Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Zoolog Sci ; 38(4): 352-358, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342956

RESUMO

A new species of brittle star, Ophiodelos okayoshitakai, is described from two specimens collected in Sagami Bay, central-eastern Japan. Photographic examination of the holotype specimen of the sole other congener, Ophiodelos insignis Koehler, 1930, indicates that Ophiodelos okayoshitakai sp. nov. is distinguished from O. insignis by i) the disc stumps covering on the dorsal side of the disc, ii) the dorsal and ventral arm plates being separated from each other on the proximal arm regions, iii) the dorsal arm plate being smooth, iv) the arm spines at proximal portion of the arm being six in number and smooth in shape, and v) the number and shape of the tentacle scales at proximal portion of the arm being up to two and spine-shaped adradially and oval abradially. Detailed morphological observations of this new species suggest the inclusion of Ophiodelos, whose familial affiliation remains unclear, in the suborder Ophiacanthina. More than 10 juveniles of various sizes were found in the disc of Ophiodelos okayoshitakai sp. nov., indicating a brooding reproduction. This is the first report of the genus Ophiodelos from Japanese waters. We also provided a nucleotide sequence for part of the cytochrome c oxidase subunit I (COI) gene in O. okayoshitakai sp. nov. for future studies of DNA barcoding and phylogeny.


Assuntos
Equinodermos/fisiologia , Reprodução/fisiologia , Animais , Japão , Oceano Pacífico
2.
BMC Biol ; 19(1): 9, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461552

RESUMO

BACKGROUND: Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. RESULTS: Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. CONCLUSIONS: We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.


Assuntos
Equinodermos/fisiologia , Expressão Gênica , Regeneração/fisiologia , Animais , Equinodermos/genética , Equinodermos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Regeneração/genética , Fatores de Transcrição/genética
3.
J Morphol ; 282(2): 205-216, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159480

RESUMO

Basket stars, that is, Ophiuroidea in Echinodermata, exhibit distinctive morphological characteristics with their complicatedly branched arms that can regenerate immediately after mutilation. Although, in brittle stars, that is, ophiuroids with nonbranched arms, the arm regeneration process following accidental trauma or autotomy have been morphologically and histologically observed in several species, few studies have so far been carried out on the regeneration of branched arms in basket stars. In this study, the developmental and morphological features of arm regeneration in Astrocladus dofleini (Gorgonocephalidae, Euryalida, Euryophiurida), one of the most common basket star species in Japanese waters, was anatomically and histologically investigated. Results clearly showed the following phases during the arm regeneration: (a) repair phase, (b) early regenerative phase, (c) intermediate regenerative phase, (d) advanced regenerative Phase I, and (e) advanced regenerative Phase II. The morphogenetic process during the arm regeneration in the basket star showed similar patterns to those of nonbranched arms observed in other ophiuroids. However, differences were also seen between the two ophiuroid types, that is, there were some developmental features specific to the basket star. In the early regenerative phase, branching of coelomic cavities was observed prior to the formation of other tissues, probably inducing the later morphogenesis of branched arms. In addition, hard skeletal ossicles form rapidly at the advanced regenerative Phase II. These developmental features may have led the evolution of bizarre morphologies seen in basket stars, probably contributing to the adaptation to shallow waters from deep-sea habitats.


Assuntos
Equinodermos/anatomia & histologia , Equinodermos/fisiologia , Morfogênese , Animais , Equinodermos/citologia , Sistema Musculoesquelético/anatomia & histologia , Regeneração
4.
Zoolog Sci ; 37(5): 496-503, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32972090

RESUMO

We describe Obesostoma crinophilum sp. nov. (Ostracoda: Podocopida: Paradoxostomatidae) obtained from the body surface of the feather star Antedon serrata A. H. Clark, 1908 (Crinoidea: Comatulida: Antedonidae). This is the first report of Ostracoda associated with Crinoidea. None of the highly specialized appendages and/or carapace that are related to a commensal lifestyle were observed in O. crinophilum sp. nov. Therefore, the relationship between O. crinophilum sp. nov. and A. serrata must be transient rather than obligatory. However, O. crinophilum sp. nov. has a more developed hook-like distal claw on the antenna in comparison with four previously known Obesostoma species. The relatively well-developed distal claw of the antenna in O. crinophilum sp. nov. should indicate its intimate association with feather stars, though the feeding habit is still unknown.


Assuntos
Crustáceos/classificação , Equinodermos/fisiologia , Simbiose , Animais , Crustáceos/anatomia & histologia , Feminino , Masculino , Especificidade da Espécie
5.
Sci Rep ; 10(1): 15147, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934271

RESUMO

Echinoderms exhibit remarkable powers of autotomy. For instance, crinoids can shed arm and stalk portions when attacked by predators. In some species, it has been reported that the autotomized arms display vigorous movements, which are thought to divert the attention of predators. This phenomenon, however, has not been well explored. Here we present results of experiments using the shallowest water species of living stalked crinoid (Metacrinus rotundus) collected at 140 m depth. A wide range of movements of detached arms, from sluggish writhing to violent flicks, was observed. Interestingly, autotomized arms produce distinct traces on the sediment surface. They are composed of straight or arched grooves usually arranged in radiating groups and shallow furrows. Similar traces were found associated with detached arms of the oldest (Early Triassic) stem-group isocrinid (Holocrinus). This finding may suggest that the origins of autotomy-related thrashing behaviour in crinoids could be traced back to at least the Early Triassic, underscoring the magnitude of anti-predatory traits that occurred during the Mesozoic Marine Revolution. A new ethological category, autotomichnia, is proposed for the traces produced by thrashing movements of shed appendages.


Assuntos
Comportamento Animal , Equinodermos/fisiologia , Extremidades/fisiologia , Fósseis , Movimento , Comportamento Predatório , Animais , Evolução Biológica , Fenômenos Biomecânicos
6.
PLoS One ; 15(5): e0232981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32396580

RESUMO

Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.


Assuntos
Equinodermos/fisiologia , Receptores Notch/fisiologia , Regeneração/fisiologia , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/fisiologia , Animais , Elementos de DNA Transponíveis , Dipeptídeos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Equinodermos/efeitos dos fármacos , Equinodermos/genética , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Regeneração/efeitos dos fármacos , Regeneração/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Sci Rep ; 10(1): 3348, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098989

RESUMO

Sea cucumbers lack vision and rely on chemical sensing to reproduce and survive. However, how they recognize and respond to environmental cues remains unknown. Possible candidates are the odorant receptors (ORs), a diverse family of G protein-coupled receptors (GPCRs) involved in olfaction. The present study aimed at characterizing the chemosensory GPCRs in sea cucumbers. At least 246 distinct GPCRs, of which ca. 20% putative ORs, were found in a transcriptome assembly of putative chemosensory (tentacles, oral cavity, calcareous ring, and papillae/tegument) and reproductive (ovary and testis) tissues from Holothuria arguinensis (57 ORs) and in the Apostichopus japonicus genome (79 ORs). The sea cucumber ORs clustered with those of sea urchin and starfish into four main clades of gene expansions sharing a common ancestor and evolving under purifying selection. However, the sea cucumber ORs repertoire was the smallest among the echinoderms and the olfactory receptor signature motif LxxPxYxxxxxLxxxDxxxxxxxxP was better conserved in cluster OR-l1 which also had more members. ORs were expressed in tentacles, oral cavity, calcareous ring, and papillae/tegument, supporting their potential role in chemosensing. This study is the first comprehensive survey of chemosensory GPCRs in sea cucumbers, and provides the molecular basis to understand how they communicate.


Assuntos
Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Pepinos-do-Mar/fisiologia , Animais , Equinodermos/genética , Equinodermos/fisiologia , Genoma/genética , Neurônios Receptores Olfatórios/metabolismo , Pepinos-do-Mar/genética , Alinhamento de Sequência , Stichopus/genética , Transcriptoma/genética
8.
Proc Biol Sci ; 287(1919): 20192143, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31992167

RESUMO

Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.


Assuntos
Organismos Aquáticos/fisiologia , Invertebrados/fisiologia , Animais , Comportamento Animal , Biodiversidade , Equinodermos/fisiologia , Ecossistema , Fenótipo
9.
J Exp Biol ; 223(Pt 4)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31974222

RESUMO

Bioluminescence is a widespread phenomenon in the marine environment. Among luminous substrates, coelenterazine is the most widespread luciferin, found in eight phyla. The wide phylogenetic coverage of this light-emitting molecule has led to the hypothesis of its dietary acquisition, which has so far been demonstrated in one cnidarian and one lophogastrid shrimp species. Within Ophiuroidea, the dominant class of luminous echinoderms, Amphiura filiformis is a model species known to use coelenterazine as substrate of a luciferin/luciferase luminous system. The aim of this study was to perform long-term monitoring of A. filiformis luminescent capabilities during captivity. Our results show (i) depletion of luminescent capabilities within 5 months when the ophiuroid was fed a coelenterazine-free diet and (ii) a quick recovery of luminescent capabilities when the ophiuroid was fed coelenterazine-supplemented food. The present work demonstrates for the first time a trophic acquisition of coelenterazine in A. filiformis to maintain light emission capabilities.


Assuntos
Dieta , Equinodermos/fisiologia , Imidazóis/administração & dosagem , Pirazinas/administração & dosagem , Animais , Medições Luminescentes , Cloreto de Potássio/farmacologia
10.
Curr Biol ; 30(2): 319-327.e4, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902727

RESUMO

Almost all animals can sense light, but only those with spatial vision can "see." Conventionally, this was restricted to animals possessing discrete visual organs (eyes), but extraocular vision could facilitate vision without eyes. Echinoderms form the focus of extraocular vision research [1-7], and the brittle star Ophiocoma wendtii, which exhibits light-responsive color change and shelter seeking, became a key species of interest [4, 8, 9]. Both O. wendtii and an apparently light-indifferent congeneric, O. pumila, possess an extensive network of r-opsin-reactive cells, but its function remains unclear [4]. We show that, although both species are strongly light averse, O. wendtii orients to stimuli necessitating spatial vision for detection, but O. pumila does not. However, O. wendtii's response disappears when chromatophores are contracted within the skeleton. Combining immunohistochemistry, histology, and synchrotron microtomography, we reconstructed models of photoreceptors in situ and extracted estimated angular apertures for O. wendtii and O. pumila. Angular sensitivity estimates, derived from these models, support the hypothesis that chromatophores constitute a screening mechanism in O. wendtii, providing sufficient resolving power to detect the stimuli. RNA sequencing (RNA-seq) identified opsin candidates in both species, including multiple r-opsins and transduction pathway constituents, congruent with immunohistochemistry and studies of other echinoderms [10, 11]. Finally, we note that differing body postures between the two species during experiments may reflect aspect of signal integration. This represents one of the most detailed mechanisms for extraocular vision yet proposed and draws interesting parallels with the only other confirmed extraocular visual system, that of some sea urchins, which also possess chromatophores [1].


Assuntos
Cromatóforos/fisiologia , Equinodermos/fisiologia , Fototaxia , Percepção Visual , Animais , Luz
11.
Sci Rep ; 9(1): 8298, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165756

RESUMO

Physiological experiments and mathematical models have supported that neuronal activity is crucial for coordinating rhythmic movements in animals. On the other hand, robotics studies have suggested the importance of physical properties made by body structure, i.e. morphology. However, it remains unclear how morphology affects movement coordination in animals, independent of neuronal activity. To begin to understand this issue, our study reports a rhythmic movement in the green brittle star Ophiarachna incrassata. We found this animal moved five radially symmetric parts in a well-ordered unsynchronized pattern. We built a phenomenological model where internal fluid flows between the five body parts to explain the coordinated pattern without considering neuronal activity. Changing the number of the body parts from five to six, we simulated a synchronized pattern, which was demonstrated also by an individual with six symmetric parts. Our model suggests a different number in morphology makes a different fluid flow, leading to a different synchronization pattern in the animal.


Assuntos
Equinodermos/anatomia & histologia , Equinodermos/fisiologia , Movimento , Animais , Fenômenos Biomecânicos , Simulação por Computador , Modelos Teóricos , Água do Mar
12.
Nat Commun ; 10(1): 1366, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911013

RESUMO

Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuterostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem-echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates.


Assuntos
Equinodermos/anatomia & histologia , Fósseis/anatomia & histologia , Filogenia , Animais , Evolução Biológica , China , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Cordados não Vertebrados/fisiologia , Equinodermos/classificação , Equinodermos/fisiologia , Fósseis/história , Sedimentos Geológicos/análise , História Antiga
13.
J Exp Biol ; 222(Pt 2)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30464042

RESUMO

Echinoderms lack a centralized nervous control system, yet each extant echinoderm class has evolved unique and effective strategies for locomotion. Brittle stars (Ophiuroidea) stride swiftly over the seafloor by coordinating motions of their five muscular arms. Their arms consist of many repeating segments, requiring them to use a complex control system to coordinate motions among segments and between arms. We conducted in vivo experiments with brittle stars to analyze the functional role of the nerve ring, which connects the nerves in each arm. These experiments were designed to determine how the ophiuroid nervous system performs complex decision making and locomotory actions under decentralized control. Our results show that brittle star arms must be connected by the nerve ring for coordinated locomotion, but information can travel bidirectionally around the nerve ring so that it circumvents the severance. Evidence presented indicates that ophiuroids rely on adjacent nerve ring connections for sustained periodic movements. The number of arms connected via the nerve ring is correlated positively with the likelihood that the animal will show coordinated locomotion, indicating that integrated nerve ring tissue is critical for control. The results of the experiments should provide a basis for the advancement of complex artificial decentralized systems.


Assuntos
Equinodermos/fisiologia , Locomoção/fisiologia , Animais , Fenômenos Fisiológicos do Sistema Nervoso
14.
Dev Neurobiol ; 79(5): 396-405, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30548565

RESUMO

Radial glial cells are crucial in vertebrate neural development and regeneration. It has been recently proposed that this neurogenic cell type might be older than the chordate lineage itself and might have been present in the last common deuterostome ancestor. Here, we summarize the results of recent studies on radial glia in echinoderms, a highly regenerative phylum of marine invertebrates with shared ancestry to chordates. We discuss the involvement of these cells in both homeostatic neurogenesis and post-traumatic neural regeneration, compare the features of radial glia in echinoderms and chordates to each other, and review the molecular mechanisms that control differentiation and plasticity of the echinoderm radial glia. Overall, studies on echinoderm radial glia provide a unique opportunity to understand the fundamental biology of this cell type from evolutionary and comparative perspectives.


Assuntos
Equinodermos/citologia , Equinodermos/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Animais , Evolução Biológica , Homeostase/fisiologia , Regeneração Nervosa/fisiologia , Neurogênese/fisiologia
15.
J Anat ; 233(6): 696-714, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30353539

RESUMO

Brittle stars (Phylum Echinodermata, Class Ophiuroidea) have evolved rapid locomotion employing muscle and skeletal elements within their (usually) five arms to apply forces in a manner analogous to that of vertebrates. Inferring the inner workings of the arm has been difficult as the skeleton is internal and many of the ossicles are sub-millimeter in size. Advances in 3D visualization and technology have made the study of movement in ophiuroids possible. We developed six virtual 3D skeletal models to demonstrate the potential range of motion of the main arm ossicles, known as vertebrae, and six virtual 3D skeletal models of non-vertebral ossicles. These models revealed the joint center and relative position of the arm ossicles during near-maximal range of motion. The models also provide a platform for the comparative evaluation of functional capabilities between disparate ophiuroid arm morphologies. We made observations on specimens of Ophioderma brevispina and Ophiothrix angulata. As these two taxa exemplify two major morphological categories of ophiuroid vertebrae, they provide a basis for an initial assessment of the functional consequences of these disparate vertebral morphologies. These models suggest potential differences in the structure of the intervertebral articulations in these two species, implying disparities in arm flexion mechanics. We also evaluated the differences in the range of motion between segments in the proximal and distal halves of the arm length in a specimen of O. brevispina, and found that the morphology of vertebrae in the distal portion of the arm allows for higher mobility than in the proximal portion. Our models of non-vertebral ossicles show that they rotate further in the direction of movement than the vertebrae themselves in order to accommodate arm flexion. These findings raise doubts over previous hypotheses regarding the functional consequences of ophiuroid arm disparity. Our study demonstrates the value of integrating experimental data and visualization of articulated structures when making functional interpretations instead of relying on observations of vertebral or segmental morphology alone. This methodological framework can be applied to other ophiuroid taxa to enable comparative functional analyses. It will also facilitate biomechanical analyses of other invertebrate groups to illuminate how appendage or locomotor function evolved.


Assuntos
Equinodermos/anatomia & histologia , Equinodermos/fisiologia , Locomoção/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Sistema Musculoesquelético/anatomia & histologia , Animais
16.
PLoS One ; 13(8): e0201269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067813

RESUMO

Diversity patterns of the deep-sea megafauna in the Caribbean Basin and the Guiana ecoregion were analyzed in order to test the hypothesis of species richness variation as a function of depth and the hypothesis of non-differences between ecoregions by analyzing spatial patterns of five taxa and a merged assemblage. Collections of five taxa (corals, sea stars, sea urchins, sea lilies and gastropods) were obtained from seven oceanographic expeditions aboard the R/V Pillsbury at 310 stations between 60 and 7500 m depth. Data were sorted according to depth zones and ecoregions and were analyzed in order to estimate species richness, changes in species composition and distinction of ß-diversity by species turnover or by nestedness. The observed patterns of diversity were consistent between taxa and their assemblage: Species richness increased from the continental shelf (60-200 m deep) to the slope (200-2000 m deep), followed by a decrease at the continental rise-abyssal zone. We detected marked changes in species composition according to depth ranges. Changes in species composition in relation to ecoregions were also detected. In general, the Caribbean Basin lacks important physical barriers, causing high deep-sea ecosystem connectivity; however, variation in composition could be related to changes in environmental conditions associated with productivity and/or continental influences.


Assuntos
Antozoários , Biodiversidade , Equinodermos , Gastrópodes , Animais , Antozoários/fisiologia , Região do Caribe , Análise por Conglomerados , Equinodermos/fisiologia , Gastrópodes/fisiologia , Oceanografia , Oceanos e Mares , Especificidade da Espécie
17.
Results Probl Cell Differ ; 65: 285-320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083925

RESUMO

Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.


Assuntos
Equinodermos/classificação , Equinodermos/fisiologia , Regeneração , Animais , Evolução Biológica
18.
PLoS One ; 13(4): e0195836, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649336

RESUMO

Echinoderms are capable of asexual reproduction by fission. An individual divides into parts due to changes in the strength of connective tissue of the body wall. The structure of connective tissue and the mechanisms of variations in its strength in echinoderms remain poorly studied. An analysis of transcriptomes of individuals during the process of fission provides a new opportunity to understand the mechanisms of connective tissue mutability. In the holothurian Cladolabes schmeltzii, we have found a rather complex organization of connective tissue. Transcripts of genes encoding a wide range of structural proteins of extracellular matrix, as well as various proteases and their inhibitors, have been discovered. All these molecules may constitute a part of the mechanism of connective tissue mutability. According to our data, the extracellular matrix of echinoderms is substantially distinguished from that of vertebrates by the lack of elastin, fibronectins, and tenascins. In case of fission, a large number of genes of transcription factors and components of different signaling pathways are expressed. Products of these genes are probably involved in regulation of asexual reproduction, connective tissue mutability, and preparation of tissues for subsequent regeneration. It has been shown that holothurian tensilins are a special group of tissue inhibitors of metalloproteinases, which has formed within the class Holothuroidea and is absent from other echinoderms. Our data can serve a basis for the further study of the mechanisms of extracellular matrix mutability, as well as the mechanisms responsible for asexual reproduction in echinoderms.


Assuntos
Equinodermos/fisiologia , Reprodução Assexuada/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Equinodermos/classificação , Perfilação da Expressão Gênica , Ontologia Genética , Estudos de Associação Genética , Anotação de Sequência Molecular , Filogenia , Transdução de Sinais
19.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29367398

RESUMO

Photoreception and vision are fundamental aspects of animal sensory biology and ecology, but important gaps remain in our understanding of these processes in many species. The colour-changing brittle star Ophiocoma wendtii is iconic in vision research, speculatively possessing a unique whole-body visual system that incorporates information from nerve bundles underlying thousands of crystalline 'microlenses'. The hypothesis that these might form a sophisticated compound eye-like system regulated by chromatophores has been extensively reiterated, with investigations into biomimetic optics and similar supposedly 'visual' structures in living and fossil taxa. However, no photoreceptors or visual behaviours have ever been identified. We present the first evidence of photoreceptor networks in three Ophiocoma species, both with and without microlenses and colour-changing behaviour. High-resolution microscopy, immunohistochemistry and synchrotron tomography demonstrate that putative photoreceptors cover the animals' oral, lateral and aboral surfaces, but are absent at the hypothesized focal points of the microlenses. The structural optics of these crystal 'lenses' are an exaptation and do not fulfil any apparent visual role. This contradicts previous studies, yet the photoreceptor network in Ophiocoma appears even more widespread than previously anticipated, both taxonomically and anatomically.


Assuntos
Equinodermos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Comportamento Exploratório , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Panamá , Tomografia
20.
J Chem Ecol ; 44(2): 147-177, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362949

RESUMO

Within the Phylum Echinodermata, the class Asteroidea, commonly known as starfish and sea stars, encompasses a large number of benthos inhabiting genera and species with various feeding modalities including herbivores, carnivores, omnivores and detritivores. The Asteroidea rely on chemosensation throughout their life histories including hunting prey, avoiding or deterring predators, in the formation of spawning aggregations, synchronizing gamete release and targeting appropriate locations for larval settlement. The identities of many of the chemical stimuli that mediate these physiological and behavioural processes remain unresolved even though evidence indicates they play pivotal roles in the functionality of benthic communities. Aspects of chemosensation, as well as putative chemically-mediated behaviours and the molecular mechanisms of chemoreception, within the Asteroidea are reviewed here, with particular reference to the coral reef pest the Crown-of-Thorns starfish Acanthaster planci species complex, in the context of mitigation of population outbreaks.


Assuntos
Equinodermos/fisiologia , Feromônios/metabolismo , Animais , Carnivoridade , Recifes de Corais , Equinodermos/química , Equinodermos/crescimento & desenvolvimento , Herbivoria , Metamorfose Biológica , Controle de Pragas , Feromônios/análise , Comportamento Predatório , Estrelas-do-Mar/química , Estrelas-do-Mar/crescimento & desenvolvimento , Estrelas-do-Mar/fisiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...