Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Nat Commun ; 12(1): 5127, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493721

RESUMO

Intricate color patterns are a defining aspect of morphological diversity in the Felidae. We applied morphological and single-cell gene expression analysis to fetal skin of domestic cats to identify when, where, and how, during fetal development, felid color patterns are established. Early in development, we identify stripe-like alterations in epidermal thickness preceded by a gene expression pre-pattern. The secreted Wnt inhibitor encoded by Dickkopf 4 plays a central role in this process, and is mutated in cats with the Ticked pattern type. Our results bring molecular understanding to how the leopard got its spots, suggest that similar mechanisms underlie periodic color pattern and periodic hair follicle spacing, and identify targets for diverse pattern variation in other mammals.


Assuntos
Gatos/genética , Regulação da Expressão Gênica no Desenvolvimento , Pigmentação/genética , Animais , Animais Domésticos , Gatos/crescimento & desenvolvimento , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Genótipo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratinócitos/metabolismo , Mutação , Fenótipo , Análise de Célula Única , Pele/anatomia & histologia , Pele/crescimento & desenvolvimento , Pele/metabolismo , Via de Sinalização Wnt
2.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071405

RESUMO

In vitro skin tissue engineering is challenging due to the manifold differences between the in vivo and in vitro conditions. Yet, three-dimensional (3D) human skin equivalents (HSEs) are able to mimic native human skin in many fundamental aspects. However, the epidermal lipid barrier formation, which is essential for the functionality of the skin barrier, remains compromised. Recently, HSEs with an improved lipid barrier formation were generated by (i) incorporating chitosan in the dermal collagen matrix, (ii) reducing the external oxygen level to 3%, and (iii) inhibiting the liver X receptor (LXR). In this study, we aimed to determine the synergic effects in full-thickness models (FTMs) with combinations of these factors as single-, double-, and triple-targeted optimization approaches. The collagen-chitosan FTM supplemented with the LXR inhibitor showed improved epidermal morphogenesis, an enhanced lipid composition, and a better lipid organization. Importantly, barrier functionality was improved in the corresponding approach. In conclusion, our leading optimization approach substantially improved the epidermal morphogenesis, barrier formation, and functionality in the FTM, which therefore better resembled native human skin.


Assuntos
Células Epidérmicas/metabolismo , Epiderme/metabolismo , Morfogênese , Pele/metabolismo , Engenharia Tecidual/métodos , Células Cultivadas , Quitosana/metabolismo , Cromatografia Líquida , Colágeno/metabolismo , Epiderme/crescimento & desenvolvimento , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Receptores X do Fígado/metabolismo , Espectrometria de Massas , Espalhamento a Baixo Ângulo , Pele/citologia , Pele/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Nat Commun ; 12(1): 3227, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050161

RESUMO

The development of complex stratified epithelial barriers in mammals is initiated from single-layered epithelia. How stratification is initiated and fueled are still open questions. Previous studies on skin epidermal stratification suggested a central role for perpendicular/asymmetric cell division orientation of the basal keratinocyte progenitors. Here, we use centrosomes, that organize the mitotic spindle, to test whether cell division orientation and stratification are linked. Genetically ablating centrosomes from the developing epidermis leads to the activation of the p53-, 53BP1- and USP28-dependent mitotic surveillance pathway causing a thinner epidermis and hair follicle arrest. The centrosome/p53-double mutant keratinocyte progenitors significantly alter their division orientation in the later stages without majorly affecting epidermal differentiation. Together with time-lapse imaging and tissue growth dynamics measurements, the data suggest that the first and major phase of epidermal development is boosted by high proliferation rates in both basal and suprabasally-committed keratinocytes as well as cell delamination, whereas the second phase maybe uncoupled from the division orientation of the basal progenitors. The data provide insights for tissue homeostasis and hyperproliferative diseases that may recapitulate developmental programs.


Assuntos
Epiderme/crescimento & desenvolvimento , Queratinócitos/fisiologia , Fenômenos Fisiológicos da Pele , Adolescente , Adulto , Idoso , Animais , Divisão Celular Assimétrica , Diferenciação Celular , Proliferação de Células , Centrossomo/metabolismo , Criança , Pré-Escolar , Embrião de Mamíferos , Epiderme/diagnóstico por imagem , Feminino , Folículo Piloso/embriologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Adulto Jovem
4.
Genes Dev ; 35(5-6): 301-303, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649160

RESUMO

The Polycomb repressive system functions through chromatin to regulate gene expression and development. In this issue of Genes & Development, Cohen and colleagues (pp. 354-366) use the developing mouse epidermis as a model system to show that the two central Polycomb repressive complexes, PRC1 and PRC2, have autonomous yet overlapping functions in repressing Polycomb target genes. They show that this cooperation enables the stable repression of nonepidermal transcription factors that would otherwise compromise epidermal cell identity and disrupt normal skin development.


Assuntos
Epiderme/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/genética , Animais , Camundongos
5.
Parasitol Res ; 120(3): 899-910, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432440

RESUMO

During their different life stages, parasites undergo remarkable morphological, physiological, and behavioral "metamorphoses" to meet the needs of their changing habitats. This is even true for ectoparasites, such as the monogeneans, which typically have a free-swimming larval stage (oncomiracidium) that seeks out and attaches to the external surfaces of fish where they mature. Before any obvious changes occur, there are ultrastructural differences in the oncomiracidium's outer surface that prepare it for a parasitic existence. The present findings suggest a distinct variation in timing of the switch from oncomiracidia epidermis to the syncytial structure of the adult tegument and so, to date, there are three such categories within the Monogenea: (1) Nuclei of both ciliated cells and interciliary cytoplasm are shed from the surface layer and the epidermis becomes a syncytial layer during the later stages of embryogenesis; (2) nuclei of both ciliated cells and interciliary syncytium remain distinct and the switch occurs later after the oncomiracidia hatch (as in the present study); and (3) the nuclei remain distinct in the ciliated epidermis but those of the interciliary epidermis are lost during embryonic development. Here we describe how the epidermis of the oncomiracidium of Discocotyle sagittata is differentiated into two regions, a ciliated cell layer and an interciliary, syncytial cytoplasm, both of which are nucleated. The interciliary syncytium extends in-between and underneath the ciliated cells and sometimes covers part of their apical surfaces, possibly the start of their shedding process. The presence of membranous whorls and pyknotic nuclei over the surface are indicative of membrane turnover suggesting that the switch in epidermis morphology is already initiated at this stage. The body tegument and associated putative sensory receptors of subadult and adult D. sagittata are similar to those in other monogeneans.


Assuntos
Epiderme/ultraestrutura , Doenças dos Peixes/parasitologia , Salmonidae/parasitologia , Trematódeos/ultraestrutura , Infecções por Trematódeos/veterinária , Animais , Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Epiderme/crescimento & desenvolvimento , Brânquias/parasitologia , Larva/ultraestrutura , Trematódeos/crescimento & desenvolvimento , Infecções por Trematódeos/parasitologia
6.
J Dermatol Sci ; 101(2): 123-133, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33358097

RESUMO

BACKGROUND: Hyaluronan (HA) is an essential component of extracellular matrix in the skin, but its functions in the epidermis remain elusive. OBJECTIVE: We examined the interaction of increased HA production mediated by 1-ethyl-ß-N-acetylglucosaminide (ß-NAG2), a newly developed highly selective inducer of HA production which is intracellularly converted to UDP-N-acetylglucosamine, a substrate of HA, with epidermal proliferation and differentiation. METHODS: The amount, molecular size and epidermal tissue distribution of HA and expression of CD44, a cell surface receptor for HA, were analyzed in ß-NAG2-treated organ cultured human skin, reconstructed human skin equivalents or cultured human skin keratinocytes. The relationship between HA and epidermal proliferation or differentiation was examined. RESULTS: ß-NAG2 significantly increased HA production in the epidermis of skin explants or skin equivalents without affecting molecular size of HA (>2000 kDa) or CD44 mRNA expression. Histochemical experiments revealed that ß-NAG2 enhances HA signals in the basal to granular layers of the epidermis of skin equivalents, accompanying increased epidermal stratification. Immunohistochemical experiments demonstrated that signals of Ki67, transglutaminase 1 and filaggrin are increased in ß-NAG2-treated skin equivalents, and these observations were confirmed by the data showing that mRNA expression of PCNA, transglutaminase 1 (TGM1) and filaggrin (FLG) is significantly up-regulated by ß-NAG2 in skin equivalents. Importantly, blockade of HA production by inhibiting conversion of ß-NAG2 to UDP-NAG abolished ß-NAG2-mediated up-regulation of PCNA, TGM1 and FLG mRNA expression in cultured keratinocytes. CONCLUSION: These results suggest that increased epidermal HA production plays a key role in epidermal morphogenesis and homeostasis by accelerating keratinocyte proliferation and differentiation.


Assuntos
Epiderme/crescimento & desenvolvimento , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas S100/metabolismo , Técnicas de Cultura de Tecidos , Transglutaminases/metabolismo , Regulação para Cima , Uridina Difosfato N-Acetilglicosamina/metabolismo
7.
Methods Mol Biol ; 2193: 1-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808253

RESUMO

Cutaneous wound healing is an intricate and multifaceted process. Despite these complexities, the distinct phases of wound healing provide a unique opportunity to evaluate the roles of different targets in these coordinated responses. This protocol details an in vivo wound healing assay to study the intersection of cellular, molecular, and systemic effector pathways. The role of certain proteins in the wound healing process can be efficiently explored in vivo through the generation of tissue-specific deficient mice. This approach, although optimized for use with animal models displaying epithelial deficiencies, can be used for other tissue-specific deficiencies, and utilizes simple and cost-effective methods, allowing investigators to precisely devise their experimental design. The coordination of immunological, epithelial, vascular, and microenvironmental factors in wound healing makes this technique a valuable tool for investigators across fields.


Assuntos
Bioensaio/métodos , Microambiente Celular/fisiologia , Pele/crescimento & desenvolvimento , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Epiderme/crescimento & desenvolvimento , Camundongos
8.
Development ; 147(23)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33310787

RESUMO

Planar cell polarity (PCP) is essential for tissue morphogenesis and homeostasis; however, the mechanisms that orchestrate the cell shape and packing dynamics required to establish PCP are poorly understood. Here, we identified a major role for the globular (G)-actin-binding protein thymosin-ß4 (TMSB4X) in PCP establishment and cell adhesion in the developing epidermis. Depletion of Tmsb4x in mouse embryos hindered eyelid closure and hair-follicle angling owing to PCP defects. Tmsb4x depletion did not preclude epidermal cell adhesion in vivo or in vitro; however, it resulted in abnormal structural organization and stability of adherens junction (AJ) due to defects in filamentous (F)-actin and G-actin distribution. In cultured keratinocytes, TMSB4X depletion increased the perijunctional G/F-actin ratio and decreased G-actin incorporation into junctional actin networks, but it did not change the overall actin expression level or cellular F-actin content. A pharmacological treatment that increased the G/F-actin ratio and decreased actin polymerization mimicked the effects of Tmsb4x depletion on both AJs and PCP. Our results provide insights into the regulation of the actin pool and its involvement in AJ function and PCP establishment.


Assuntos
Polaridade Celular/genética , Desenvolvimento Embrionário/genética , Morfogênese/genética , Timosina/genética , Citoesqueleto de Actina/genética , Actinas/genética , Junções Aderentes/genética , Animais , Adesão Celular/genética , Forma Celular/genética , Células Epidérmicas/metabolismo , Epiderme/crescimento & desenvolvimento , Homeostase/genética , Queratinócitos/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética
9.
Nat Commun ; 11(1): 5645, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159086

RESUMO

The formation of hair follicles, a landmark of mammals, requires complex mesenchymal-epithelial interactions and it is commonly believed that embryonic epidermal cells are the only cells that can respond to hair follicle morphogenetic signals in vivo. Here, we demonstrate that epithelial stem cells of non-skin origin (e.g. that of cornea, oesophagus, vagina, bladder, prostate) that express the transcription factor Tp63, a master gene for the development of epidermis and its appendages, can respond to skin morphogenetic signals. When exposed to a newborn skin microenvironment, these cells express hair-follicle lineage markers and contribute to hair follicles, sebaceous glands and/or epidermis renewal. Our results demonstrate that lineage restriction is not immutable and support the notion that all Tp63-expressing epithelial stem cells, independently of their embryonic origin, have latent skin competence explaining why aberrant hair follicles or sebaceous glands are sometimes observed in non-skin tissues (e.g. in cornea, vagina or thymus).


Assuntos
Células Epidérmicas/metabolismo , Epiderme/metabolismo , Folículo Piloso/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo , Animais , Epiderme/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Camundongos , Ratos , Transativadores/genética
10.
Development ; 147(22)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33191273

RESUMO

Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.


Assuntos
Células Epidérmicas/metabolismo , Epiderme/embriologia , Epiderme/crescimento & desenvolvimento , Homeostase/genética , Células-Tronco/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proliferação de Células/fisiologia , Autorrenovação Celular/fisiologia , Humanos , Transcrição Genética , Cicatrização/fisiologia
11.
J Vis Exp ; (162)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32894272

RESUMO

The murine excisional wound model has been used extensively to study each of the sequentially overlapping phases of wound healing: inflammation, proliferation and remodeling. Murine wounds have a histologically well-defined and easily recognizable wound bed over which these different phases of the healing process are measurable. Within the field, it is common to use an arbitrarily defined "middle" of the wound for histological analyses. However, wounds are a three-dimensional entity and often not histologically symmetrical, supporting the need for a well-defined and robust method of quantification to detect morphometric defects with a small effect size. In this protocol, we describe the procedure for creating bilateral, full-thickness excisional wounds in mice as well as a detailed instruction on how to measure morphometric parameters using an image processing program on select serial sections. The two-dimension measurements of wound length, epidermal length, epidermal area, and wound area are used in combination with the known distance between sections to extrapolate the three-dimension epidermal area covering the wound, overall wound area, epidermal volume and wound volume. Although this detailed histological analysis is more time and resource consuming than conventional analyses, its rigor increases the likelihood of detecting novel phenotypes in an inherently complex wound healing process.


Assuntos
Ferida Cirúrgica/reabilitação , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Epiderme/crescimento & desenvolvimento , Epiderme/patologia , Epiderme/fisiologia , Inflamação , Camundongos , Ferida Cirúrgica/patologia
12.
J Dermatol Sci ; 99(2): 109-118, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32636049

RESUMO

BACKGROUND: Mitochondrial morphology is controlled by fission and fusion. Dynamin-related protein 1 (Drp1, dynamin-1-like protein (Dnml1)) regulates mitochondrial fission, which is associated with cell division and apoptosis. We previously reported that DRP1 is indispensable for cell growth in cutaneous squamous cell carcinoma. However, little is known about Drp1 in normal epidermis/keratinocytes. OBJECTIVES: We investigated the function of Drp1 in normal epidermis/keratinocytes. METHODS: Epidermis-specific Drp1 knockout (EKO) mice were analyzed. RESULTS: Epidermal development in the EKO mice were indistinguishable from those in the wild-type (WT) mice. Ultrastructural analysis and immunohistochemistry revealed that the mitochondria of keratinocytes in the EKO mice were neither elongated nor constricted. Drp1 knockdown did not diminish the cell growth of normal human keratinocytes. Both in vivo and in vitro, UVB-induced apoptosis in the EKO epidermis and keratinocytes did not differ from that in the WT mice. In chronic UVB-irradiation, the loss of Drp1 sensitized the epidermis to the development of skin tumors. Clinically, DRP1 is expressed more highly in sun-exposed skin than in non-exposed skin in individuals under age 40, but not in those over age 60. CONCLUSION: EKO mice demonstrate that Drp1 is dispensable for the development and apoptosis of the epidermis. Drp1 plays critical roles in malignant tumors; thus, the molecular machinery of mitochondrial dynamics involving Drp1 could be a novel therapeutic target for malignant keratinocytic lesions. On the other hand, the anti-tumorigenic role of Drp1 in chronic UVB-induced carcinogenesis need to be further investigated.


Assuntos
Carcinoma de Células Escamosas/patologia , Dinaminas/metabolismo , Epiderme/patologia , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , Adulto , Fatores Etários , Animais , Animais Recém-Nascidos , Apoptose/efeitos da radiação , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/efeitos da radiação , Carcinoma de Células Escamosas/etiologia , Linhagem Celular , Modelos Animais de Doenças , Dinaminas/genética , Epiderme/crescimento & desenvolvimento , Epiderme/efeitos da radiação , Epiderme/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/efeitos da radiação , Cultura Primária de Células , Estudos Retrospectivos , Neoplasias Cutâneas/etiologia , Células-Tronco
13.
Zoolog Sci ; 37(4): 338-345, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32729712

RESUMO

Intelectins (Itlns) are secretory lectins found in several chordate species that recognize carbohydrates on the bacterial cell surface depending on Ca2 + . In newly hatched larvae of Rana ornativentris (R. orn), Bufo japonicus formosus (B. jpn), and Cynops pyrrhogaster (C. pyr), an anti-Itln monoclonal antibody (mAb) labeled a subset of epidermal cells in whole-mount immunocytochemical assays. In western blot analyses, the mAb identified protein bands at approximately 33-37 kDa in the larval extracts and concentrated larval culture media. Using RT-PCR and RACE techniques, we isolated cDNAs from newly hatched larvae that encoded proteins of 343 (R. orn), 336 (B. jpn), and 337 (C. pyr) amino acids having 70%, 71%, and 60% identities with that of the Xenopus laevis embryonic epidermal lectin (XEEL), respectively. The proteins, designated REEL, BEEL, and CEEL, showed characteristics conserved among reported Itln proteins, and their amino acid sequences following the signal peptides were identical to those of the N-terminal peptides determined on Itln proteins in the respective larval extracts. Recombinant REEL (rREEL), rBEEL, and rCEEL proteins produced by HEK-293T cells were homo-oligomers of 34-37 kDa subunit peptides, which were similar to the Itlns found in the newly hatched larvae. The rEELs showed carbohydrate-binding specificities similar to that of XEEL and agglutinated Escherichia coli and Staphylococcus aureus cells depending on Ca2 + . These results suggest that REEL, BEEL, and CEEL are Itlns produced and secreted by epidermal cells of R. orn, B. jpn, and C. pyr larvae, respectively, and that Itlns have a conserved role as pathogen recognition molecules in the larval innate immune system.


Assuntos
Anuros/metabolismo , Epiderme/metabolismo , Lectinas/metabolismo , Sequência de Aminoácidos , Animais , Anuros/crescimento & desenvolvimento , Aderência Bacteriana , Epiderme/crescimento & desenvolvimento , Escherichia coli/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células HEK293 , Humanos , Larva/metabolismo , Filogenia , Staphylococcus aureus/fisiologia
14.
EBioMedicine ; 57: 102825, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32553574

RESUMO

BACKGROUND: Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS: We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS: Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION: Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.


Assuntos
Anticorpos/farmacologia , Conexina 30/genética , Conexinas/genética , Displasia Ectodérmica/genética , Trifosfato de Adenosina/genética , Animais , Proliferação de Células/efeitos dos fármacos , Conexina 30/antagonistas & inibidores , Conexina 30/imunologia , Conexinas/antagonistas & inibidores , Conexinas/imunologia , Modelos Animais de Doenças , Displasia Ectodérmica/tratamento farmacológico , Displasia Ectodérmica/imunologia , Epiderme/efeitos dos fármacos , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/imunologia , Junções Comunicantes/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Camundongos , Mutação/genética
15.
Adv Wound Care (New Rochelle) ; 9(5): 233-244, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32226648

RESUMO

Objectives: To investigate the effect of suppressor of fused (Sufu) on epidermal and dermal cellular properties and in wound healing. Approach: Transgenic (TG) mice overexpressing human Sufu (hSufu) in the epidermis were applied to investigate the effects of Sufu on epidermal and dermal cellular properties and in wound healing. Results: Histological staining revealed a reduction of epidermal and dermal thickness and an increase of hypodermal adipose tissue in homozygous K14-hSufu TG mice when compared with wild-type (WT) controls. TG mice exhibited significantly delayed skin wound healing. Moreover, the migratory and proliferative capabilities of cultured keratinocytes were decreased in K14-hSufuTG mice. Transforming growth factor-ß treatment increased the expression of α-smooth muscle actin more in WT than in TG fibroblasts. Sufu overexpression significantly decreased the expression of ß-catenin, glioma transcription factor 1 (Gli1), and matrix metalloproteinase-3 in wounds of K14-hSufu TG mice when compared with controls, probably indicating a delaying effect of Sufu on wound healing via blocking the hedgehog (Hh)/Gli and Wnt/ß-catenin pathway. Innovation: Our results indicate a new property of Sufu in the process of skin wound healing. It provides an important basis for Sufu as a potential target for skin wound healing. Conclusion: Our findings suggest that Sufu overexpression in the epidermis impairs wound healing via dampening the Hh/Gli and Wnt/ß-catenin signaling pathway. These data provide an important basis for further analyses of Sufu in skin wound healing.


Assuntos
Fibroblastos/metabolismo , Queratinócitos/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt , Cicatrização , Animais , Diferenciação Celular , Modelos Animais de Doenças , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Fibroblastos/citologia , Proteínas Hedgehog/metabolismo , Queratinócitos/citologia , Masculino , Camundongos , Camundongos Transgênicos , Envelhecimento da Pele/patologia , Envelhecimento da Pele/fisiologia , Fator de Crescimento Transformador beta/metabolismo
16.
Cell ; 181(3): 604-620.e22, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259486

RESUMO

During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.


Assuntos
Células Epidérmicas/metabolismo , Epiderme/crescimento & desenvolvimento , Pele/crescimento & desenvolvimento , Animais , Animais não Endogâmicos , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/genética , Proliferação de Células/fisiologia , Células Cultivadas , Células Epidérmicas/patologia , Epiderme/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia
17.
PLoS One ; 15(4): e0232206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330194

RESUMO

Hair growth is the cyclically regulated process that is characterized by growing phase (anagen), regression phase (catagen) and resting phase (telogen). Hair follicle stem cells (HFSCs) play pivotal role in the control of hair growth cycle. It has been notified that stem cells have the distinguished metabolic signature compared to differentiated cells, such as the preference to glycolysis rather than mitochondrial respiration. Crif1 is a mitochondrial protein that regulates the synthesis and insertion of oxidative phosphorylation (OXPHOS) polypeptides to inner membrane of mitochondria. Several studies demonstrate that tissue-specific knockout of Crif1 leads to mitochondrial dysfunction. In this study, we investigated the effect of mitochondrial dysfunction in terms of Crif1 deficiency on the hair growth cycle of adult mice. We created two kinds of inducible conditional knockout (icKO) mice. In epidermal specific icKO mice (Crif1 K14icKO), hair growth cycle was significantly retarded compared to wild type mice. Similarly, HFSC specific icKO mice (Crif1 K15icKO) showed significant retardation of hair growth cycle in depilation-induced anagen model. Interestingly, flow cytometry revealed that HFSC populations were maintained in Crif1 K15icKO mice. These results suggest that mitochondrial function in HFSCs is important for the progression of hair growth cycle, but not for maintenance of HFSCs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Animais , Diferenciação Celular/fisiologia , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeos/metabolismo , Células-Tronco/metabolismo
18.
Nat Commun ; 11(1): 1429, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188860

RESUMO

In adult skin epidermis and the epithelium lining the esophagus cells are constantly shed from the tissue surface and replaced by cell division. Tracking genetically labelled cells in transgenic mice has given insight into cell behavior, but conflicting models appear consistent with the results. Here, we use an additional transgenic assay to follow cell division in mouse esophagus and the epidermis at multiple body sites. We find that proliferating cells divide at a similar rate, and place bounds on the distribution cell cycle times. By including these results in a common analytic approach, we show that data from eight lineage tracing experiments is consistent with tissue maintenance by a single population of proliferating cells. The outcome of a given cell division is unpredictable but, on average, the likelihood of producing proliferating and differentiating cells is equal, ensuring cellular homeostasis. These findings are key to understanding squamous epithelial homeostasis and carcinogenesis.


Assuntos
Epiderme/crescimento & desenvolvimento , Esôfago/citologia , Células-Tronco/citologia , Animais , Ciclo Celular , Divisão Celular , Proliferação de Células , Esôfago/crescimento & desenvolvimento , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
PLoS One ; 15(3): e0230380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163511

RESUMO

Epidermal morphogenesis and hair follicle (HF) development depend on the ability of keratinocytes to adhere to the basement membrane (BM) and migrate along the extracellular matrix. Integrins are cell-matrix receptors that control keratinocyte adhesion and migration, and are recognized as major regulators of epidermal homeostasis. How integrins regulate the behavior of keratinocytes during epidermal morphogenesis remains insufficiently understood. Here, we show that α-parvin (α-pv), a focal adhesion protein that couples integrins to actin cytoskeleton, is indispensable for epidermal morphogenesis and HF development. Inactivation of the murine α-pv gene in basal keratinocytes results in keratinocyte-BM detachment, epidermal thickening, ectopic keratinocyte proliferation and altered actin cytoskeleton polarization. In vitro, α-pv-null keratinocytes display reduced adhesion to BM matrix components, aberrant spreading and stress fibers formation, and impaired directed migration. Together, our data demonstrate that α-pv controls epidermal homeostasis by facilitating integrin-mediated adhesion and actin cytoskeleton organization in keratinocytes.


Assuntos
Membrana Basal/metabolismo , Epiderme/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Queratinócitos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Morfogênese/fisiologia , Actinas/metabolismo , Animais , Membrana Basal/citologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Adesões Focais/metabolismo , Integrinas/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Transgênicos
20.
Curr Biol ; 30(4): R144-R149, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32097634

RESUMO

In this Primer, Moreci and Lechler follow the lifetime of an epidermal cell from its birth to its ultimate death, and detail how this journey is necessary for epidermal function.


Assuntos
Diferenciação Celular , Células Epidérmicas/fisiologia , Epiderme/fisiologia , Animais , Epiderme/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...