Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.477
Filtrar
1.
Nat Commun ; 12(1): 5213, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480023

RESUMO

Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.


Assuntos
Envelhecimento/efeitos dos fármacos , Dasatinibe/uso terapêutico , Degeneração do Disco Intervertebral/tratamento farmacológico , Quercetina/uso terapêutico , Agrecanas/metabolismo , Envelhecimento/metabolismo , Animais , Anel Fibroso/efeitos dos fármacos , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibrose , Inflamação , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Fenótipo , Transcriptoma/efeitos dos fármacos
2.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445538

RESUMO

Decellularized tissues are biocompatible materials that engraft well, but the age of their source has not been explored for clinical translation. Advanced glycation end products (AGEs) are chemical cross-links that accrue on skeletal muscle collagen in old age, stiffening the matrix and increasing inflammation. Whether decellularized biomaterials derived from aged muscle would suffer from increased AGE collagen cross-links is unknown. We characterized gastrocnemii of 1-, 2-, and 20-month-old C57BL/6J mice before and after decellularization to determine age-dependent changes to collagen stiffness and AGE cross-linking. Total and soluble collagen was measured to assess if age-dependent increases in collagen and cross-linking persisted in decellularized muscle matrix (DMM). Stiffness of aged DMM was determined using atomic force microscopy. AGE levels and the effect of an AGE cross-link breaker, ALT-711, were tested in DMM samples. Our results show that age-dependent increases in collagen amount, cross-linking, and general stiffness were observed in DMM. Notably, we measured increased AGE-specific cross-links within old muscle, and observed that old DMM retained AGE cross-links using ALT-711 to reduce AGE levels. In conclusion, deleterious age-dependent modifications to collagen are present in DMM from old muscle, implying that age matters when sourcing skeletal muscle extracellular matrix as a biomaterial.


Assuntos
Envelhecimento/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/patologia , Animais , Matriz Extracelular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445808

RESUMO

Magnesium (Mg) is a pivotal and very complex component of healthy aging in the cardiovascular-muscle-bone triad. Low Mg levels and low Mg intake are common in the general aging population and are associated with poorer outcomes than higher levels, including vascular calcification, endothelial dysfunction, osteoporosis, or muscle dysfunction/sarcopenia. While Mg supplementation appears to reverse these processes and benefit the triad, more randomized clinical trials are needed. These will allow improvement of preventive and curative strategies and propose guidelines regarding the pharmaceutical forms and the dosages and durations of treatment in order to optimize and adapt Mg prescription for healthy aging and for older vulnerable persons with comorbidities.


Assuntos
Doenças Cardiovasculares/metabolismo , Magnésio/metabolismo , Osteoporose/metabolismo , Sarcopenia/metabolismo , Envelhecimento/metabolismo , Animais , Osso e Ossos/metabolismo , Envelhecimento Saudável/metabolismo , Humanos , Força Muscular/fisiologia , Músculo Esquelético/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445222

RESUMO

In the last decade, clear evidence has emerged that the cellular components of skeletal muscle are important sites for the release of proteins and peptides called "myokines", suggesting that skeletal muscle plays the role of a secretory organ. After their secretion by muscles, these factors serve many biological functions, including the exertion of complex autocrine, paracrine and/or endocrine effects. In sum, myokines affect complex multi-organ processes, such as skeletal muscle trophism, metabolism, angiogenesis and immunological response to different physiological (physical activity, aging, etc.) or pathological states (cachexia, dysmetabolic conditions, chronic inflammation, etc.). The aim of this review is to describe in detail a number of myokines that are, to varying degrees, involved in skeletal muscle aging processes and belong to the group of proteins present in the functional environment surrounding the muscle cell known as the "Niche". The particular myokines described are those that, acting both from within the cell and in an autocrine manner, have a defined relationship with the modulation of oxidative stress in muscle cells (mature or stem) involved in the regulatory (metabolic or regenerative) processes of muscle aging. Myostatin, IGF-1, NGF, S100 and irisin are examples of specific myokines that have peculiar features in their mechanisms of action. In particular, the potential role of one of the most recently characterized myokines-irisin, directly linked to an active lifestyle-in reducing if not reversing senescence-induced oxidative damage is discussed in terms of its possible application as an agent able to counteract the deleterious effects of muscle aging.


Assuntos
Envelhecimento/metabolismo , Senescência Celular , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Humanos
5.
FASEB J ; 35(9): e21864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423880

RESUMO

Resistance training (RT) dynamically alters the skeletal muscle nuclear DNA methylome. However, no study has examined if RT affects the mitochondrial DNA (mtDNA) methylome. Herein, ten older, Caucasian untrained males (65 ± 7 y.o.) performed six weeks of full-body RT (twice weekly). Body composition and knee extensor torque were assessed prior to and 72 h following the last RT session. Vastus lateralis (VL) biopsies were also obtained. VL DNA was subjected to reduced representation bisulfite sequencing providing excellent coverage across the ~16-kilobase mtDNA methylome (254 CpG sites). Biochemical assays were also performed, and older male data were compared to younger trained males (22 ± 2 y.o., n = 7, n = 6 Caucasian & n = 1 African American). RT increased whole-body lean tissue mass (p = .017), VL thickness (p = .012), and knee extensor torque (p = .029) in older males. RT also affected the mtDNA methylome, as 63% (159/254) of the CpG sites demonstrated reduced methylation (p < .05). Several mtDNA sites presented a more "youthful" signature in older males after RT in comparison to younger males. The 1.12 kilobase mtDNA D-loop/control region, which regulates replication and transcription, possessed enriched hypomethylation in older males following RT. Enhanced expression of mitochondrial H- and L-strand genes and complex III/IV protein levels were also observed (p < .05). While limited to a shorter-term intervention, this is the first evidence showing that RT alters the mtDNA methylome in skeletal muscle. Observed methylome alterations may enhance mitochondrial transcription, and RT evokes mitochondrial methylome profiles to mimic younger men. The significance of these findings relative to broader RT-induced epigenetic changes needs to be elucidated.


Assuntos
Envelhecimento , Metilação de DNA , DNA Mitocondrial/metabolismo , Epigenoma , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Músculo Esquelético/metabolismo , Treinamento de Força , Idoso , Envelhecimento/genética , Envelhecimento/metabolismo , DNA Mitocondrial/genética , Humanos , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Adulto Jovem
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360708

RESUMO

BACKGROUND: exposure to environmental contaminants has been linked to an increased risk of neurological diseases and poor outcomes. Chemical name of Atrazine (ATR) is 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine, and it is the most commonly used broad-spectrum herbicide in agricultural crops. Several studies have demonstrated that ATR has the potential to be harmful to the brain's neuronal circuits. Until today nobody has explored the effect of ATR inhalation on young and aged mice. METHODS: young and aged mice were subject to 25 mg of ATR in a vehicle made with saline and 10% of Dimethyl sulfoxide (DMSO) every day for 28 days. At the end of experiment different behavioral test were made and brain was collected. RESULTS: exposure to ATR induced the same response in terms of behavioral alterations and motor and memory impairment in mice but in aged group was more marked. Additionally, in both young and aged mice ATR inhalations induced oxidative stress with impairment in physiological antioxidant response, lipid peroxidation, nuclear factor kappa-light-chain-enhancer of activated B cells (nf-κb) pathways activation with consequences of pro-inflammatory cytokines release and apoptosis. However, the older group was shown to be more sensitive to ATR inhalation. CONCLUSIONS: our results showed that aged mice were more susceptible compared to young mice to air pollutants exposure, put in place a minor physiologically response was seen when exposed to it.


Assuntos
Envelhecimento/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Atrazina/efeitos adversos , Encéfalo/metabolismo , Administração por Inalação , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Atrazina/farmacologia , Encéfalo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos
7.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360725

RESUMO

The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide regenerative therapies in an ageing population. In this PRISMA systematic review, we investigated the effects of chronological donor ageing on the senescence of MSCs. We identified 3023 studies after searching four databases including PubMed, Web of Science, Cochrane, and Medline. Nine studies met the inclusion and exclusion criteria and were included in the final analyses. These studies showed an increase in the expression of p21, p53, p16, ROS, and NF-κB with chronological age. This implies an activated DNA damage response (DDR), as well as increased levels of stress and inflammation in the MSCs of older donors. Additionally, highlighting the effects of an activated DDR in cells from older donors, a decrease in the expression of proliferative markers including Ki67, MAPK pathway elements, and Wnt/ß-catenin pathway elements was observed. Furthermore, we found an increase in the levels of SA-ß-galactosidase, a specific marker of cellular senescence. Together, these findings support an association between chronological age and MSC senescence. The precise threshold for chronological age where the reported changes become significant is yet to be defined and should form the basis for further scientific investigations. The outcomes of this review should direct further investigations into reversing the biological effects of chronological age on the MSC senescence phenotype.


Assuntos
Envelhecimento/metabolismo , Senescência Celular , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt , Animais , Humanos
8.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360946

RESUMO

The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy-the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Mitofagia , Sarcopenia/metabolismo , Animais , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo
9.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361023

RESUMO

Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Rim/efeitos dos fármacos , Resveratrol/farmacologia , Envelhecimento/metabolismo , Animais , Humanos , Rim/crescimento & desenvolvimento , Rim/metabolismo , Sirtuína 1/metabolismo
10.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360722

RESUMO

Biological aging research is expected to reveal modifiable molecular mechanisms that can be harnessed to slow or possibly reverse unhealthy trajectories. However, there is first an urgent need to define consensus molecular markers of healthy and unhealthy aging. Established aging hallmarks are all linked to metabolism, and a 'rewired' metabolic circuitry has been shown to accelerate or delay biological aging. To identify metabolic signatures distinguishing healthy from unhealthy aging trajectories, we performed nontargeted metabolomics on skeletal muscles from 2-month-old and 21-month-old mice, and after dietary and lifestyle interventions known to impact biological aging. We hypothesized that common metabolic signatures would highlight specific pathways and processes promoting healthy aging, while revealing the molecular underpinnings of unhealthy aging. Here, we report 50 metabolites that commonly distinguished aging trajectories in all cohorts, including 18 commonly reduced under unhealthy aging and 32 increased. We stratified these metabolites according to known relationships with various aging hallmarks and found the greatest associations with oxidative stress and nutrient sensing. Collectively, our data suggest interventions aimed at maintaining skeletal muscle arginine and lysine may be useful therapeutic strategies to minimize biological aging and maintain skeletal muscle health, function, and regenerative capacity in old age.


Assuntos
Envelhecimento/metabolismo , Arginina/metabolismo , Lisina/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Transdução de Sinais , Envelhecimento/patologia , Animais , Masculino , Camundongos , Músculo Esquelético/patologia
11.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361049

RESUMO

Nanotechnology in the field of drug delivery comes with great benefits due to the unique physicochemical properties of newly developed nanocarriers. However, they may come as well with severe toxicological side effects because of unwanted accumulation in organs outside of their targeted site of actions. Several studies showed an unintended accumulation of various nanocarriers in female sex organs, especially in the ovaries. Some led to inflammation, fibrosis, or decreasing follicle numbers. However, none of these studies investigated ovarian accumulation in context to both reproductive aging and particle size. Besides the influences of particle size, the biodistribution profile may be altered as well by reproductive aging because of reduced capacities of the reticuloendothelial system (RES), changes in sex steroid hormone levels as well as altering ovarian stromal blood flow. This systematic investigation of the biodistribution of intravenously (i.v) injected nanoemulsions revealed significant dependencies on the two parameters particle size and age starting from juvenile prepubescent to senescent mice. Using fluorescent in vivo and ex vivo imaging, prepubescent mice showed nearly no accumulation of nanoemulsion in their uteri and ovaries, but high accumulations in the organs of the RES liver and spleen independently of the particle size. In fertile adult mice, the accumulation increased significantly in the ovaries with an increased particle size of the nanoemulsions by nearly doubling the portion of the average radiant efficiency (PARE) to ~10% of the total measured signal of all excised organs. With reproductive aging and hence loss of fertility in senescent mice, the accumulation decreased again to moderate levels, again independently of the particle size. In conclusion, the ovarian accumulation of these nanocarriers depended on both the age plus the particle size during maturity.


Assuntos
Envelhecimento/metabolismo , Nanopartículas/metabolismo , Ovário/metabolismo , Células 3T3 , Animais , Emulsões/administração & dosagem , Emulsões/farmacocinética , Emulsões/toxicidade , Feminino , Concentração Inibidora 50 , Injeções Intravenosas , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Ovário/crescimento & desenvolvimento , Baço/crescimento & desenvolvimento , Baço/metabolismo , Distribuição Tecidual
12.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443485

RESUMO

Epidemiological studies have demonstrated that the intake of green tea is effective in reducing the risk of dementia. The most important component of green tea is epigallocatechin gallate (EGCG). Both EGCG and epigallocatechin (EGC) have been suggested to cross the blood-brain barrier to reach the brain parenchyma, but EGCG has been found to be more effective than EGC in promoting neuronal differentiation. It has also been suggested that the products of EGCG decomposition by the intestinal microbiota promote the differentiation of nerve cells and that both EGCG and its degradation products act on nerve cells with a time lag. On the other hand, the free amino acids theanine and arginine contained in green tea have stress-reducing effects. While long-term stress accelerates the aging of the brain, theanine and arginine suppress the aging of the brain due to their anti-stress effect. Since this effect is counteracted by EGCG and caffeine, the ratios between these green tea components are important for the anti-stress action. In this review, we describe how green tea suppresses brain aging, through the activation of nerve cells by both EGCG and its degradation products, and the reductions in stress achieved by theanine and arginine.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Chá/química , Envelhecimento/efeitos dos fármacos , Animais , Arginina/farmacologia , Encéfalo/efeitos dos fármacos , Catequina/química , Catequina/metabolismo , Catequina/farmacologia , Glutamatos/farmacologia , Humanos
13.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360906

RESUMO

The most common cause of dementia, especially in elderly people, is Alzheimer's disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer's disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Terapia de Alvo Molecular/métodos , Idoso , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Insulina/metabolismo , Insulina/uso terapêutico , Neuroglia/metabolismo , Neurônios/metabolismo , Fatores de Risco
14.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360909

RESUMO

Neurodegenerative diseases are an ever-increasing problem for the rapidly aging population. Despite this, our understanding of how these neurodegenerative diseases develop and progress, is in most cases, rudimentary. Protein kinase RNA (PKR)-like ER kinase (PERK) comprises one of three unfolded protein response pathways in which cells attempt to manage cellular stress. However, because of its role in the cellular stress response and the far-reaching implications of this pathway, error within the PERK pathway has been shown to lead to a variety of pathologies. Genetic and clinical studies show a correlation between failure of the PERK pathway in neural cells and the development of neurodegeneration, but the wide array of methodology of these studies is presenting conflicting narratives about the role of PERK in these affected systems. Because of the connection between PERK and pathology, PERK has become a high value target of study for understanding neurodegenerative diseases and potentially how to treat them. Here, we present a review of the literature indexed in PubMed of the PERK pathway and some of the complexities involved in investigating the protein's role in the development of neurodegenerative diseases as well as how it may act as a target for therapeutics.


Assuntos
Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Idoso , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas , eIF-2 Quinase/antagonistas & inibidores
15.
Nature ; 596(7871): 257-261, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34349261

RESUMO

An animal's nervous system changes as its body grows from birth to adulthood and its behaviours mature1-8. The form and extent of circuit remodelling across the connectome is unknown3,9-15. Here we used serial-section electron microscopy to reconstruct the full brain of eight isogenic Caenorhabditis elegans individuals across postnatal stages to investigate how it changes with age. The overall geometry of the brain is preserved from birth to adulthood, but substantial changes in chemical synaptic connectivity emerge on this consistent scaffold. Comparing connectomes between individuals reveals substantial differences in connectivity that make each brain partly unique. Comparing connectomes across maturation reveals consistent wiring changes between different neurons. These changes alter the strength of existing connections and create new connections. Collective changes in the network alter information processing. During development, the central decision-making circuitry is maintained, whereas sensory and motor pathways substantially remodel. With age, the brain becomes progressively more feedforward and discernibly modular. Thus developmental connectomics reveals principles that underlie brain maturation.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Caenorhabditis elegans/citologia , Conectoma , Modelos Neurológicos , Vias Neurais , Sinapses/fisiologia , Envelhecimento/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/ultraestrutura , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/ultraestrutura , Individualidade , Interneurônios/citologia , Microscopia Eletrônica , Neurônios/citologia , Comportamento Estereotipado
16.
Life Sci ; 283: 119855, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34314734

RESUMO

AIMS: Aging is an obvious risk factor for detrusor underactivity. We investigated the effects of aging on bladder function in spontaneously hypertensive rats. MAIN METHODS: Male spontaneously hypertensive rats and Wistar Kyoto rats (used as normotensive controls) at the ages of 18, 36, 54, or 72 weeks were used. Bladder weight, blood pressure, bladder blood flow, and urodynamic and renal parameters were measured. Additionally, detrusor thickness and renal histology were evaluated. KEY FINDINGS: In spontaneously hypertensive rats, significant increases were observed in bladder weight/body weight ratio, blood pressure, detrusor thickness, intercontraction interval, urine output, serum creatinine, and renal glomerular and tubular scores, and decreases in bladder blood flow and urine osmolality at 72 weeks as compared to those at 18 weeks. In spontaneously hypertensive rats, significant increases were observed in single voided volume, post voiding residual urine volume, and bladder capacity, with decrease in voiding efficiency were observed at 54 or 72 weeks than at 18 weeks. However, there were no significant differences in blood pressure, urodynamic and renal parameters, detrusor thickness and renal histology among Wistar Kyoto rats of different ages. SIGNIFICANCE: In spontaneously hypertensive rats, aging induces significant increases in blood pressure, single voided volume, post voiding residual urine volume, intercontraction intervals and urine output, and decreases in voiding efficiency and bladder blood flow indicative of detrusor underactivity. Aging-related severe hypertension could induce voiding dysfunction such as detrusor underactivity via severe bladder ischemia and polyuria. Aged spontaneously hypertensive rats may be useful animal models for detrusor underactivity.


Assuntos
Envelhecimento/metabolismo , Hipertensão , Bexiga Inativa , Bexiga Urinária , Envelhecimento/patologia , Animais , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Índice de Gravidade de Doença , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia , Bexiga Inativa/etiologia , Bexiga Inativa/metabolismo , Bexiga Inativa/patologia , Bexiga Inativa/fisiopatologia
17.
Nature ; 596(7870): 97-102, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290404

RESUMO

Infection-induced aversion against enteropathogens is a conserved sickness behaviour that can promote host survival1,2. The aetiology of this behaviour remains poorly understood, but studies in Drosophila have linked olfactory and gustatory perception to avoidance behaviours against toxic microorganisms3-5. Whether and how enteric infections directly influence sensory perception to induce or modulate such behaviours remains unknown. Here we show that enteropathogen infection in Drosophila can modulate olfaction through metabolic reprogramming of ensheathing glia of the antennal lobe. Infection-induced unpaired cytokine expression in the intestine activates JAK-STAT signalling in ensheathing glia, inducing the expression of glial monocarboxylate transporters and the apolipoprotein glial lazarillo (GLaz), and affecting metabolic coupling of glia and neurons at the antennal lobe. This modulates olfactory discrimination, promotes the avoidance of bacteria-laced food and increases fly survival. Although transient in young flies, gut-induced metabolic reprogramming of ensheathing glia becomes constitutive in old flies owing to age-related intestinal inflammation, which contributes to an age-related decline in olfactory discrimination. Our findings identify adaptive glial metabolic reprogramming by gut-derived cytokines as a mechanism that causes lasting changes in a sensory system in ageing flies.


Assuntos
Envelhecimento/metabolismo , Citocinas/metabolismo , Drosophila melanogaster/metabolismo , Intestinos , Neuroglia/metabolismo , Olfato/fisiologia , Animais , Aprendizagem da Esquiva , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiologia , Feminino , Inflamação/metabolismo , Inflamação/microbiologia , Intestinos/microbiologia , Janus Quinases/metabolismo , Ácido Láctico/metabolismo , Metabolismo dos Lipídeos , Neurônios/metabolismo , Pectobacterium carotovorum , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Fatores de Transcrição/metabolismo
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298945

RESUMO

Increased oxidative stress is a crucial factor for the progression of cellular senescence and aging. The present study aimed to investigate the effects of licochalcone D (Lico D) on oxidative stress-induced senescence, both in vitro and in vivo, and explore its potential mechanisms. Hydrogen peroxide (200 µM for double time) and D-galactose (D-Gal) (150 mg/kg) were used to induce oxidative stress in human bone marrow-mesenchymal stem cells (hBM-MSCs) and mice, respectively. We performed the SA-ß-gal assay and evaluated the senescence markers, activation of AMPK, and autophagy. Lico D potentially reduced oxidative stress-induced senescence by upregulating AMPK-mediated activation of autophagy in hBM-MSCs. D-Gal treatment significantly increased the expression levels of senescence markers, such as p53 and p21, in the heart and hippocampal tissues, while this effect was reversed in the Lico D-treated animals. Furthermore, a significant increase in AMPK activation was observed in both tissues, while the activation of autophagy was only observed in the heart tissue. Interestingly, we found that Lico D significantly reduced the expression levels of the receptors for advanced glycation end products (RAGE) in the hippocampal tissue. Taken together, our findings highlight the antioxidant, anti-senescent, and cardioprotective effects of Lico D and suggest that the activation of AMPK and autophagy ameliorates the oxidative stress-induced senescence.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Senescência Celular/efeitos dos fármacos , Chalconas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Cardiotônicos/farmacologia , Células Cultivadas , Galactose/metabolismo , Coração/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298993

RESUMO

Age-related macular degeneration (AMD) is a complex multifactorial neurodegenerative disease that constitutes the most common cause of irreversible blindness in the elderly in the developed countries. Incomplete knowledge about its pathogenesis prevents the search for effective methods of prevention and treatment of AMD, primarily of its "dry" type which is by far the most common (90% of all AMD cases). In the recent years, AMD has become "younger": late stages of the disease are now detected in relatively young people. It is known that AMD pathogenesis-according to the age-related structural and functional changes in the retina-is linked with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, and an impairment of neurotrophic support, but the mechanisms that trigger the conversion of normal age-related changes to the pathological process as well as the reason for early AMD development remain unclear. In the adult mammalian retina, de novo neurogenesis is very limited. Therefore, the structural and functional features that arise during its maturation and formation can exert long-term effects on further ontogenesis of this tissue. The aim of this review was to discuss possible contributions of the changes/disturbances in retinal neurogenesis to the early development of AMD.


Assuntos
Envelhecimento/patologia , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurogênese , Retina/crescimento & desenvolvimento , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Degeneração Macular/genética , Degeneração Macular/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Retina/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34280712

RESUMO

The complexity of ingredients in traditional Chinese medicine (TCM) makes it challenging to clarify its efficacy in an acceptable and scientific approach. The present study was aimed to use quantification results from targeted cellular metabolomics to evaluate anti-aging efficacy of a famous Chinese medicine formula, Erzhi Wan (EZW), and screen possible effective extracts, depending on the developed strategy integrating multivariate receiver operating characteristic (ROC) curve and analytic hierarchy process (AHP). In this study, senescent NRK cells induced by D-galactose were treated with drug-containing serum of EZW and four kinds of extracts (petroleum ether, ethyl acetate, butanol and water). Intermediates of two major metabolic pathways for energy synthesis, tricarboxylic acid (TCA) cycle and glycolysis, were accurately quantified by GC-MS/MS to identify discriminate metabolites for clarifying therapeutic mechanism of EZW based on multivariate statistical analysis. Senescent and non-senescent cells were successfully distinguished using these metabolites by ROC curve analysis. Next, these metabolites were used as evaluation indexes to quantitatively reflect different effect of EZW and its extracts, according to the role of them in distinguishing groups and in conjunction with AHP. In vitro detection of senescence-associated ß-galactosidase (SA-ß-gal) activity was used to verify the reliability of evaluation results. The reversal after treatment of drug-containing serum of EZW and extracts was observed, and the petroleum ether extract might be the potential active extract responsible for the major anti-aging effect of EZW, which was in agreement with in vitro experiments. Altogether, metabolomics was a powerful approach for evaluation efficacy and elucidation action mechanisms of TCM. The integrated evaluation strategy in this paper with properties of high practicality, feasibility and effectivity was expected to provide a new insight into comprehensive and quantitative efficacy evaluation.


Assuntos
Envelhecimento , Medicamentos de Ervas Chinesas , Metaboloma/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Linhagem Celular , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...