Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.255
Filtrar
1.
Sci Rep ; 14(1): 15494, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969720

RESUMO

Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease.


Assuntos
Diarreia , Infecções por Escherichia coli , Escherichia coli , Genoma Bacteriano , Fatores de Virulência , Sequenciamento Completo do Genoma , Animais , Bovinos , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Camundongos , Diarreia/microbiologia , Diarreia/veterinária , Virulência/genética , Doenças dos Bovinos/microbiologia , China , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
2.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38936825

RESUMO

AIMS: To determine the effects of swarming motility (SM) and multi-locus sequence types (MLST) on the main effect of virulence genotype of Escherichia coli through an embryos lethality assay between the 12th and 18th days of incubation. METHODS AND RESULTS: We collected 58 E. coli isolates from asymptomatic commercial hens (n = 42) and lesions of colibacillosis cases (n = 16), then classified their virulence genotype as avirulent, moderately virulent, virulent-healthy, and virulent-colibacillosis categories by the presence of five virulence-associated genes (iroN, ompT, hlyF, iutA, and iss). These isolates were further classified as non-motile, motile, or hyper-motile by SM assay. From the 58 isolates, we selected 29 for ELA and determined their MLST. Each isolate was inoculated into 15 embryonated eggs through the allantoic cavity. We found the avirulent isolates reduced the relative embryo weight compared to virulent-colibacillosis and moderately virulent isolates (37.49 vs. 41.51 and 40.34%, P = 0.03). Among the moderately virulent and virulent-colibacillosis categories, embryo lethality was lower when isolates were non-motile. Yolk retention was unaffected by virulence categories, motility, or MLST. CONCLUSION: Interaction between virulence genotype and SM substantially influenced the embryo lethality assay of E. coli isolates.


Assuntos
Galinhas , Infecções por Escherichia coli , Escherichia coli , Genótipo , Tipagem de Sequências Multilocus , Doenças das Aves Domésticas , Animais , Embrião de Galinha , Escherichia coli/genética , Escherichia coli/patogenicidade , Virulência/genética , Galinhas/microbiologia , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia , Fatores de Virulência/genética , Feminino
3.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928363

RESUMO

The pyelonephritis-associated fimbria (P fimbria) is one of the most recognized adhesion determinants of extraintestinal pathogenic Escherichia coli strains (ExPECs). Twelve variants have been described for the gene encoding the P fimbria major structural subunit PapA and three variants for the gene encoding the adhesin subunit PapG. However, their distribution among the ExPEC diversity has not been comprehensively addressed. A complete landscape of that distribution might be valuable for delineating basic studies about the pathogenicity mechanisms of ExPECs and following up on the evolution of ExPEC lineages, particularly those most epidemiologically relevant. Therefore, we performed a massive descriptive study to detect the papA and papG variants along different E. coli genotypes represented by genomic sequences contained in the NCBI Assembly Refseq database. The most common papA variants were F11, F10, F48, F16, F12, and F7-2, which were found in significant association with the most relevant ExPEC genotypes, the phylogroups B2 and D, and the sequence types ST95, ST131, ST127, ST69, ST12, and ST73. On the other hand, the papGII variant was by far the most common followed by papGIII, and both were also found to have a significant association with common ExPEC genotypes. We noticed the presence of genomes, mainly belonging to the sequence type ST12, harboring two or three papA variants and two papG variants. Furthermore, the most common papA and papG variants were also detected in records representing strains isolated from humans and animals such as poultry, bovine, and dogs, supporting previous hypotheses of potential cross-transmission. Finally, we characterized a set of 17 genomes from Chilean uropathogenic E. coli strains and found that ST12 and ST73 were the predominant sequence types. Variants F7-1, F7-2, F8, F9, F11, F13, F14, F16, and F48 were detected for papA, and papGII and papGIII variants were detected for papG. Significant associations with the sequence types observed in the analysis of genomes contained in the NCBI Assembly Refseq database were also found in this collection in 16 of 19 cases for papA variants and 7 of 9 cases for the papG variants. This comprehensive characterization might support future basic studies about P fimbria-mediated ExPEC adherence and future typing or epidemiological studies to monitor the evolution of ExPECs producing P fimbria.


Assuntos
Escherichia coli Extraintestinal Patogênica , Genótipo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Escherichia coli Extraintestinal Patogênica/classificação , Humanos , Infecções por Escherichia coli/microbiologia , Adesinas de Escherichia coli/genética , Filogenia , Variação Genética , Proteínas de Fímbrias/genética , Proteínas de Escherichia coli/genética , Animais , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/classificação
4.
Int J Food Microbiol ; 421: 110790, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38878707

RESUMO

The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3″)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Sus scrofa , Animais , Itália , Sus scrofa/microbiologia , Suínos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Antibacterianos/farmacologia , Escherichia/genética , Escherichia/isolamento & purificação , Escherichia/efeitos dos fármacos , Escherichia/patogenicidade , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Testes de Sensibilidade Microbiana , Virulência/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Sequenciamento Completo do Genoma
5.
Microbiol Spectr ; 12(7): e0341523, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864635

RESUMO

Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Filogenia , Aves Domésticas , Infecções Urinárias , Sequenciamento Completo do Genoma , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Humanos , Criança , Aves Domésticas/microbiologia , Adolescente , Pré-Escolar , Lactente , Masculino , Feminino , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/patogenicidade , Tipagem de Sequências Multilocus , Genoma Bacteriano
6.
Infect Immun ; 92(6): e0013224, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700334

RESUMO

Adherent and invasive Escherichia coli (AIEC) is a pathobiont that is involved in the onset and exacerbation of Crohn's disease. Although the inducible expression of virulence traits is a critical step for AIEC colonization in the host, the mechanism underlying AIEC colonization remains largely unclear. We here showed that the two-component signal transduction system CpxRA contributes to AIEC gut competitive colonization by activating type 1 fimbriae expression. CpxRA from AIEC strain LF82 functioned as a transcriptional regulator, as evidenced by our finding that an isogenic cpxRA mutant exhibits reduced expression of cpxP, a known regulon gene. Transcription levels of cpxP in LF82 increased in response to envelope stress, such as exposure to antimicrobials compromising the bacterial membrane, whereas the cpxRA mutant did not exhibit this response. Furthermore, we found that the cpxRA mutant exhibits less invasiveness into host cells than LF82, primarily due to reduced expression of the type 1 fimbriae. Finally, we found that the cpxRA mutant is impaired in gut competitive colonization in a mouse model. The colonization defects were reversed by the introduction of a plasmid encoding the cpxRA gene or expressing the type 1 fimbriae. Our findings indicate that modulating CpxRA activity could be a promising approach to regulating AIEC-involved Crohn's disease.


Assuntos
Aderência Bacteriana , Modelos Animais de Doenças , Células Epiteliais , Infecções por Escherichia coli , Escherichia coli , Fímbrias Bacterianas , Regulação Bacteriana da Expressão Gênica , Animais , Camundongos , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Aderência Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Intestinos/microbiologia , Feminino
7.
mBio ; 15(6): e0102724, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38742889

RESUMO

Escherichia coli has been attributed to playing a major role in a cascade of events that affect the prevalence and severity of uterine disease in cattle. The objectives of this project were to (i) define the association between the prevalence of specific antimicrobial resistance and virulence factor genes in E. coli with the clinical status related to uterine infection, (ii) identify the genetic relationship between E. coli isolates from cows with diarrhea, with mastitis, and with and without metritis, and (iii) determine the association between the phenotypic and genotypic antimicrobial resistance identified on the E. coli isolated from postpartum cattle. Bacterial isolates (n = 148) were obtained from a larger cross-sectional study. Cows were categorized into one of three clinical groups before enrollment: metritis, cows with purulent discharge, and control cows. For genomic comparison, public genomes (n = 130) from cows with diarrhea, mastitis, and metritis were included in a genome-wide association study, to evaluate differences between the drug classes or the virulence factor category among clinical groups. A distinct E. coli genotype associated with metritis could not be identified. Instead, a high genetic diversity among the isolates from uterine sources was present. A virulence factor previously associated with metritis (fimH) using PCR was not associated with metritis. There was moderate accuracy for whole-genome sequencing to predict phenotypic resistance, which varied depending on the antimicrobial tested. Findings from this study contradict the traditional pathotype classification and the unique intrauterine E. coli genotype associated with metritis in dairy cows.IMPORTANCEMetritis is a common infectious disease in dairy cattle and the second most common reason for treating a cow with antimicrobials. The pathophysiology of the disease is complex and is not completely understood. Specific endometrial pathogenic Escherichia coli have been reported to be adapted to the endometrium and sometimes lead to uterine disease. Unfortunately, the specific genomic details of the endometrial-adapted isolates have not been investigated using enough genomes to represent the genomic diversity of this organism to identify specific virulence genes that are consistently associated with disease development and severity. Results from this study provide key microbial ecological advances by elucidating and challenging accepted concepts for the role of Intrauterine E. coli in metritis in dairy cattle, especially contradicting the existence of a unique intrauterine E. coli genotype associated with metritis in dairy cows, which was not found in our study.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Escherichia coli , Genótipo , Período Pós-Parto , Fatores de Virulência , Bovinos , Animais , Feminino , Fatores de Virulência/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Doenças dos Bovinos/microbiologia , Estudos Transversais , Sequenciamento Completo do Genoma , Doenças Uterinas/microbiologia , Doenças Uterinas/veterinária , Doenças Uterinas/genética , Genoma Bacteriano , Útero/microbiologia , Antibacterianos/farmacologia , Estudo de Associação Genômica Ampla , Farmacorresistência Bacteriana/genética
8.
mSystems ; 9(6): e0134823, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38742910

RESUMO

Escherichia coli (E. coli) is reported to be an important pathogen associated with calf diarrhea. Antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) pose a considerable threat to both animal and human health. However, little is known about the characterization of ARGs and VFGs presented in the gut microbiota of diarrheic calves caused by E. coli. In this study, we used multi-omics strategy to analyze the ARG and VFG profiles of Simmental calves with diarrhea caused by E. coli K99. We found that gut bacterial composition and their microbiome metabolic functions varied greatly in diarrheic calves compared to healthy calves. In total, 175 ARGs were identified, and diarrheal calves showed a significantly higher diversity and abundance of ARGs than healthy calves. Simmental calves with diarrhea showed higher association of VFGs with pili function, curli assembly, and ferrienterobactin transport of E. coli. Co-occurrence patterns based on Pearson correlation analysis revealed that E. coli had a highly significant (P < 0.0001) correlation coefficient (>0.8) with 16 ARGs and 7 VFGs. Metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Phylotype analysis of E. coli genomes showed that the predominant phylogroup B1 in diarrheic Simmental calves was associated with 10 ARGs and 3 VFGs. These findings provide an overview of the diversity and abundance of the gut microbiota in diarrheic calves caused by E. coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the calves affected with diarrhea.IMPORTANCESimmental is a well-recognized beef cattle breed worldwide. They also suffer significant economic losses due to diarrhea. In this study, fecal metagenomic analysis was applied to characterize the antibiotic resistance gene (ARG) and virulence factor gene (VFG) profiles of diarrheic Simmental calves. We identified key ARGs and VFGs correlated with Escherichia coli isolated from Simmental calves. Additionally, metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Our findings provide an insight into the diversity and abundance of the gut microbiota in diarrheic calves caused by Escherichia coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the diarrheal calves from cattle hosts.


Assuntos
Doenças dos Bovinos , Diarreia , Farmacorresistência Bacteriana , Infecções por Escherichia coli , Escherichia coli , Microbioma Gastrointestinal , Fatores de Virulência , Bovinos , Animais , Fatores de Virulência/genética , Diarreia/veterinária , Diarreia/microbiologia , Diarreia/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Metabolômica , Multiômica
9.
Poult Sci ; 103(7): 103814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718538

RESUMO

Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, ß-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.


Assuntos
Antibacterianos , Galinhas , Infecções por Escherichia coli , Escherichia coli , Peritonite , Doenças das Aves Domésticas , Animais , Peritonite/microbiologia , Peritonite/veterinária , Peritonite/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia , Feminino , Antibacterianos/farmacologia , Virulência , Camundongos , Farmacorresistência Bacteriana , Gema de Ovo
10.
Braz J Microbiol ; 55(2): 2035-2041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713279

RESUMO

Salmonella spp. and Escherichia coli are implicated in human and animal infections and require antimicrobial treatment in many situations. Faecal samples of healthy white-lipped peccaries (Pecari tajacu) (n = 30) and collared peccaries (Tayassu pecari ) (n = 60) obtained in three farms located in the Midwest Brazil. The antimicrobial profiles of commensal E. coli from P. tajacu and T. pecari from commercial herds in Brazil were isolated and analyzed and virulence genes were detected. Among 90 healthy animals, no Salmonella spp. were isolated. However, 30 samples (27%) tested positive for E. coli, with 18 isolates from P. tajacu and 12 from T. pecari, representing frequencies of 58.0% and 38.7%, respectively. Additionally, other Enterobacteriaceae family bacteria were detected but not included in this analysis. However, individual samples from 30 animals tested positive for E. coli, of which 16 were isolated from P. tajacu presenting multidrug resistance and six were isolated from T. pecari presenting a similar pattern. The E. coli virulence genes detected were papC (pilus-associated pyelonephritis) in five isolates, tsh (temperature-sensitive hemagglutinin) in one isolate, and eae (enteric attachment and effacement) in one isolate. The serum resistance gene, iss (increased serum survival), was detected in four isolates. An association between these genes and the presence of hemolysin was also observed in one isolate. Thus, T. pecari and P. tajacu are potential reservoirs of pathogenic and multidrug-resistant and E. coli. Faecal E. coli of healthy P. tajacu and T. pecari could act as a possible reservoir of antimicrobial resistance genes in environment.


Assuntos
Antibacterianos , Artiodáctilos , Escherichia coli , Fezes , Salmonella , Fatores de Virulência , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/classificação , Salmonella/genética , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Salmonella/patogenicidade , Salmonella/classificação , Brasil , Fatores de Virulência/genética , Antibacterianos/farmacologia , Fezes/microbiologia , Artiodáctilos/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Salmonelose Animal/microbiologia , Virulência/genética , Prevalência , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
11.
Reprod Domest Anim ; 59(5): e14615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798181

RESUMO

Present study was designed to evaluate the role of virulence factor genes (papG, cnf1 and hylA) in the pathogenesis of canine pyometra. Antimicrobial susceptibility test and detection of virulence genes were performed Escherichia coli (E. coli) detected in uterine swab samples. Animals were divided into two groups based on the presence (VF+, n:14) or absence (VF-, n:7) of the virulence factor genes papG, cnf1 and hylA. Blood and tissue glutathione peroxidase activity, uterine histopathologic analysis and AQP3, ESR1, PGR, OXTR gene expressions were determined in both groups. Statistical analyses were performed using Stata version 15.1. All E. coli isolates were susceptible to amikacin, whereas resistant to ampicillin, amoxicillin/clavulanic acid and lincomycin. None of the isolates were susceptible to cefotaxime. E. coli isolates had at least one virulence gene. The most prevalent gene was fimH (100%), followed by fyuA (95.8%), usp (83.3%), sfa (75%), cnf1 and hlyA (70.8%) genes. Blood GPx activity was greater in VF+ animals. On the other hand, uterine tissue GPx activity was lower in VF+ group compared to the control group. Expression levels of AQP3 were upregulated more than fivefold in VF-dogs compared to the control group. In addition, AQP3 expression levels were found approximately threefold higher in VF (-) than VF (+) group (p < .05). Varying degree of inflammation noted for all animals with pyometra, but the presence of bacteria noted only in VF+ animals. In conclusion, the presence of virulence factor genes does not play a role in the histopathological degree of inflammation, the presence of bacteria was found to vary. Serum GPx activity increased in VF+ animals. While the hormone receptor expressions were similar, AQP expression was upregulated in the absence of virulence factor genes.


Assuntos
Aquaporina 3 , Doenças do Cão , Escherichia coli , Glutationa Peroxidase , Piometra , Útero , Fatores de Virulência , Animais , Feminino , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Aquaporina 3/genética , Aquaporina 3/metabolismo , Cães , Piometra/veterinária , Piometra/microbiologia , Piometra/patologia , Doenças do Cão/microbiologia , Útero/patologia , Útero/microbiologia , Útero/metabolismo , Escherichia coli/genética , Escherichia coli/patogenicidade , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , Regulação para Baixo , Testes de Sensibilidade Microbiana/veterinária
12.
Sci Rep ; 14(1): 12461, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816376

RESUMO

Contaminated lake water and fish can be sources of bacterial pathogens of public health concern, including pathogenic E. coli. Within Ethiopia, specifically, Central Oromia, raw fish consumption is a common practice. Although there are few reports on occurrence of E. coli O157 in fish destined for human consumption and children under five years, information on the transmission pathways of E. coli O157 and other sorbitol non-fermenting (SN-F) E. coli from water-to-fish-to-human, and their virulence factors and antimicrobial resistant determinants along the fish supply chain is lacking. The study aimed to investigate the occurrence, molecular characteristics, and antimicrobial susceptibility of E. coli O157 and other SN-F E. coli strains in fish, lake water and humans in central Oromia, Ethiopia. A total of 750 samples (450 fish samples, 150 water samples, 150 human stool samples) were collected from five lakes and three health facilities. The samples were processed following the standard protocol recommended by European Food Safety Authority and Kirby-Bauer disc diffusion method for detection of the bacteria, and antimicrobial susceptibility tests, respectively. Molecular characterization of presumptive isolates was performed using Whole-Genome Sequencing (WGS) for serotyping, determination of virulence factors, antimicrobial resistance traits, and genetic linkage of the isolates. Overall, 3.9% (29/750) of the samples had SN-F E. coli; of which 6.7% (n = 10), 1.8% (n = 8) and 7.3% (n = 11) were retrieved from water, fish, and diarrheic human patients, respectively. The WGS confirmed that all the isolates were SN-F non-O157: H7 E. coli strains. We reported two new E. coli strains with unknown O-antigen from fish and human samples. All the strains have multiple virulence factors and one or more genes encoding for them. Genetic relatedness was observed among strains from the same sources (water, fish, and humans). Most isolates were resistant to ampicillin (100%), tetracycline (100%), cefotaxime (100%), ceftazidime (100%), meropenem (100%), nalidixic acid (93.1%) and sulfamethoxazole/trimethoprim (79.3%). Majority of the strains were resistant to chloramphenicol (58.6%) and ciprofloxacin (48.3%), while small fraction showed resistance to azithromycin (3.45%). Isolates had an overall MDR profile of 87.5%. Majority, (62.1%; n = 18) of the strains had acquired MDR traits. Genes encoding for mutational resistance and Extended-spectrum beta-lactamases (ESBL) were also detected. In conclusion, our study revealed the occurrence of virulent and MDR SN-F E. coli strains in water, fish, and humans. Although no genetic relatedness was observed among strains from various sources, the genomic clustering among strains from the same sources strongly suggests the potential risk of transmission along the supply chain at the human-fish-environment interface if strict hygienic fish production is not in place. Further robust genetic study of the new strains with unknown O-antigens, and the epidemiology of SN-F E. coli is required to elucidate the molecular profile and public health implications of the pathogens.


Assuntos
Escherichia coli , Peixes , Lagos , Sorbitol , Humanos , Etiópia/epidemiologia , Animais , Lagos/microbiologia , Sorbitol/farmacologia , Peixes/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Antibacterianos/farmacologia , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Microbiologia da Água , Farmacorresistência Bacteriana/genética , Microbiologia de Alimentos , Fezes/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/patogenicidade
13.
Narra J ; 4(1): e754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798851

RESUMO

It is widely acknowledged that smoking exacerbates the severity of infectious diseases. A presumed mechanism involves the damage inflicted by tobacco smoke on the organs of host organisms. In this study, an alternative hypothesis was explored: smoking enhances the virulence of bacteria. This possibility was investigated using Escherichia coli as the model bacteria and Drosophila as the host organism. Our inquiry focused on the potential gene expression changes in E. coli subsequent to exposure to tobacco smoke extracts. Analysis of the transcription promoter activity of genes encoding proteins within the E. coli two-component system, a regulatory machinery governing gene expression, revealed the suppression of thirteen out of 23 promoters in response to tobacco smoke extracts. Subsequently, Drosophila was infected with E. coli exposed to tobacco smoke extracts or left untreated. Interestingly, there were no significant differences observed in the survival periods of Drosophila following infection with E. coli, whether treated or untreated with tobacco smoke extracts. Contrary to the initial hypothesis, the findings suggest that while tobacco smoke extracts alter gene expression in E. coli, these changes do not appear to impact bacterial virulence. Although this study has illuminated the influence of tobacco smoke extracts on the gene expression of E. coli, further analyses are necessary to elucidate the implications of these changes. Nevertheless, the results imply that smoking affects not only host organisms but may also exert influence on invading bacteria.


Assuntos
Escherichia coli , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/efeitos dos fármacos , Animais , Virulência/genética , Nicotiana/efeitos adversos , Nicotiana/microbiologia , Drosophila/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fumaça/efeitos adversos , Fatores de Virulência/genética
14.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692849

RESUMO

AIMS: Pyometra and cystitis caused by Escherichia coli are common diseases identified in canine or feline females. The origin of pyometra infection remains uncertain, and effective prevention strategies for this disease are still unknown. This study aimed to provide a phenotypic characterization, including antimicrobial resistance and virulence profiles, of endometrial pathogenic (EnPEC) and uropathogenic (UPEC) E. coli strains isolated simultaneously from the same animal. METHODS AND RESULTS: Sixteen E. coli strains, from eight different animals, were analyzed in this study. The antimicrobial susceptibility profile of EnPEC and UPEC strains was determined using the disc diffusion method, which showed a similar susceptibility profile among strains (EnPEC and UPEC) from the same animal. The virulence profile of the strains was assessed through biofilm formation, as well as serum resistance abilities. EnPEC and UPEC strains from the same animal exhibited slight variations in their virulence and antimicrobial resistance capabilities. Overall, most of the strain pairs showed a high similarity in their ability to establish biofilms and survive in serum complement activity. CONCLUSIONS: Overall, strains of E. coli isolated from both pyometra and cystitis in the same animal, despite presenting distinct clinical diseases, exhibit a wide phenotypic similarity, suggesting a common origin for the strains.


Assuntos
Biofilmes , Doenças do Gato , Cistite , Infecções por Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Fenótipo , Piometra , Animais , Cistite/microbiologia , Cistite/veterinária , Piometra/microbiologia , Piometra/veterinária , Feminino , Gatos , Cães , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Doenças do Gato/microbiologia , Biofilmes/crescimento & desenvolvimento , Virulência , Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Escherichia coli Uropatogênica/patogenicidade , Farmacorresistência Bacteriana
15.
PeerJ ; 12: e17381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726379

RESUMO

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Assuntos
Escherichia coli , Fezes , Panthera , Tigres , Sequenciamento Completo do Genoma , Animais , Tigres/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Panthera/microbiologia , Fezes/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana , China , Virulência/genética , Farmacorresistência Bacteriana/genética , Polimorfismo de Nucleotídeo Único/genética , Tipagem de Sequências Multilocus
16.
Gut Microbes ; 16(1): 2356642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769708

RESUMO

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Assuntos
Aderência Bacteriana , Biofilmes , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Macrófagos , Macrófagos/microbiologia , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Virulência , Colite/microbiologia , Doença de Crohn/microbiologia , Modelos Animais de Doenças , Transdução de Sinais , Ácidos/metabolismo
17.
Sci Rep ; 14(1): 11848, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782931

RESUMO

Despite extensive characterisation of uropathogenic Escherichia coli (UPEC) causing urinary tract infections (UTIs), the genetic background of non-urinary extraintestinal pathogenic E. coli (ExPEC) in companion animals remains inadequately understood. In this study, we characterised virulence traits of 104 E. coli isolated from canine pyometra (n = 61) and prostatic abscesses (PAs) (n = 38), and bloodstream infections (BSIs) in dogs (n = 2), and cats (n = 3). A stronger association with UPEC of pyometra strains in comparison to PA strains was revealed. Notably, 44 isolates exhibited resistance to third-generation cephalosporins and/or fluoroquinolones, 15 were extended-spectrum ß-lactamase-producers. Twelve multidrug-resistant (MDR) strains, isolated from pyometra (n = 4), PAs (n = 5), and BSIs (n = 3), along with 7 previously characterised UPEC strains from dogs and cats, were sequenced. Genomic characteristics revealed that MDR E. coli associated with UTIs, pyometra, and BSIs belonged to international high-risk E. coli clones, including sequence type (ST) 38, ST131, ST617, ST648, and ST1193. However, PA strains belonged to distinct lineages, including ST12, ST44, ST457, ST744, and ST13037. The coreSNPs, cgMLST, and pan-genome illustrated intra-clonal variations within the same ST from different sources. The high-risk ST131 and ST1193 (phylogroup B2) contained high numbers of ExPEC virulence genes on pathogenicity islands, predominating in pyometra and UTI. Hybrid MDR/virulence IncF multi-replicon plasmids, containing aerobactin genes, were commonly found in non-B2 phylogroups from all sources. These findings offer genomic insights into non-urinary ExPEC, highlighting its potential for invasive infections in pets beyond UTIs, particularly with regards to high-risk global clones.


Assuntos
Abscesso , Doenças do Cão , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Piometra , Infecções Urinárias , Cães , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/veterinária , Farmacorresistência Bacteriana Múltipla/genética , Masculino , Doenças do Cão/microbiologia , Gatos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Piometra/microbiologia , Piometra/veterinária , Piometra/genética , Abscesso/microbiologia , Abscesso/veterinária , Feminino , Doenças do Gato/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Doenças Prostáticas/microbiologia , Doenças Prostáticas/veterinária , Doenças Prostáticas/genética , Virulência/genética , Fatores de Virulência/genética
18.
Clin Microbiol Infect ; 30(8): 1035-1041, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38599464

RESUMO

OBJECTIVES: This study aimed to determine the association of Escherichia coli microbiological factors with 30-day mortality in patients with bloodstream infection (BSI) presenting with a dysregulated response to infection (i.e. sepsis or septic shock). METHODS: Whole-genome sequencing was performed on 224 E coli isolates of patients with sepsis/septic shock, from 22 Spanish hospitals. Phylogroup, sequence type, virulence, antibiotic resistance, and pathogenicity islands were assessed. A multivariable model for 30-day mortality including clinical and epidemiological variables was built, to which microbiological variables were hierarchically added. The predictive capacity of the models was estimated by the area under the receiver operating characteristic curve (AUROC) with 95% confidence intervals (CI). RESULTS: Mortality at day 30 was 31% (69 patients). The clinical model for mortality included (adjusted OR; 95% CI) age (1.04; 1.02-1.07), Charlson index ≥3 (1.78; 0.95-3.32), urinary BSI source (0.30; 0.16-0.57), and active empirical treatment (0.36; 0.11-1.14) with an AUROC of 0.73 (95% CI, 0.67-0.80). Addition of microbiological factors selected clone ST95 (3.64; 0.94-14.04), eilA gene (2.62; 1.14-6.02), and astA gene (2.39; 0.87-6.59) as associated with mortality, with an AUROC of 0.76 (0.69-0.82). DISCUSSION: Despite having a modest overall contribution, some microbiological factors were associated with increased odds of death and deserve to be studied as potential therapeutic or preventive targets.


Assuntos
Bacteriemia , Infecções por Escherichia coli , Escherichia coli , Choque Séptico , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/mortalidade , Masculino , Estudos Prospectivos , Idoso , Feminino , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Escherichia coli/classificação , Choque Séptico/microbiologia , Choque Séptico/mortalidade , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Espanha/epidemiologia , Sequenciamento Completo do Genoma , Sepse/microbiologia , Sepse/mortalidade , Curva ROC , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Virulência , Fatores de Virulência/genética
19.
Microb Pathog ; 191: 106660, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657710

RESUMO

Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.


Assuntos
Apoptose , Doenças dos Bovinos , Endometrite , Infecções por Escherichia coli , Escherichia coli , Estresse Oxidativo , Regulação para Cima , Útero , Bovinos , Animais , Feminino , Endometrite/veterinária , Endometrite/microbiologia , Endometrite/patologia , Endometrite/metabolismo , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/imunologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Útero/patologia , Útero/microbiologia , Útero/metabolismo , Inflamação , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Mediadores da Inflamação/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
20.
Microb Pathog ; 190: 106634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556104

RESUMO

This study aimed to determine the prevalence of cyclomodulins (cdt, cnf, pks and cif) in Escherichia coli (E. coli) isolated from clinical and environmental samples, the presence of supplementary virulence genes (SVG), antibiotic resistance, and in vitro cytotoxicity. 413 E. coli were isolated from clinical (stool from obese subjects, normal weight subjects, children with diarrhea, and children without diarrhea; and urine from pregnant and non-pregnant women with urinary tract infections) and environmental (water and different foods) samples. PCR was performed to identify E. coli pathotypes, the four cyclomodulins, and 18 SVG; virulence score, cytotoxic assay, and antibiotic resistance assay were performed. Fifteen percent of E. coli were positive for cyclomodulins and were found in all isolation sources; however, in children with diarrhea, they were more frequent. The most frequent cyclomodulin was cdt. More DEC strains harbor cyclomodulins than non-DEC, and cyclomodulins were most frequent among aEPEC pathotype. SVG ehaC was associated with cyclomodulin-positive strains. Cyclomodulin-positive E. coli had a higher virulence score but no significant cytotoxic activity. They were slightly more resistant to antibiotics. In conclusion, cyclomodulins-positive E. coli was widely distributed in humans, food, and the environment, and they were associated with SVG ehaC, suggesting that these genes may play a role in the pathogenesis of the cyclomodulins. However, more research is needed.


Assuntos
Diarreia , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Fatores de Virulência , Humanos , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Fatores de Virulência/genética , Infecções por Escherichia coli/microbiologia , Feminino , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Diarreia/microbiologia , Virulência/genética , Criança , Antibacterianos/farmacologia , Fezes/microbiologia , Gravidez , Infecções Urinárias/microbiologia , Microbiologia Ambiental , Farmacorresistência Bacteriana/genética , Masculino , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...