos/métodos , Enterovirus Humano B/efeitos dos fármacos , Glicosídeos/química , Glicosídeos/farmacologia , Células HeLa , Humanos , Quempferóis/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA