Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108.524
Filtrar
1.
Environ Monit Assess ; 192(11): 681, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33025312

RESUMO

Genotypic diversity among multi-drug-resistant (MDR) aquatic E. coli isolated from different sites of Yamuna River was analyzed using repetitive element PCR (rep-PCR) methods viz. ERIC-PCR and (GTG)5-PCR and compared with the MDR animal fecal isolates. The 97 E. coli isolates belonging to different serotypes, phylogroups, and multi-drug resistance patterns were analyzed. High genetic diversity was observed by both the methods; however, (GTG)5 typing showed higher discriminating potential. Combination of ERIC types (E1-E32) and (GTG)5 types (G1-G46) generated 77 genotypes. The frequency of genotypes ranged from 0.013 to 0.065. The genotype composition of E. coli isolates was highly diverse at all the sampling sites across Yamuna River except at its entry site in Delhi. The sampling sites under the influence of high anthropogenic activities showed an increase in number of unique genotype isolates. These sites also exhibited high multiple antibiotic resistance (MAR) indexes (above 0.25) suggesting high risk of contamination. Principal coordinate analysis (PCoA) showed limited clustering of genotypes based on the sampling sites. The most frequent genotypes were grouped in the positive zone of both the principal coordinates (PC1 and PC2). The genotypes of most of the animal fecal isolates were unique and occupied a common space in the negative PC1 area forming a separate cluster. High genotypic diversity among the aquatic E. coli and the drain isolates, discharging the untreated municipal waste in the river, was observed, suggesting that the sewage effluents contribute substantially to contamination of this river system than animal feces. The presence of such a high diversity among the MDR E. coli isolates in the natural river systems is of great public health significance and highlights the need of an efficient surveillance system for better management of Indian natural water bodies.


Assuntos
Escherichia coli , Rios , Animais , Monitoramento Ambiental , Escherichia coli/genética , Fezes , Genótipo , Índia , Reação em Cadeia da Polimerase
2.
Nat Commun ; 11(1): 4915, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004811

RESUMO

A phenotype of Escherichia coli and Klebsiella pneumoniae, resistant to piperacillin/tazobactam (TZP) but susceptible to carbapenems and 3rd generation cephalosporins, has emerged. The resistance mechanism associated with this phenotype has been identified as hyperproduction of the ß-lactamase TEM. However, the mechanism of hyperproduction due to gene amplification is not well understood. Here, we report a mechanism of gene amplification due to a translocatable unit (TU) excising from an IS26-flanked pseudo-compound transposon, PTn6762, which harbours blaTEM-1B. The TU re-inserts into the chromosome adjacent to IS26 and forms a tandem array of TUs, which increases the copy number of blaTEM-1B, leading to TEM-1B hyperproduction and TZP resistance. Despite a significant increase in blaTEM-1B copy number, the TZP-resistant isolate does not incur a fitness cost compared to the TZP-susceptible ancestor. This mechanism of amplification of blaTEM-1B is an important consideration when using genomic data to predict susceptibility to TZP.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Escherichia coli/genética , beta-Lactamases/genética , Antibacterianos/uso terapêutico , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Quimioterapia Combinada/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Amplificação de Genes , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Piperacilina/farmacologia , Piperacilina/uso terapêutico , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Tazobactam/farmacologia , Tazobactam/uso terapêutico , Sequenciamento Completo do Genoma
3.
Wei Sheng Yan Jiu ; 49(5): 785-822, 2020 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-33070825

RESUMO

OBJECTIVE: Establish the prokaryotic expression system of Amuc_1100 protein from Akkermansia muciniphila, and analyze the effects of this protein on the body weight, blood glucose, intestinal barrier function and Akkermansia muciniphila abundance in rats fed with high-fat diet combined streptozotocin(STZ)injection. METHODS: PCR product of Amuc_1100 Gene(Gene ID: 34174504) was linked to the double enzyme-digested pET-26 b plasmid vector. The recombinant expression plasmid pET-26 b-Amuc_1100 then transformed into E. Coli BL21. The verified clones through sequence analysis were induced by the addition of IPTG. High-fat diet rats were interfered with the purified protein at high and low doses. The changes of body weight, blood glucose, intestinal barrier function and Akkermansia muciniphila abundance were analyzed. RESULTS: The recombinant expression plasmid pET-26 b-Amuc_1100 was successfully constructed. The sequencing result showed 100% similarity to the Amuc_1100 gene in GenBank. The molecular weight of the protein obtained was 42 kDa. The intervention of Amuc_1100 protein can reduce the weight of rats fed with high-fat diet combined STZ injection to some extent, improve barrier function and increase the abundance of Akkermansia muciniphila in intestine. CONCLUSION: The prokaryotic expression system of Amuc_1100 protein was successfully constructed, which has a certain regulatory effect on rats fed with high-fat diet combined STZ injection.


Assuntos
Dieta Hiperlipídica , Escherichia coli , Animais , Dieta Hiperlipídica/efeitos adversos , Escherichia coli/genética , Ratos , Estreptozocina/toxicidade , Verrucomicrobia
4.
Nat Commun ; 11(1): 5001, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020480

RESUMO

To perform their computational function, genetic circuits change states through a symphony of genetic parts that turn regulator expression on and off. Debugging is frustrated by an inability to characterize parts in the context of the circuit and identify the origins of failures. Here, we take snapshots of a large genetic circuit in different states: RNA-seq is used to visualize circuit function as a changing pattern of RNA polymerase (RNAP) flux along the DNA. Together with ribosome profiling, all 54 genetic parts (promoters, ribozymes, RBSs, terminators) are parameterized and used to inform a mathematical model that can predict circuit performance, dynamics, and robustness. The circuit behaves as designed; however, it is riddled with genetic errors, including cryptic sense/antisense promoters and translation, attenuation, incorrect start codons, and a failed gate. While not impacting the expected Boolean logic, they reduce the prediction accuracy and could lead to failures when the parts are used in other designs. Finally, the cellular power (RNAP and ribosome usage) required to maintain a circuit state is calculated. This work demonstrates the use of a small number of measurements to fully parameterize a regulatory circuit and quantify its impact on host.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Redes Reguladoras de Genes , Ribossomos/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Teóricos , Biossíntese de Proteínas , RNA-Seq , Biologia Sintética , Transcrição Genética
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2209-2212, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018446

RESUMO

This is a proof-of-concept study for the development of a field-deployable and low-cost PCR thermocycler (FLC-PCR) to perform Polymerase Chain Reaction (PCR) for the rapid detection of environmental E. coli. Four efficient (77.1 W) peltier modules are used as the central temperature control unit. One 250 W silicone heating pad is used for the heating lid. The PID (proportional-integral-derivative) control algorithm for the thermocycles is implemented by a low-cost 8-bit, 16 MHz microcontroller (ATMEGA328P-PU). ybbW and uidA genes from specific E. coli colonies were used as amplicons for the PCR reactions that were carried out by a commercial PCR machine (Bio-Rad) and our FLC-PCR thermocycler. The heating and cooling speeds averaged 1.11 ± 0.33°C/s which is on a par with the commercial bench-top PCR thermocycler and the efficiency of the heating lid outperformed the Bio-Rad PCR thermocycler. The overall cost of the system is lower than $200 which is more than ten times lower than commercially available units. The heating block can be customized to accommodate different PCR tubes and even microfluidic chambers. An 8000 W portable power generator will be used as the power supply for field studies.


Assuntos
Escherichia coli , Calefação , Fontes de Energia Elétrica , Escherichia coli/genética , Reação em Cadeia da Polimerase , Temperatura
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2372-2375, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018483

RESUMO

To advance synthetic biology approaches that utilize S. oneidensis as host for biotechnology applications, we have investigated the variation in plasmid copy number of a modular vector set resulting from distinct origins of replication under different conditions. The replicons yielded a ≈9X-fold range for plasmid copy number variation in S. oneidensis (while the same origins yielded a ≈3X-fold range in Escherichia coli). This provides a sizeable range to control gene expression levels in S. oneidensis for synthetic biology applications. In addition, plasmid harboring the pBBR1 origin resulted in stable copy numbers in S. oneidensis under different conditions (mid-logarithmic, stationary, multi-plasmid). This may enable the realization of synthetic circuits in S. oneidensis where predictable, quantitative behavior is desired (in either single- or double-plasmid contexts).


Assuntos
Variações do Número de Cópias de DNA , Shewanella , Escherichia coli/genética , Plasmídeos/genética , Shewanella/genética
7.
Nat Commun ; 11(1): 4648, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938927

RESUMO

Emergence of tigecycline-resistance tet(X) gene orthologues rendered tigecycline ineffective as last-resort antibiotic. To understand the potential origin and transmission mechanisms of these genes, we survey the prevalence of tet(X) and its orthologues in 2997 clinical E. coli and K. pneumoniae isolates collected nationwide in China with results showing very low prevalence on these two types of strains, 0.32% and 0%, respectively. Further surveillance of tet(X) orthologues in 3692 different clinical Gram-negative bacterial strains collected during 1994-2019 in hospitals in Zhejiang province, China reveals 106 (2.7%) tet(X)-bearing strains with Flavobacteriaceae being the dominant (97/376, 25.8%) bacteria. In addition, tet(X)s are found to be predominantly located on the chromosomes of Flavobacteriaceae and share similar GC-content as Flavobacteriaceae. It also further evolves into different orthologues and transmits among different species. Data from this work suggest that Flavobacteriaceae could be the potential ancestral source of the tigecycline resistance gene tet(X).


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Infecções por Flavobacteriaceae/epidemiologia , Flavobacteriaceae/genética , Tigeciclina/farmacologia , China/epidemiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Evolução Molecular , Flavobacteriaceae/efeitos dos fármacos , Flavobacteriaceae/isolamento & purificação , Infecções por Flavobacteriaceae/microbiologia , Humanos , Filogenia
8.
Chemosphere ; 254: 126911, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957300

RESUMO

Trivalent organoarsenicals such as methylarsenite (MAs(III)) are considerably more toxic than inorganic arsenate (As(V)) or arsenite (As(III)). In microbial communities MAs(III) exhibits significant antimicrobial activity. Although MAs(III) and other organoarsenicals contribute to the global arsenic biogeocycle, how they exert antibiotic-like properties is largely unknown. To identify possible targets of MAs(III), a genomic library of the gram-negative bacterium, Shewanella putrefaciens 200, was expressed in Escherichia coli with selection for MAs(III) resistance. One clone contained the S. putrefaciens murA gene (SpmurA), which catalyzes the first committed step in peptidoglycan biosynthesis. Overexpression of SpmurA conferred MAs(III) resistance to E. coli. Purified SpMurA was inhibited by MAs(III), phenylarsenite (PhAs(III)) or the phosphonate antibiotic fosfomycin but not by inorganic As(III). Fosfomycin inhibits MurA by binding to a conserved residue that corresponds to Cys117 in SpMurA. A C117D mutant was resistant to fosfomycin but remained sensitive to MAs(III), indicating that the two compounds have different mechanisms of action. New inhibitors of peptidoglycan biosynthesis are highly sought after as antimicrobial drugs, and organoarsenicals represent a new area for the development of novel compounds for combating the threat of antibiotic resistance.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Peptidoglicano/biossíntese , Shewanella putrefaciens/efeitos dos fármacos , Alquil e Aril Transferases/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Peptidoglicano/metabolismo , Shewanella putrefaciens/genética
10.
APMIS ; 128(11): 593-602, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32870528

RESUMO

Induction of broad Th1 cellular immune responses and cytokines is crucial characteristics for vaccines against intracellular infections such as hepatitis C virus (HCV). Plants (especially oilseed tissues) and plant-immunomodulators (like oil bodies) offer cost-effective and scalable possibilities for the production of immunologically relevant and safe vaccine antigens and adjuvants, respectively. Herein, we provide data of the murine immunization by transgenic canola oilseed-derived HCV core protein (HCVcp) soluble extract (TSE) and Escherichia coli- derived rHCVcp in combination with Canola oil bodies (oil) compared to that of the Freund's (FA) adjuvant. Mice immunized by TSE+ oil developed both strong humeral (IgG) and Th1-biased cellular responses, manifested by high levels of IFN-γ and lower IgG1/IgG2a ratio and IL-4 secretion. Results of the intracellular cytokine staining indicated that TSE+ oil immunization in mice triggered both CD4+ and CD8+ T cells to release IFN-γ, while CD4+ cells were mostly triggered when FA was used. Analyses by qRT-PCR indicated that a combination of rHCVcp/TSE with oil body induced high levels of IL-10 cytokines compared to that of the FA adjuvant. These characteristics are important properties for the design of an HCV vaccine candidate and indicate the potential of Canola-derived antigen and oil bodies in addressing these concerns.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/prevenção & controle , Proteínas Recombinantes/administração & dosagem , Células Th1/efeitos dos fármacos , Proteínas do Core Viral/administração & dosagem , Vacinas contra Hepatite Viral/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C Crônica/imunologia , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Imunidade Celular/efeitos dos fármacos , Imunoglobulina G/biossíntese , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óleo de Brassica napus/administração & dosagem , Óleo de Brassica napus/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Células Th1/imunologia , Células Th1/virologia , Proteínas do Core Viral/biossíntese , Proteínas do Core Viral/imunologia , Vacinas contra Hepatite Viral/biossíntese
11.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1536-1545, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32924352

RESUMO

Moschus chrysogaster (sifanicus) viral hemorrhagic disease (McVHD) is an acute and highly lethal infectious disease caused by Moschus chrysogaster hemorrhagic disease virus (McHDV) whose genome sequence is highly homologous with rabbit hemorrhagic disease virus. To screen the protective antigen of McHDV and set the basis for study of McVHD vaccine, the antigen epitope of major structural protein VP60 of McHDV was analyzed, and the specific primers were designed to obtain three amplified DNA sequences encoding the main antigen epitope of VP60 from McHDV by using RT-PCR. Then the three DNA fragments were sequenced and cloned to prokaryotic expression vector with pET-28a(+) by using overlap extension PCR, and finally the prokaryotic expression plasmid pET-truncated-VP60 was constructed. Subsequently, the pET-truncated-VP60 was transformed into Escherichia coli BL21(DE3), and the recombinant proteins were expressed by IPTG induction. Finally, the expressed protein was purified and applied to immunize that without immunizing with RHD vaccine, then the antiserum titers were evaluated by the hemagglutination inhibition test, and the immune-protective efficacy of the recombinant proteins was observed and analyzed through animal challenge test. The results showed that the multi-epitope DNA fragments of VP60 of McHDV was successfully expressed in the form of inclusion bodies in E. coli, and the relative molecular weight of recombinant proteins is about 45 kDa. After immunized with the recombinant proteins, 100% of New Zealand white rabbits were resistant to attack of McHDV, which indicates efficient immune-protective efficacy of chosen epitope recombinant protein. The study laid a foundation for the development of the new subunit vaccines of McVHD.


Assuntos
Infecções por Caliciviridae , Expressão Gênica , Vírus da Doença Hemorrágica de Coelhos , Proteínas Estruturais Virais , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Epitopos/genética , Escherichia coli/genética , Coelhos , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
12.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1659-1671, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32924364

RESUMO

To construct TeI3c/4c-based and temperature-inducible gene inactivation system (Thermotargetron) and to apply it to gene inactivation of mesophilic bacteria. The subunit of flagellum (fliC) and C4 dicarboxylate orotate:H⁺ symporter (dctA) genes were chosen as targets in the genome of Escherichia coli HMS174 (DE3) strain. According to recognition roles of TeI3c/4c intron, the fliC489a, fliC828s, fliC1038s and dctA2a sites were chosen as target sites. Gene-targeting plasmids were constructed based on pHK-TT1A by using overlap PCR method and transformed into HMS174 cells. An aliquot mid-log phase cultures of the transformants were shocked at 48 °C and plated on LB plate (containing chloramphenicol). Afterwards, gene mutants were screened by using colony PCR and DNA sequencing. After the mutants were obtained, the phenotypes of ΔfliC and ΔdctA gene mutants were characterized by using agar puncture and carbon metabolism experiments. Colony PCR and sequencing results show that TeI3c/4c intron was inserted in the designed sites of fliC and dctA genes. The gene-targeting efficiency of Thermotargetron system was 100%. Phenotype verification experiments of the mutants demonstrated that the cell motility of all ΔfliC mutants was damaged and the malate assimilation ability of ΔdctA mutant was deprived comparing to wild-type HMS174 strain. In our study, a temperature-inducible and high-efficiency gene inactivation system was established for mesophilic bacteria. This system could achieve high efficiency and precise gene inactivation by modulation of the incubation duration of the transformants at 48 °C.


Assuntos
Escherichia coli , Inativação Gênica , Marcação de Genes , Técnicas Genéticas , Temperatura , Escherichia coli/genética , Flagelos , Marcação de Genes/métodos , Mutação , Plasmídeos
13.
PLoS One ; 15(9): e0236442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925914

RESUMO

The goal of this study was to determine the frequency of resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli and other Enterobacterales from turkeys in Canada and characterize the associated resistance determinants. Pooled fecal samples were collected in 77 turkey farms across British Columbia, Québec, and Ontario. Isolates were obtained with and without selective enrichment cultures and compared to isolates from diagnostic submissions of suspected colibacillosis cases in Ontario. Isolates were identified using MALDI-TOF and susceptibility to ESCs was assessed by disk diffusion. The presence of blaCMY, blaCTX-M, blaTEM, and blaSHV was tested by PCR. Transformation experiments were used to characterize blaCMY plasmids. Genome sequencing with short and long reads was performed on a representative sample of blaCTX-M-positive isolates to assess isolates relatedness and characterize blaCTX-M plasmids. For the positive enrichment cultures (67% of total samples), 93% (587/610) were identified as E. coli, with only a few other Enterobacterales species identified. The frequency of ESC resistance was low in E. coli isolates from diagnostic submission (4%) and fecal samples without selective enrichment (5%). Of the ESC-resistant Enterobacterales isolates from selective enrichments, 71%, 18%, 14%, and 8% were positive for blaCMY, blaTEM, blaCTX-M, and blaSHV, respectively. IncI1 followed by IncK were the main incompatibility groups identified for blaCMY plasmids. The blaCTX-M-1 gene was found repeatedly on IncI1 plasmids of the pMLST type 3, while blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65 were associated with a variety of IncF plasmids. Clonal spread of strains carrying blaCTX-M genes between turkey farms was observed, as well as the presence of an epidemic blaCTX-M-1 plasmid in unrelated E. coli strains. In conclusion, Enterobacterales resistant to ESCs were still widespread at low concentration in turkey feces two years after the cessation of ceftiofur use. Although blaCMY-2 is the main ESC resistance determinant in E. coli from Canadian turkeys, blaCTX-M genes also occur which are often carried by multidrug resistance plasmids. Both clonal spread and horizontal gene transfer are involved in parallel in the spread of blaCTX-M genes in Enterobacterales from Canadian turkeys.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Infecções por Enterobacteriaceae/veterinária , Enterobacteriaceae/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Perus/microbiologia , Animais , Antibacterianos/uso terapêutico , Cefalosporinas/uso terapêutico , Farmacorresistência Bacteriana , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Doenças das Aves Domésticas/microbiologia
14.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(4): 355-360, 2020 Aug 24.
Artigo em Chinês | MEDLINE | ID: mdl-32935508

RESUMO

OBJECTIVE: To investigate the biological properties of Schistosoma japonicum SjGrpE protein, and to express and purify the recombinant SjGrpE protein and test its immunogenicity. METHODS: The amino acid composition, molecular weight, hydrophilicity and hydrophobicity, transmembrane region, signal peptide, localization, phosphorylation site, ubiquitination site, glycosylation site, secondary and tertiary structures and B cell epitopes of the SjGrpE protein were predicted using bioinformatics analyses. The SjGrpE gene was amplified using PCR assay using S. japonicum cDNA as a template, double enzyme-digested and linked to the pET28a vector to yield the recombinant plasmid pET28a-SjGrpE. The recombinant plasmid pET28a-SjGrpE was transformed into Escherichia coli BL21, and then IPTG was employed to induce the expression of the target protein, which was purified by nickel ion affinity chromatography. After mice were immunized with the recombinant SjGrpE protein, mouse sera were collected, and the polyclonal antibody against the SjGrpE protein was characterized. RESULTS: SjGrpE protein, which was identified as a hydrophilic protein, was predicted to have a molecular weight of approximately 24.3 kDa without transmembrane regions or signal peptides, and locate in the mitochondrion. SjGrpE protein contained 18 phosphorylation sites and 2 ubiquitination sites, but had no glycosylation sites. In addition, SjGrpE protein contained 5 B-cell epitopes. The full length of SjGrpE gene was approximately 660 bp. The recombinant pET28a-SjGrpE plasmid was successfully generated, and the recombinant SjGrpE protein was obtained following the affinity chromatography, which stimulated mice to secrete high-titer antibodies. CONCLUSIONS: The recombinant SjGrpE protein has been successfully prepared and this recombinant protein has a high immunogenicity, which provides a basis for evaluating its value as a vaccine candidate for S. japonicum infections.


Assuntos
Proteínas de Helminto , Proteínas Recombinantes , Schistosoma japonicum , Animais , Anticorpos Anti-Helmínticos/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Proteínas de Helminto/isolamento & purificação , Camundongos , Plasmídeos/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Schistosoma japonicum/genética , Schistosoma japonicum/metabolismo
15.
Mol Cell ; 79(6): 1024-1036.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32871103

RESUMO

Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/ultraestrutura , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/ultraestrutura
16.
Ecotoxicol Environ Saf ; 205: 111300, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961492

RESUMO

Bacterial resistance caused by the abuse of antibiotics has attracted worldwide attention. However, there are few studies exploring bacterial resistance under the environmental exposure condition of antibiotics that is featured by low-dose and mixture. In this study, sulfonamides (SAs), sulfonamide potentiators (SAPs) and tetracyclines (TCs) were used to determine the effects of antibiotics on plasmid RP4 conjugative transfer of Escherichia coli (E. coli) under single or combined exposure, and the relationship between the effects of antibiotics on conjugative transfer and growth was investigated. The results show that the effects of single or binary antibiotics on plasmid RP4 conjugative transfer all exhibit a hormetic phenomenon. The linear regression reveals that the concentrations of the three antibiotics promoting conjugative transfer are correlated with the concentrations promoting growth and the physicochemical properties of the compounds. The combined effects of SAs-SAPs and SAs-TCs on plasmid conjugative transfer are mainly synergistic and antagonistic. While SAPs provide more effective concentrations for the promotion of conjugative transfer in SAs-SAPs mixtures, SAs play a more important role in promoting conjugative transfer in SAs-TCs mixtures. Mechanism explanation shows that SAs, SAPs and TCs inhibit bacterial growth by acting on their target proteins DHPS, DHFR and 30S ribosomal subunit, respectively. This study indicates that toxic stress stimulates the occurrence of conjugative transfer and promotes the development of bacterial resistance, which will provide a reference for resistance risk assessment of antibiotic exposure.


Assuntos
Antibacterianos/toxicidade , Conjugação Genética/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Escherichia coli/efeitos dos fármacos , Hormese , Plasmídeos , Antagonismo de Drogas , Sinergismo Farmacológico , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética , Sulfonamidas/toxicidade , Tetraciclinas/toxicidade
17.
Proc Natl Acad Sci U S A ; 117(37): 23165-23173, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868448

RESUMO

To engineer Mo-dependent nitrogenase function in plants, expression of the structural proteins NifD and NifK will be an absolute requirement. Although mitochondria have been established as a suitable eukaryotic environment for biosynthesis of oxygen-sensitive enzymes such as NifH, expression of NifD in this organelle has proven difficult due to cryptic NifD degradation. Here, we describe a solution to this problem. Using molecular and proteomic methods, we found NifD degradation to be a consequence of mitochondrial endoprotease activity at a specific motif within NifD. Focusing on this functionally sensitive region, we designed NifD variants comprising between one and three amino acid substitutions and distinguished several that were resistant to degradation when expressed in both plant and yeast mitochondria. Nitrogenase activity assays of these resistant variants in Escherichia coli identified a subset that retained function, including a single amino acid variant (Y100Q). We found that other naturally occurring NifD proteins containing alternate amino acids at the Y100 position were also less susceptible to degradation. The Y100Q variant also enabled expression of a NifD(Y100Q)-linker-NifK translational polyprotein in plant mitochondria, confirmed by identification of the polyprotein in the soluble fraction of plant extracts. The NifD(Y100Q)-linker-NifK retained function in bacterial nitrogenase assays, demonstrating that this polyprotein permits expression of NifD and NifK in a defined stoichiometry supportive of activity. Our results exemplify how protein design can overcome impediments encountered when expressing synthetic proteins in novel environments. Specifically, these findings outline our progress toward the assembly of the catalytic unit of nitrogenase within mitochondria.


Assuntos
Genes Bacterianos/genética , Mitocôndrias/genética , Mitocôndrias/fisiologia , Proteínas de Plantas/genética , Plantas/genética , Substituição de Aminoácidos/genética , Escherichia coli/genética , Fixação de Nitrogênio/genética , Nitrogenase/genética , Poliproteínas/genética , Proteômica/instrumentação
18.
Proc Natl Acad Sci U S A ; 117(37): 23182-23190, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32873645

RESUMO

Enzyme turnover numbers (k cats) are essential for a quantitative understanding of cells. Because k cats are traditionally measured in low-throughput assays, they can be inconsistent, labor-intensive to obtain, and can miss in vivo effects. We use a data-driven approach to estimate in vivo k cats using metabolic specialist Escherichia coli strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution. By combining absolute proteomics with fluxomics data, we find that in vivo k cats are robust against genetic perturbations, suggesting that metabolic adaptation to gene loss is mostly achieved through other mechanisms, like gene-regulatory changes. Combining machine learning and genome-scale metabolic models, we show that the obtained in vivo k cats predict unseen proteomics data with much higher precision than in vitro k cats. The results demonstrate that in vivo k cats can solve the problem of inconsistent and low-coverage parameterizations of genome-scale cellular models.


Assuntos
Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes/métodos , Genoma/genética , Cinética , Aprendizado de Máquina , Modelos Biológicos , Proteômica/métodos
19.
Nat Commun ; 11(1): 4045, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792484

RESUMO

Monobodies are synthetic non-immunoglobulin customizable protein binders invaluable to basic and applied research, and of considerable potential as future therapeutics and diagnostic tools. The ability to reversibly control their binding activity to their targets on demand would significantly expand their applications in biotechnology, medicine, and research. Here we present, as proof-of-principle, the development of a light-controlled monobody (OptoMB) that works in vitro and in cells and whose affinity for its SH2-domain target exhibits a 330-fold shift in binding affinity upon illumination. We demonstrate that our αSH2-OptoMB can be used to purify SH2-tagged proteins directly from crude E. coli extract, achieving 99.8% purity and over 40% yield in a single purification step. By virtue of their ability to be designed to bind any protein of interest, OptoMBs have the potential to find new powerful applications as light-switchable binders of untagged proteins with the temporal and spatial precision afforded by light.


Assuntos
Luz , Optogenética/métodos , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Ligação Proteica/efeitos da radiação , Proteínas/química , Proteínas/metabolismo
20.
Nat Commun ; 11(1): 4072, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792663

RESUMO

Cpf1-linked base editors broaden the targeting scope of programmable cytidine deaminases by recognizing thymidine-rich protospacer-adjacent motifs (PAM) without inducing DNA double-strand breaks (DSBs). Here we present an unbiased in vitro method for identifying genome-wide off-target sites of Cpf1 base editors via whole genome sequencing. First, we treat human genomic DNA with dLbCpf1-BE ribonucleoprotein (RNP) complexes, which convert C-to-U at on-target and off-target sites and, then, with a mixture of E. coli uracil DNA glycosylase (UDG) and DNA glycosylase-lyase Endonuclease VIII, which removes uracil and produces single-strand breaks (SSBs) in vitro. Whole-genome sequencing of the resulting digested genome (Digenome-seq) reveals that, on average, dLbCpf1-BE induces 12 SSBs in vitro per crRNA in the human genome. Off-target sites with an editing frequency as low as 0.1% are successfully identified by this modified Digenome-seq method, demonstrating its high sensitivity. dLbCpf1-BEs and LbCpf1 nucleases often recognize different off-target sites, calling for independent analysis of each tool.


Assuntos
Citidina/metabolismo , Endonucleases/metabolismo , Sequenciamento Completo do Genoma/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citidina/genética , DNA/genética , DNA/metabolismo , Endonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Genoma Humano/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA Guia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA