Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.470
Filtrar
1.
Cancer Discov ; 9(10): 1343-1345, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31575563

RESUMO

In this issue of Cancer Discovery, Halbritter and colleagues utilize single-cell RNA sequencing to dissect the cellular hierarchy in Langerhans cell histiocytosis. They identified a remarkably consistent composition of 14 cellular subsets across all patients with a range of clinical spectrums consistent with a shared developmental hierarchy driven by key transcriptional regulators.See related article by Halbritter et al., p. 1406.


Assuntos
Epigenômica , Histiocitose de Células de Langerhans , Humanos , Análise de Sequência de RNA
2.
Anticancer Res ; 39(10): 5449-5459, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570439

RESUMO

BACKGROUND/AIM: Epigenetic abnormalities in microRNAs (miRNAs) have not been analyzed in samples other than pancreaticobiliary tissues in patients with pancreaticobiliary cancer (PBC). To identify miRNAs specific for PBC, the present study analyzed the methylation of tumor-suppressive miRNAs in bile from patients with pancreaticobiliary diseases. MATERIALS AND METHODS: Bile was collected endoscopically or percutaneously from 52 patients with pancreatic cancer, 26 with biliary tract cancer, and 20 with benign pancreaticobiliary diseases. Sequences encoding 16 tumor-suppressive miRNAs were amplified by polymerase chain reaction and sequenced, and their methylation rates were determined. RESULTS: The methylation rates of miR-1247 and miR-200a were significantly higher in patients with pancreatic cancer, and biliary tract cancer than in those with benign diseases, and the methylation rate of miR-200b was significantly higher in patients with pancreatic cancer than in those with benign diseases. CONCLUSION: Methylation of miR-1247, miR-200a, and miR-200b in bile may be useful for distinguishing PBC from benign diseases.


Assuntos
Neoplasias do Sistema Biliar/genética , Metilação de DNA/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Bile/metabolismo , Epigenômica/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
3.
Adv Exp Med Biol ; 1164: 179-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31576549

RESUMO

DNA methylation is a chemically reversible epigenetic modification that regulates the chromatin structure and gene expression, and thereby takes part in various cellular processes like embryogenesis, genomic imprinting, X-chromosome inactivation, and genome stability. Alterations in the normal methylation levels of DNA may contribute to the development of pathological conditions like cancer. Even though both hypo- and hypermethylation-mediated abnormalities are prevalent in the cancer genome, the field of cancer epigenetics has been more focused on targeting hypermethylation. As a result, DNA hypomethylation-mediated abnormalities remained relatively less explored, and currently, there are no approved drugs that can be clinically used to target hypomethylation. Understanding the precise role of DNA hypomethylation is not only crucial from a mechanistic point of view but also for the development of pharmacological agents that can reverse the hypomethylated state of the DNA. This chapter focuses on the causes and impact of DNA hypomethylation in the development of cancer and describes the possible ways to pharmacologically target it, especially by using a naturally occurring physiologic agent S-adenosylmethionine (SAM).


Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias , Epigenômica , Humanos , Neoplasias/genética , Neoplasias/terapia
4.
Adv Exp Med Biol ; 1178: 175-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31493228

RESUMO

A global DNA hypomethylation and local changes in the methylation levels of specific DNA loci occur during aging in mammals. Global hypomethylation mainly affects highly methylated repeat sequences, such as transposable elements; it is an essentially stochastic process usually referred to as "epigenetic drift." Specific changes in DNA methylation affect various genome sequences and could be either hypomethylation or hypermethylation, but the prevailing tendencies are hypermethylation of promoter sequences associated with CpG islands and hypomethylation of CpG poor genes. Methylation levels of multiple CpG sites display a strong correlation to age common between individuals of the same species. Collectively, methylation of such CpG sites could be used as "epigenetic clocks" to predict biological age. Furthermore, the discrepancy between epigenetic and chronological ages could be predictive of all-cause mortality and multiple age-associated diseases. Random changes in DNA methylation (epigenetic drift) could also affect the aging phenotype, causing accidental changes in gene expression and increasing the transcriptional noise between cells of the same tissue. Both effects could become detrimental to tissue functioning and cause a gradual decline in organ function during aging. Strong evidence shows that epigenetic systems contribute to lifespan control in various organisms. Similar to other cell systems, the epigenome is prone to gradual degradation due to the genome damage, stressful agents and other aging factors. However, unlike mutations and many other hallmarks of aging, age-related epigenetic changes could be fully or partially reversed to a "young" state.


Assuntos
Envelhecimento , Epigênese Genética , Marcadores Genéticos , Envelhecimento/genética , Animais , Ilhas de CpG/genética , Metilação de DNA , Epigenômica , Marcadores Genéticos/genética , Longevidade
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(7): 830-836, 2019 Jul 28.
Artigo em Chinês | MEDLINE | ID: mdl-31413224

RESUMO

Colorectal cancer is one of the common malignant tumors, which seriously threatens human health. Its morbidity and mortality rank the third and the second among all malignant tumors. The progress of colorectal cancer is a complex process involving the accumulation of genetic and epigenetic changes. Epigenetic changes of colorectal cancer mainly include DNA methylation, histone modification, non-coding RNAs (such as microRNAs and lncRNAs), which are of great significance to early diagnosis and prognosis evaluation, and to chemosensitivity assessment for colorectal cancer, providing a new thought for the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Neoplasias Colorretais/genética , Metilação de DNA , Epigenômica , Histonas , Humanos
6.
Medicine (Baltimore) ; 98(32): e16782, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31393404

RESUMO

INTRODUCTION: Over the past 10 years, epilepsy genetics has made dramatic progress. This study aimed to analyze the knowledge structure and the advancement of epilepsy genetics over the past decade based on co-word analysis of medical subject headings (MeSH) terms. METHODS: Scientific publications focusing on epilepsy genetics from the PubMed database (January 2009-December 2018) were retrieved. Bibliometric information was analyzed quantitatively using Bibliographic Item Co-Occurrence Matrix Builder (BICOMB) software. A knowledge social network analysis and publication trend based on the high-frequency MeSH terms was built using VOSviewer. RESULTS: According to the search strategy, a total of 5185 papers were included. Among all the extracted MeSH terms, 86 high-frequency MeSH terms were identified. Hot spots were clustered into 5 categories including: "ion channel diseases," "beyond ion channel diseases," "experimental research & epigenetics," "single nucleotide polymorphism & pharmacogenetics," and "genetic techniques". "Epilepsy," "mutation," and "seizures," were located at the center of the knowledge network. "Ion channel diseases" are typically in the most prominent position of epilepsy genetics research. "Beyond ion channel diseases" and "genetic techniques," however, have gradually grown into research cores and trends, such as "intellectual disability," "infantile spasms," "phenotype," "exome," " deoxyribonucleic acid (DNA) copy number variations," and "application of next-generation sequencing." While ion channel genes such as "SCN1A," "KCNQ2," "SCN2A," "SCN8A" accounted for nearly half of epilepsy genes in MeSH terms, a number of additional beyond ion channel genes like "CDKL5," "STXBP1," "PCDH19," "PRRT2," "LGI1," "ALDH7A1," "MECP2," "EPM2A," "ARX," "SLC2A1," and more were becoming increasingly popular. In contrast, gene therapies, treatment outcome, and genotype-phenotype correlations were still in their early stages of research. CONCLUSION: This co-word analysis provides an overview of epilepsy genetics research over the past decade. The 5 research categories display publication hot spots and trends in epilepsy genetics research which could consequently supply some direction for geneticists and epileptologists when launching new projects.


Assuntos
Bibliometria , Epilepsia/genética , Medical Subject Headings/estatística & dados numéricos , Epigenômica/métodos , Humanos , Canais Iônicos/genética , Mutação , Testes Farmacogenômicos/métodos , Fenótipo , Convulsões/genética
7.
Adv Exp Med Biol ; 1166: 57-74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31301046

RESUMO

Epigenetic information refers to heritable changes in gene expression that occur without modifications at the DNA sequence level. These changes are orchestrated by different epigenetic mechanisms such as DNA methylation, posttranslational modifications of histones, and the presence of noncoding RNAs. Epigenetic information regulates chromatin structure to confer cell-specific gene expression.The sperm epigenome is the result of three periods of global resetting during men's life. Germ cell epigenome reprogramming is designed to allow cell totipotency and to prevent the transmission of epimutations via spermatozoa. At the end of these reprogramming events, the sperm epigenome has a very specific epigenetic pattern that is a footprint of past reprogramming events and has an influence on embryo development.Several data demonstrate that not all regions of the epigenome are erased during the reprogramming periods, suggesting the transmission of epigenetic information from fathers to offspring via spermatozoa. Moreover, it is becoming increasingly clear that the sperm epigenome is sensitive to environmental factors during the process of gamete differentiation, suggesting the plasticity of the sperm epigenetic signature according to the circumstances of the individual's life.In this chapter, we provided strong evidences about the association between variations of the sperm epigenome and the exposure to environmental factors. Moreover, we will present data about how epigenetic mechanisms are candidates for transferring paternal environmental information to offspring.


Assuntos
Exposição Ambiental , Epigênese Genética , Padrões de Herança , Metilação de DNA , Bases de Dados Genéticas , Epigenômica , Variação Genética , Células Germinativas , Humanos , Padrões de Herança/genética , Masculino
8.
Nature ; 571(7766): 489-499, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31341302

RESUMO

Epigenetic research has accelerated rapidly in the twenty-first century, generating justified excitement and hope, but also a degree of hype. Here we review how the field has evolved over the last few decades and reflect on some of the recent advances that are changing our understanding of biology. We discuss the interplay between epigenetics and DNA sequence variation as well as the implications of epigenetics for cellular memory and plasticity. We consider the effects of the environment and both intergenerational and transgenerational epigenetic inheritance on biology, disease and evolution. Finally, we present some new frontiers in epigenetics with implications for human health.


Assuntos
Doença/genética , Epigênese Genética/genética , Epigenômica/tendências , Interação Gene-Ambiente , Envelhecimento/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA/genética , Variação Genética/genética , Humanos , Neoplasias/genética
9.
Genome Biol ; 20(1): 133, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287004

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified hundreds of loci associated with coronary artery disease (CAD) and blood pressure (BP) or hypertension. Many of these loci are not linked to traditional risk factors, nor do they include obvious candidate genes, complicating their functional characterization. We hypothesize that many GWAS loci associated with vascular diseases modulate endothelial functions. Endothelial cells play critical roles in regulating vascular homeostasis, such as roles in forming a selective barrier, inflammation, hemostasis, and vascular tone, and endothelial dysfunction is a hallmark of atherosclerosis and hypertension. To test this hypothesis, we generate an integrated map of gene expression, open chromatin region, and 3D interactions in resting and TNFα-treated human endothelial cells. RESULTS: We show that genetic variants associated with CAD and BP are enriched in open chromatin regions identified in endothelial cells. We identify physical loops by Hi-C and link open chromatin peaks that include CAD or BP SNPs with the promoters of genes expressed in endothelial cells. This analysis highlights 991 combinations of open chromatin regions and gene promoters that map to 38 CAD and 92 BP GWAS loci. We validate one CAD locus, by engineering a deletion of the TNFα-sensitive regulatory element using CRISPR/Cas9 and measure the effect on the expression of the novel CAD candidate gene AIDA. CONCLUSIONS: Our data support an important role played by genetic variants acting in the vascular endothelium to modulate inter-individual risk in CAD and hypertension.


Assuntos
Doença da Artéria Coronariana/genética , Proteínas de Transferência de Fosfolipídeos/genética , Sistemas CRISPR-Cas , Células Endoteliais/metabolismo , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Elementos Reguladores de Transcrição , Transcriptoma
10.
Genome Biol ; 20(1): 139, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307500

RESUMO

BACKGROUND: Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies. RESULTS: In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons. Thousands of new genic regions and cis-regulatory elements are identified based on the combinatorial pattern of chromatin features. Roughly 1.5% of the genome encodes a subset of active regulatory elements, including promoters and enhancer-like elements, which are characterized by a high degree of chromatin openness and histone acetylation, an abundance of CpG islands, and low DNA methylation levels. A comparison across sub-genomes reveals that evolutionary selection on gene regulation is targeted at the sequence and chromatin feature levels. The divergent enrichment of cis-elements between enhancer-like sequences and promoters implies these functional elements are targeted by different transcription factors. CONCLUSIONS: We herein present a systematic epigenomic map for the annotation of cis-regulatory elements in the bread wheat genome, which provides new insights into the connections between chromatin modifications and cis-regulatory activities in allohexaploid wheat.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Código das Histonas , Elementos Reguladores de Transcrição , Triticum/genética , Evolução Biológica , Epigenômica , Genoma de Planta , Plântula/metabolismo , Triticum/metabolismo
11.
Yi Chuan ; 41(7): 567-581, 2019 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-31307967

RESUMO

Cancer is a complex disease caused by the malignant cellular proliferation and metastasis. Elucidating its pathogenic mechanism is one of the major challenges that we face currently. Epigenetic mechanisms are essential for maintaining specific patterns of gene expression and normal development and growth of living individuals. Disorders of epigenetic markers, such as histone modification, DNA/RNA methylation, and changes in the three-dimensional conformation of chromatin, can interfere with gene expression to some extent, and result in cancers. This review provides a brief overview of epigenetics, focusing on their association with the genesis of cancers, and we look forward to the application of epigenetics in cancer clinical diagnosis and treatment.


Assuntos
Epigênese Genética , Neoplasias/genética , Cromatina , Metilação de DNA , Epigenômica , Humanos
12.
Life Sci ; 232: 116652, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302197

RESUMO

The development of new blood vessels from pre-existing vasculature is called angiogenesis. The growth of tumors depends on a network of supplying vessels that provide them with oxygen and nutrients. Pro-angiogenic factors that are secreted by tumors will trigger the sprouting of nearby existing blood vessels towards themselves and therefore researchers have developed targeted therapy towards these pro-angiogenic proteins to inhibit angiogenesis. However, certain pro-angiogenic proteins tend to bypass the inhibition. Thus, instead of targeting these expressed proteins, research towards angiogenesis inhibition had been focused on a deeper scale, epigenetic modifications. Epigenetic regulatory mechanisms are a heritable change in a sequence of stable but reversible gene function modification yet do not affect the DNA primary sequence directly. Methylation of DNA, modification of histone and silencing of micro-RNA (miRNA)-associated gene are currently considered to initiate and sustain epigenetic changes. Recent findings on the subject matter have provided an insight into the mechanism of epigenetic modifications, thus this review aims to present an update on the latest studies.


Assuntos
Linhagem da Célula , Epigenômica , Neoplasias/genética , Neoplasias/patologia , Metilação de DNA , Humanos
13.
Artigo em Russo | MEDLINE | ID: mdl-31317896

RESUMO

AIM: Long continuous stretches of homozygosity (LCSH) are regularly detected in studies using molecular karyotyping (SNP array). Despite this type of variation being able to provide meaningful data on the parents' kinship, uniparental disomy and chromosome rearrangements, LCSH are rarely considered as a possible epigenetic cause of neurodevelopmental disorders. Despite their direct relationship to imprinting, LCSH in imprinted loci have not been considered in terms of pathogenicity. The present work is aimed at studying LCSH in chromosomal regions containing imprinted genes previously associated with disease in children with idiopathic intellectual disability, autism, congenital malformations and/or epilepsy. MATERIAL AND METHODS: Five hundred and four patients with autism spectrum disorders and intellectual disability were examined. RESULTS: LCSH affecting imprinted loci associated with various diseases were identified in 40 (7.9%) individuals. Chromosomal region 7q21.3 was affected in twenty three cases, 15q11.2 in twelve, 11p15.5 in five, 7q32.2 in four. Four patients had 2 LCSH affecting imprinted loci. Besides one LCSH in 7q31.33q32.3 (~4 Mbp) region, all LCSH were 1-1.6 Mbp. Clinically, these cases resembled the corresponding imprinting diseases (e.g. Silver-Russell, Beckwith-Wiedemann, Prader-Willi, Angelman syndromes). Parental kinship was identified in 8 cases (1.59%), which were not affected by LCSH at imprinted loci. CONCLUSION: The present study shows that LCSH affecting chromosomal regions 7q21.3, 7q32.2, 11p15.5 and 15p11.2 occur in about 7.9% of children with intellectual disability, autism, congenital malformations and/or epilepsy. Consequently, this type of epigenetic mutations is obviously common in a group of children with neurodevelopmental disorders. LCSH less than 2.5-10 Mbp are usually ignored in molecular karyotyping (SNP array) studies and, therefore, an important epigenetic cause of intellectual disability, autism or epilepsy with high probability remains without attention.


Assuntos
Síndrome de Angelman , Transtorno do Espectro Autista , Epigenômica , Deficiência Intelectual , Síndrome de Angelman/genética , Transtorno do Espectro Autista/genética , Criança , Humanos , Deficiência Intelectual/genética , Perda de Heterozigosidade
14.
Nat Commun ; 10(1): 2891, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253791

RESUMO

Our ability to manage acute myeloid leukemia (AML) is limited by our incomplete understanding of the epigenetic disruption central to leukemogenesis, including improper histone methylation. Here we examine 16 histone H3 genes in 434 primary AML samples and identify Q69H, A26P, R2Q, R8H and K27M/I mutations (1.6%), with higher incidence in secondary AML (9%). These mutations occur in pre-leukemic hematopoietic stem cells (HSCs) and exist in the major leukemic clones in patients. They increase the frequency of functional HSCs, alter differentiation, and amplify leukemic aggressiveness. These effects are dependent on the specific mutation. H3K27 mutation increases the expression of genes involved in erythrocyte and myeloid differentiation with altered H3K27 tri-methylation and K27 acetylation. The functional impact of histone mutations is independent of RUNX1 mutation, although they at times co-occur. This study establishes that H3 mutations are drivers of human pre-cancerous stem cell expansion and important early events in leukemogenesis.


Assuntos
Epigenômica , Regulação Leucêmica da Expressão Gênica/fisiologia , Histonas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Sequência de Bases , Células da Medula Óssea , Diferenciação Celular , Transformação Celular Neoplásica , DNA/genética , Drosophila melanogaster/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Mutação , Neoplasias Experimentais
15.
Nat Commun ; 10(1): 2632, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201335

RESUMO

Chromatin loops connect regulatory elements to their target genes. They serve as bridges between transcriptional regulation and phenotypic variation in mammals. However, spatial organization of regulatory elements and its impact on gene expression in plants remain unclear. Here, we characterize epigenetic features of active promoter proximal regions and candidate distal regulatory elements to construct high-resolution chromatin interaction maps for maize via long-read chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). The maps indicate that chromatin loops are formed between regulatory elements, and that gene pairs between promoter proximal regions tend to be co-expressed. The maps also demonstrated the topological basis of quantitative trait loci which influence gene expression and phenotype. Many promoter proximal regions are involved in chromatin loops with distal regulatory elements, which regulate important agronomic traits. Collectively, these maps provide a high-resolution view of 3D maize genome architecture, and its role in gene expression and phenotypic variation.


Assuntos
Cromatina/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Produção Agrícola , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Epigenômica/métodos , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Mutação , Fenótipo , Regiões Promotoras Genéticas/genética
16.
Nat Commun ; 10(1): 2581, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197173

RESUMO

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.


Assuntos
Metilação de DNA/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Insulina/metabolismo , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Ilhas de CpG/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética/fisiologia , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Homeostase/genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Adulto Jovem
17.
Food Chem Toxicol ; 131: 110529, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31150784

RESUMO

The health promoting effects of extra virgin olive oil (EVOO) relate to its unique repertoire of phenolic compounds. Here, we used a chemoinformatics approach to computationally identify endogenous ligands and assign putative biomolecular targets to oleacein, one of the most abundant secoiridoids in EVOO. Using a structure-based virtual profiling software tool and reference databases containing more than 9000 binding sites protein cavities, we identified 996 putative oleacein targets involving more than 700 proteins. We subsequently identified the high-level functions of oleacein in terms of biomolecular interactions, signaling pathways, and protein-protein interaction (PPI) networks. Delineation of the oleacein target landscape revealed that the most significant modules affected by oleacein were associated with metabolic processes (e.g., glucose and lipid metabolism) and chromatin-modifying enzymatic activities (i.e., histone post-translational modifications). We experimentally confirmed that, in a low-micromolar physiological range (<20 µmol/l), oleacein was capable of inhibiting the catalytic activities of predicted metabolic and epigenetic targets including nicotinamide N-methyltransferase, ATP-citrate lyase, lysine-specific demethylase 6A, and N-methyltransferase 4. Our computational de-orphanization of oleacein provides new mechanisms through which EVOO biophenols might operate as chemical prototypes capable of modulating the biologic machinery of healthy aging.


Assuntos
Aldeídos/metabolismo , Fenóis/metabolismo , Proteômica/métodos , ATP Citrato (pro-S)-Liase/química , ATP Citrato (pro-S)-Liase/metabolismo , Aldeídos/química , Domínio Catalítico , Ensaios Enzimáticos , Epigenômica/métodos , Ontologia Genética/estatística & dados numéricos , Histona Desmetilases/química , Histona Desmetilases/metabolismo , Humanos , Informática/métodos , Metiltransferases/química , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Nicotinamida N-Metiltransferase/química , Nicotinamida N-Metiltransferase/metabolismo , Olea/química , Azeite de Oliva/química , Fenóis/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Software
18.
Nat Commun ; 10(1): 2851, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253786

RESUMO

Male and female brains differ significantly in both health and disease, and yet the female brain has been understudied. Sex-hormone fluctuations make the female brain particularly dynamic and are likely to confer female-specific risks for neuropsychiatric disorders. The molecular mechanisms underlying the dynamic nature of the female brain structure and function are unknown. Here we show that neuronal chromatin organization in the female ventral hippocampus of mouse fluctuates with the oestrous cycle. We find chromatin organizational changes associated with the transcriptional activity of genes important for neuronal function and behaviour. We link these chromatin dynamics to variation in anxiety-related behaviour and brain structure. Our findings implicate an immediate-early gene product, Egr1, as part of the mechanism mediating oestrous cycle-dependent chromatin and transcriptional changes. This study reveals extreme, sex-specific dynamism of the neuronal epigenome, and establishes a foundation for the development of sex-specific treatments for disorders such as anxiety and depression.


Assuntos
Encéfalo/fisiologia , Cromatina/fisiologia , Ciclo Estral/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epigenômica , Estradiol/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Progesterona/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo
20.
APMIS ; 127(5): 386-424, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31124204

RESUMO

The current state, tools, and applications of personalized medicine with special emphasis on inflammatory skin diseases like psoriasis and atopic dermatitis are discussed. Inflammatory pathways are outlined as well as potential targets for monoclonal antibodies and small-molecule inhibitors.


Assuntos
Dermatite Atópica/tratamento farmacológico , Medicina de Precisão , Psoríase/tratamento farmacológico , Câmaras de Exposição Atmosférica , Biomarcadores , Dermatite Atópica/etiologia , Dermatite Atópica/genética , Epigenômica , Humanos , Testes Farmacogenômicos , Medicina de Precisão/métodos , Proteômica , Transcriptoma , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA