Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111.932
Filtrar
1.
J Agric Food Chem ; 69(36): 10480-10485, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478293

RESUMO

1,4-Butanediol (1,4-BDO), a significant commodity chemical, is currently manufactured exclusively from a host of energy-intensive processes, accompanied by severe environmental issues, such as the greenhouse effect and air pollution. As a result of the ever-increasing global market demands and increasing applications of 1,4-BDO, attention has turned to the sustainable bioproduction of 1,4-BDO, and several bio-based approaches for 1,4-BDO production have been successfully established in engineered Escherichia coli, including de novo biosynthesis and biocatalysis. Recent achievements in enhancing the accumulation of 1,4-BDO have been achieved by metabolic engineering strategies, such as improving precursor supply, enhancing activities of critical enzymes, and fewer byproduct synthesis. Here, we summarize the primary advances of the biological pathway for 1,4-BDO synthesis and put forward the future development prospect of bio-based 1,4-BDO production.


Assuntos
Butileno Glicóis , Engenharia Metabólica , Biocatálise , Escherichia coli/genética
2.
J Hazard Mater ; 416: 125815, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492781

RESUMO

In this study, seven laccase genes from different bacteria were linked with the signal peptides PelB, Lpp or Ompa for heterologous expression in E. coli. The recombinant strains were applied for the removal of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX). The results obtained for different signal peptides did not provide insights into the removal mechanism. The removal ratios of SDZ, SMZ, and SMX obtained with the recombinant strain 6#P at 60 h were around 92.0%, 89.0%, and 88.0%, respectively. The degradation pathways of sulfonamides have been proposed, including SO2 elimination, hydroxylation, oxidation, pyrimidine ring cleavage, and N-S bond cleavage. Different mediators participate in the degradation of antibiotics through different mechanisms, and different antibiotics have different responses to the same mediator. The addition of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) slightly promoted the removal of sulfonamides by most recombinant strains with different signal peptides, especially for the recombinant strain 2#O. The removal of sulfonamides by 1-hydroxybenzotriazole (HBT) varied with the recombinant strains. Syringaldehyde (SA) had a slight inhibitory effect on the removal of sulfonamides, with the most significant effect on strains 7#L and 7#O.


Assuntos
Antibacterianos , Lacase , Bactérias , Escherichia coli/genética , Lacase/genética , Sulfonamidas
3.
Urologiia ; (4): 19-24, 2021 Sep.
Artigo em Russo | MEDLINE | ID: mdl-34486270

RESUMO

OBJECTIVE: Comparative phenotypic and genetic assessment of the pathogenic potential of E. coli strains isolated from patients with calculous pyelonephritis. MATERIALS AND METHODS: 78 strains of E. coli isolated from urine of patients with calculous pyelonephritis in the acute phase (n=58) and in the remission phase (n=20). Escherichia were investigated for the presence of virulence genes papA, pap EF, papGII; afa, bma E, iutA, fyuA, feoB, kspMTII, usp multiplex PCR using selected primers. Phenotypically determined the ability to biofilm formation, antilysozyme, antihemoglobin, anticytokine, adhesive and sIgA-protease activity E. coli. RESULTS: The virulent potential of Escherichia coli at the pheno- and genotype levels was characterized. In strains of E. coli isolated from the urine of patients in the remission phase, the ability to form biofilms was more often and with high values of the trait; and in strains isolated in relapse - adhesive activity, the ability to inactivate pro- and anti-inflammatory cytokines, antihemoglobin activity, and genes encoding aphimbrial adhesin (afa), responsible for the synthesis of siderophore aerobactin (iutA), transporting bivalent iron (feoB). CONCLUSION: The revealed differences in the pheno- and genotypic profiles between the cultures of Escherichia coli isolated from patients with calculous pyelonephritis in the phases of exacerbation and remission make it possible to differentiate the isolated strain and predict the course of the infectious-inflammatory process.


Assuntos
Infecções por Escherichia coli , Pielonefrite , Escherichia coli/genética , Genótipo , Humanos , Virulência
4.
Appl Microbiol Biotechnol ; 105(18): 6793-6803, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34477943

RESUMO

Some microbial-associated molecular patterns (MAMPs), like glucan oligosaccharides, can be recognized by pattern recognition receptors (PRRs) of plant to elicit further immunity response. In this study, a novel glycoside hydrolase family 55 ß-1,3-glucanase (AcGluA) from Archangium sp. strain AC19 was cloned and expressed in Escherichia coli. Among the reported ß-1, 3-glucanases from the glycoside hydrolase 55 family, the purified AcGluA exhibited the highest activity on laminarin at pH 6.0 and 60 °C with 112.3 U/mg. Activity of AcGluA was stable in the range of pH 4.0-9.0 and at temperatures below 60 °C. The Km and Vmax of AcGluA for laminarin were 3.5 mg/ml and 263.5 µmol/(ml·min). AcGluA hydrolyzed laminarin into a series of oligosaccharides, suggesting it was an endo-ß-1,3-glucanase. The high dose of oligosaccharides (1600 mg/l) had conspicuous biocontrol efficacy on the defense of rice seedlings to Magnaporthe oryzae, which provided a new idea for the development of green biopesticide.Key points• The AcGluA was determined bacteria-derived ß-1,3-glucanases in the GH55 family.• The AcGluA showed the highest activity towards laminarin among reported GH55 family.• The hydrolysates of laminarin showed conspicuous biocontrol efficacy to M. oryzae.


Assuntos
Ascomicetos , Glicosídeo Hidrolases , Ascomicetos/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Especificidade por Substrato
5.
J Hazard Mater ; 416: 126125, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492919

RESUMO

The ongoing COVID-19 pandemic increases the consumption of antimicrobial substances (ABS) due to the unavailability of approved vaccine(s). To assess the effect of imprudent consumption of ABS during the COVID-19 pandemic, we compare the 2020 prevalence of antidrug resistance (ADR) of Escherichia coli (E. coli) with a similar survey carried out in 2018 in Ahmedabad, India using SARS-CoV-2 gene detection as a marker of ABS usage. We found a significant ADR increase in 2020 compared to 2018 in ambient water bodies, harbouring a higher incidence of ADR E.coli towards non-fluoroquinolone drugs. Effective SARS-CoV-2 genome copies were found to be associated with the ADR prevalence. The prevalence of ADR depends on the efficiency of WWTPs (Wastewater Treatment Plants) and the catchment area in its vicinity. In the year 2018 study, prevalence of ADR was discretely distributed, and the maximum ADR prevalence recorded was ~60%; against the current homogenous ADR increase, and up to 85% of maximum ADR among the incubated E.coli isolated from the river (Sabarmati) and lake (Chandola and Kankaria) samples. Furthermore, wastewater treatment plants showed less increase in comparison to the ambient waters, which eventually imply that although SARS-CoV-2 genes and faecal pollution may be diluted in the ambient waters, as indicated by low Ct-value and E.coli count, the danger of related aftermath like ADR increase cannot be nullified. Also, Non-fluoroquinolone drugs exhibited overall more resistance than quinolone drugs. Overall, this is probably the first-ever study that traces the COVID-19 pandemic imprints on the prevalence of antidrug resistance (ADR) through wastewater surveillance and hints at monitoring escalation of other environmental health parameters. This study will make the public and policyholders concerned about the optimum use of antibiotics during any kind of treatment.


Assuntos
COVID-19 , Escherichia coli/genética , Humanos , Pandemias , SARS-CoV-2 , Águas Residuárias
6.
Nat Commun ; 12(1): 5206, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471126

RESUMO

CRISPR base editing is a powerful method to engineer bacterial genomes. However, it restricts editing to single-nucleotide substitutions. Here, to address this challenge, we adapt a CRISPR-Prime Editing-based, DSB-free, versatile, and single-nucleotide resolution genetic manipulation toolkit for prokaryotes. It can introduce substitutions, deletions, insertions, and the combination thereof, both in plasmids and the chromosome of E. coli with high fidelity. Notably, under optimal conditions, the efficiency of 1-bp deletions reach up to 40%. Moreover, deletions of up to 97 bp and insertions up to 33 bp were successful with the toolkit in E. coli, however, efficiencies dropped sharply with increased fragment sizes. With a second guide RNA, our toolkit can achieve multiplexed editing albeit with low efficiency. Here we report not only a useful addition to the genome engineering arsenal for E. coli, but also a potential basis for the development of similar toolkits for other bacteria.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano , Genoma Bacteriano , Plasmídeos , RNA Guia/genética
7.
Nat Commun ; 12(1): 5216, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471137

RESUMO

Bacterial biosensors, or bactosensors, are promising agents for medical and environmental diagnostics. However, the lack of scalable frameworks to systematically program ligand detection limits their applications. Here we show how novel, clinically relevant sensing modalities can be introduced into bactosensors in a modular fashion. To do so, we have leveraged a synthetic receptor platform, termed EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) which supports the modular assembly of sensing modules onto a high-performance, generic signaling scaffold controlling gene expression in E. coli. We apply EMeRALD to detect bile salts, a biomarker of liver dysfunction, by repurposing sensing modules from enteropathogenic Vibrio species. We improve the sensitivity and lower the limit-of-detection of the sensing module by directed evolution. We then engineer a colorimetric bactosensor detecting pathological bile salt levels in serum from patients having undergone liver transplant, providing an output detectable by the naked-eye. The EMeRALD technology enables functional exploration of natural sensing modules and rapid engineering of synthetic receptors for diagnostics, environmental monitoring, and control of therapeutic microbes.


Assuntos
Bactérias/metabolismo , Biomarcadores/metabolismo , Técnicas Biossensoriais , Proteínas de Transporte/metabolismo , Patologia Molecular/métodos , Bactérias/genética , Ácidos e Sais Biliares/sangue , Técnicas Biossensoriais/métodos , Proteínas de Transporte/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Transplante de Fígado , Engenharia Metabólica/métodos , Sensibilidade e Especificidade , Alinhamento de Sequência , Vibrio , Vibrioses/diagnóstico
8.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2813-2824, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472299

RESUMO

Squalene is widely used in pharmaceutical, nutraceutical, cosmetics and other fields because of its strong antioxidative, antibacterial and anti-tumor activities. In order to produce squalene, a gene ispA encoding farnesyl pyrophosphate synthase was overexpressed in a previously engineered Escherichia coli strain capable of efficiently producing terpenoids, resulting in a chassis strain that efficiently synthesizes triterpenoids. Through phylogenetic analysis, screening, cloning and expression of squalene synthase derived from different prokaryotes, engineered E. coli strains capable of efficiently producing squalene were obtained. Among them, squalene produced by strains harboring squalene synthase derived from Thermosynechococcus elongatus and Synechococcus lividus reached (16.5±1.4) mg/g DCW ((167.1±14.3) mg/L broth) and (12.0±1.9) mg/g DCW ((121.8±19.5) mg/L broth), respectively. Compared with the first-generation strains harboring the human-derived squalene synthase, the squalene synthase derived from T. elongatus and S. lividus remarkably increased the squalene production by 3.3 times and 2.4 times, respectively, making progress toward the cost-effective heterologous production of squalene.


Assuntos
Esqualeno , Synechococcus , Clonagem Molecular , Escherichia coli/genética , Humanos , Filogenia
9.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2915-2923, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472308

RESUMO

Antimicrobial peptides are the most promising alternatives to antibiotics. However, the strategy of producing antimicrobial peptides by recombinant technology is complicated and expensive, which is not conducive to the large-scale production. Oxysterlin 1 is a novel type of cecropin antimicrobial peptide mainly targeting on Gram-negative bacteria and is of low cytotoxicity. In this study, a simple and cost-effective method was developed to produce Oxysterlin 1 in Escherichia coli. The Oxysterlin 1 gene was cloned into a plasmid containing elastin-like polypeptide (ELP) and protein splicing elements (intein) to construct the recombinant expression plasmid (pET-ELP-I-Oxysterlin 1). The recombinant protein was mainly expressed in soluble form in E. coli, and then the target peptide can be purified with a simple salting out method followed by pH changing. The final yield of Oxysterlin 1 was about 1.2 mg/L, and the subsequent antimicrobial experiment showed the expected antimicrobial activity. This study holds promise for large-scale production of antimicrobial peptides and the in-depth study of its antimicrobial mechanism.


Assuntos
Elastina , Escherichia coli , Escherichia coli/genética , Inteínas , Peptídeos/genética , Peptídeos/farmacologia , Proteínas Citotóxicas Formadoras de Poros , Proteínas Recombinantes de Fusão/genética
10.
Ethiop J Health Sci ; 31(3): 663-672, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34483624

RESUMO

Background: This cross-sectional study was performed on isolates of Klebsiella pneumoniae, and E.coli from clinical specimens of patients admitted to Sayyad Shirazi Hospital by census sampling method in 2019. Antibiogram testing was performed using the disk diffusion method as defined by the Clinical and Laboratory Standards Organization for performing this test. Finally, the abundance of genes was evaluated by PCR using specific primers. Frequency, percentage, mean±SD were used to describe the data. Chi-square and Fisher's exact tests were used to compare the presence and absence of the studied genes alone and in the presence of each other. Result: This study was performed on 130 positive samples, isolated from 32 (24.6%) males and 98 (65.4%) females with a mean age of 43.78 ± 21.72. From the total number of 130 isolates, 84 (64.6%) consisted of E.coli, and 46 (35.4%) were Klebsiella. Most of the cultures were urine and vaginal (61.5%). The highest antibiotic resistance in isolates was cephalexin and cefazolin (67.9% in E.coli & 63% in Klebsiella). Colistin was identified as the most effective antibiotic (100%) in both. AMPC extendedspectrum ß-lactamase genes were present in 40 (30.8%) isolates. The highest frequency about the gene pattern of AMPC positive ß-lactamase bacteria was correlated to DHA, FOX, and CIT genes, while none of the samples contained the MOX ß-lactamase gene. E.coli and Klebsiella beta-lactamase-producing AMPC isolates were also significantly correlated with antibiotic resistance to the cephalosporin class (P <0.05). Conclusion: This study indicated a high percentage of resistance to third and fourth generation cephalosporins. Hence, careful antibiogram tests and prevention of antibiotic overuse in infections caused by AMPC-producing organisms and screening of clinical samples for the resistance mentioned above genes and providing effective strategies to help diagnose and apply appropriate treatments and change antibiotic usage strategies can partially prevent the transmission of this resistance.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli , Klebsiella pneumoniae , Antibacterianos/farmacologia , Estudos Transversais , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Masculino , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
11.
Talanta ; 235: 122691, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517577

RESUMO

The nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for several steps of the viral life cycle, and is abundantly expressed during infection, making it an ideal diagnostic target protein. This protein has a strong tendency for dimerization and interaction with nucleic acids. For the first time, high titers of NP were expressed in E. coli with a CASPON tag, using a growth-decoupled protein expression system. Purification was accomplished by nuclease treatment of the cell homogenate and a sequence of downstream processing (DSP) steps. An analytical method consisting of native hydrophobic interaction chromatography hyphenated to multi-angle light scattering detection (HIC-MALS) was established for in-process control, in particular, to monitor product fragmentation and multimerization throughout the purification process. 730 mg purified NP per liter of fermentation could be produced by the optimized process, corresponding to a yield of 77% after cell lysis. The HIC-MALS method was used to demonstrate that the NP product can be produced with a purity of 95%. The molecular mass of the main NP fraction is consistent with dimerized protein as was verified by a complementary native size-exclusion separation (SEC)-MALS analysis. Peptide mapping mass spectrometry and host cell specific enzyme-linked immunosorbent assay confirmed the high product purity, and the presence of a minor endogenous chaperone explained the residual impurities. The optimized HIC-MALS method enables monitoring of the product purity, and simultaneously access its molecular mass, providing orthogonal information complementary to established SEC-MALS methods. Enhanced resolving power can be achieved over SEC, attributed to the extended variables to tune selectivity in HIC mode.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo , Cromatografia , Escherichia coli/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2
12.
Enzyme Microb Technol ; 150: 109858, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489018

RESUMO

Actarit is widely regarded as a safe and effective drug for the treatment of rheumatoid arthritis. There is no report on the bioproductin of actarit so far. In this study, we demonstrated for the first time the development of an artificial actarit biosynthetic pathway in Escherichia coli. First, 4-aminophenylacetic acid is selected as precursor substrates for the production of actarit. Second, an N-acetyltransferase that can efficiently catalyse the esterification of acetyl-CoA and 4-aminophenylacetic acid to form actarit was discovered. Subsequently, an engineered E. coli that allows production of actarit from simple carbon sources was established. Finally, we further increased the production of actarit to 206 ± 16.9 mg/L by overexpression of shikimate dehydrogenase ydiB and shikimate kinase aroK.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica , Fenilacetatos
13.
Enzyme Microb Technol ; 150: 109882, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489035

RESUMO

Glycogen branching enzymes (GBEs; 1,4-α-glucan branching enzyme; E.C. 2.4.1.18) have so far been described to be capable of both α-1,6-transglycosylation (branching) and α-1,4-hydrolytic activity. The aim of the present study was to elucidate the mode of action of three distantly related GBEs from the glycoside hydrolase family 13 by in depth analysis of the activity on a well-defined substrate. For this purpose, the GBEs from R. marinus (RmGBE), P. mobilis (PmGBE1), and B. fibrisolvens (BfGBE) were incubated with a highly pure fraction of a linear substrate of 18 anhydroglucose units. A well-known and characterized branching enzyme from E. coli (EcGBE) was also taken along. Analysis of the chain length distribution over time revealed that, next to hydrolytic and branching activity, all three GBEs were capable of generating chains longer than the substrate, clearly showing α-1,4-transglycosylation activity. Furthermore, the GBEs used those elongated chains for further branching. The sequential activity of elongation and branching enabled the GBEs to modify the substrate to a far larger extent than would have been possible with branching activity alone. Overall, the three GBEs acted ambiguous on the defined substrate. RmGBE appeared to have a strong preference towards transferring chains of nine anhydroglucose units, even during elongation, with a comparably low activity. BfGBE generated an array of elongated chains before using the chains for introducing branches while PmGBE1 exhibited a behaviour intermediate of the other two enzymes. On the basis of the mode of action revealed in this research, an updated model of the mechanism of GBEs was proposed now including the α-1,4-transglycosylation activity.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos , Glicogênio , Especificidade por Substrato
14.
Enzyme Microb Technol ; 150: 109886, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489039

RESUMO

Tyrosol and hydroxytyrosol derived from virgin olive oil and olives extract, have wide applications both as functional food components and as nutraceuticals. However, they have low bioavailability due to their low absorption and high metabolism in human liver and small intestine. Acetylation of tyrosol and hydroxytyrosol can effectively improve their bioavailability and thus increase their potential use in the food and cosmeceutical industries. There is no report on the bioproductin of tyrosol acetate and hydroxytyrosol acetate so far. Thus, it is of great significance to develop microbial cell factories for achieving tyrosol acetate or hydroxytyrosol acetate biosynthesis. In this study, a de novo biosynthetic pathway for the production of tyrosol acetate and hydroxytyrosol acetate was constructed in Escherichia coli. First, an engineered E. coli that allows production of tyrosol from simple carbon sources was established. Four aldehyde reductases were compared, and it was found that yeaE is the best aldehyde reductase for tyrosol accumulation. Subsequently, the pathway was extended for tyrosol acetate production by further overexpression of alcohol acetyltransferase ATF1 for the conversion of tyrosol to tyrosol acetate. Finally, the pathway was further extended for hydroxytyrosol acetate production by overexpression of 4-hydroxyphenylacetate 3-hydroxylase HpaBC.


Assuntos
Escherichia coli , Álcool Feniletílico , Acetatos , Escherichia coli/genética , Glucose , Humanos , Azeite de Oliva , Álcool Feniletílico/análogos & derivados
15.
Water Sci Technol ; 84(5): 1182-1189, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34534115

RESUMO

Considering high concentrations of multidrug-resistant bacteria and antibiotic resistance genes (ARGs) in wastewater, agricultural reuse of treated wastewater may be a public health threat due to ARG dissemination in different environmental compartments, including soil and edible parts of crops. We investigated the presence of antibiotic-resistant Escherichia coli as an indicator bacterium from secondary treated wastewater (STWW), water- or wastewater-irrigated soil and crop samples. ARGs including blaCTX-m-32, blaOXA-23, tet-W, sul1, cml-A, erm-B, along with intI1 gene in E. coli isolates were detected via molecular methods. The most prevalent ARGs in 78 E. coli isolates were sul1 (42%), followed by blaCTX-m-32 (19%), and erm-B (17%). IntI1 as a class 1 integrons gene was detected in 46% of the isolates. Cml-A was detected in STWW isolates but no E. coli isolate from wastewater-irrigated soil and crop samples contained this gene. The results also showed no detection of E. coli in water-irrigated soil and crop samples. Statistical analysis showed a correlation between sul1 and cml-A with intI1. The results suggest that agricultural reuse of wastewater may contribute to the transmission of antibiotic-resistant bacteria to soil and crop. Further research is needed to determine the potential risk of ARB associated with the consumption of wastewater-irrigated crops.


Assuntos
Integrons , Águas Residuárias , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Genes Bacterianos , Integrons/genética
16.
Gene ; 803: 145890, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34375634

RESUMO

Escherichia coli Nissle 1917 (EcN) is an efficient probiotic strain extensively used worldwide because of its several health benefits. Adhesion to the intestinal cells is one of the prerequisites for a probiotic strain. To identify the genes essential for the adhesion of EcN on the intestinal cells, we utilized a quantitative genetic footprinting approach called transposon insertion sequencing (INSeq). A transposon insertion mutant library of EcN comprising of ~17,000 mutants was used to screen the adherence to the intestinal epithelial cells, Caco-2. The transposon insertion sites were identified from the input and output population by employing next-generation sequencing using the Ion torrent platform. Based on the relative abundance of reads in the input and output pools, we identified 113 candidate genes that are essential for the fitness of EcN during the adhesion and colonization on the Caco-2 cells. Functional categorization revealed that these fitness genes are associated with carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, post-translational modification, stress response, motility and adhesion, and signal transduction. To further validate the genes identified in our INSeq analysis, we constructed individual knock-out mutants in five genes (cyclic di-GMP phosphodiesterase (gmp), hda, uidC, leuO, and hypothetical protein-coding gene). We investigated their ability to adhere to Caco-2 cells. Evaluation of these mutants showed reduced adhesion on Caco-2 cells, confirming their role in adhesion. Understanding the functions of these genes may provide novel insights into molecular regulation during colonization of probiotic bacteria to the intestinal cells, and useful to develop designer probiotic strains.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Mutagênese Insercional , Análise de Sequência de DNA/métodos , Aderência Bacteriana , Células CACO-2 , Elementos de DNA Transponíveis , Escherichia coli/genética , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Probióticos
17.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445592

RESUMO

The Hfq protein is a bacterial RNA chaperone, involved in many molecular interactions, including control of actions of various small RNA regulatory molecules. We found that the presence of Hfq was required for survival of plasmid-containing Escherichia coli cells against high concentrations of chloramphenicol (plasmid p27cmr), tetracycline (pSC101, pBR322) and ampicillin (pBR322), as hfq+ strains were more resistant to these antibiotics than the hfq-null mutant. In striking contrast, production of Hfq resulted in low resistance to high concentrations of kanamycin when the antibiotic-resistance marker was chromosome-borne, with deletion of hfq resulting in increasing bacterial survival. These results were observed both in solid and liquid medium, suggesting that antibiotic resistance is an intrinsic feature of these strains rather than a consequence of adaptation. Despite its major role as RNA chaperone, which also affects mRNA stability, Hfq was not found to significantly affect kan and tet mRNAs turnover. Nevertheless, kan mRNA steady-state levels were higher in the hfq-null mutant compared to the hfq+ strain, suggesting that Hfq can act as a repressor of kan expression.This observation does correlate with the enhanced resistance to high levels of kanamycin observed in the hfq-null mutant. Furthermore, dependency on Hfq for resistance to high doses of tetracycline was found to depend on plasmid copy number, which was only observed when the resistance marker was expressed from a low copy plasmid (pSC101) but not from a medium copy plasmid (pBR322). This suggests that Hfq may influence survival against high doses of antibiotics through mechanisms that remain to be determined. Studies with pBR322Δrom may also suggest an interplay between Hfq and Rom in the regulation of ColE1-like plasmid replication. Results of experiments with a mutant devoid of the part of the hfq gene coding for the C-terminal region of Hfq suggested that this region, as well as the N-terminal region, may be involved in the regulation of expression of antibiotic resistance in E. coli independently.


Assuntos
Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Resistência Microbiana a Medicamentos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Mutação , Plasmídeos/genética , Escherichia coli/efeitos dos fármacos
18.
Nat Commun ; 12(1): 5182, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462443

RESUMO

Manmade high-performance polymers are typically non-biodegradable and derived from petroleum feedstock through energy intensive processes involving toxic solvents and byproducts. While engineered microbes have been used for renewable production of many small molecules, direct microbial synthesis of high-performance polymeric materials remains a major challenge. Here we engineer microbial production of megadalton muscle titin polymers yielding high-performance fibers that not only recapture highly desirable properties of natural titin (i.e., high damping capacity and mechanical recovery) but also exhibit high strength, toughness, and damping energy - outperforming many synthetic and natural polymers. Structural analyses and molecular modeling suggest these properties derive from unique inter-chain crystallization of folded immunoglobulin-like domains that resists inter-chain slippage while permitting intra-chain unfolding. These fibers have potential applications in areas from biomedicine to textiles, and the developed approach, coupled with the structure-function insights, promises to accelerate further innovation in microbial production of high-performance materials.


Assuntos
Conectina/química , Conectina/genética , Escherichia coli/metabolismo , Fibras Musculares Esqueléticas/química , Animais , Fenômenos Biomecânicos , Conectina/metabolismo , Cristalização , Escherichia coli/genética , Expressão Gênica , Peso Molecular , Fibras Musculares Esqueléticas/metabolismo , Polimerização , Polímeros/química , Polímeros/metabolismo , Dobramento de Proteína , Coelhos
19.
J Water Health ; 19(4): 657-670, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34371501

RESUMO

The management of pathogenic bacteria in waterways is a public health issue. Here, we investigated the concentrations of potentially pathogenic bacteria, Arcobacter spp. and Campylobacter spp., and Escherichia coli, by quantifying species-specific genes in surface water samples from canals and the Chao Phraya River from June 2017 to June 2018 in Bangkok, Thailand. We assessed the relationship between the specific bacterial concentrations, water quality, and seasonal changes. Arcobacter spp. were detected at high density in all samples and showed seasonal fluctuations according to analyses based on 16S rDNA and the invasion gene ciaB. High levels of 16S rDNA and dut gene of E. coli were detected in the polluted drainage canals. A high correlation was observed between E. coli and chemical and biochemical oxygen demand (COD and BOD), suggesting that untreated domestic wastewater was the source of the E. coli. In contrast, Arcobacter spp. were detected with high density even in water samples with relatively low COD, suggesting that Arcobacter spp. are more likely than E. coli to survive in the water environment. The analysis of 16S rDNA and ciaB gene sequence analyses indicated that the Arcobacter spp. isolated from the drainage canals were A. butzleri and A. cryaerophilus.


Assuntos
Arcobacter , Arcobacter/genética , Escherichia coli/genética , Rios , Especificidade da Espécie , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...