RESUMO
In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.
Assuntos
Betaína , Salinidade , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Betaína/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacosRESUMO
Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.
Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Fósforo/metabolismo , Salinidade , Cloreto de Sódio , Bactérias/metabolismo , Microbiota , Análise da Demanda Biológica de OxigênioRESUMO
The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.
Assuntos
Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Nitrificação , Nitrogênio/metabolismo , Solo/química , Desnitrificação , Águas Residuárias/química , Esgotos/microbiologia , Microbiologia do Solo , Zeolitas/química , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismoRESUMO
Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Reatores Biológicos/microbiologia , Metano/metabolismo , Metano/análise , Carbono/metabolismo , Carbono/análise , China , BiocombustíveisRESUMO
A novel Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-motile, and rod-shaped bacterium with ibuprofen-degrading capacity, designated DM4T, was isolated from the sewage of a wastewater treatment plant (WWTP) in Guangzhou city, China. Strain DM4T grew optimally at 0% (w/v) NaCl, pH 5.0-7.0, and 30 °C, forming white colonies on trypticase soy agar. C18:1ω9c, C18:2ω9.12c and C15:1ω10c were the predominant fatty acids. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain DM4T belonged to the genus Patulibacter, was closely related to Patulibacter medicamentivorans DSM 25692T (98.5%) and P. brassicae KCTC 39817T (98.1%). Strain DM4T had a genome size of 5.33Mbp, and the DNA G + C content was 75.0%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridisation (dDDH) values between strain DM4T and P. medicamentivorans were 85.2%, 83.9%, and 29.0% respectively, while those between strain DM4T and P. brassicae were 78.5%, 71.3%, and 22.2%, respectively. Strain DM4T could significantly degrade ibuprofen by almost 80% after 84 h of incubation, and the degradation kinetics was well fitted with the first-order kinetics. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain DM4T (= GDMCC 1.4574T = KCTC 59145T) represents a new species of the genus Patulibacter, for which the name Patulibacter defluvii sp. nov. is proposed.
Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Águas Residuárias , China , Águas Residuárias/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Esgotos/microbiologia , Análise de Sequência de DNA , IbuprofenoRESUMO
Metagenome-assembled genomes (MAGs) are microbial genomes reconstructed from metagenomic data and can be assigned to known taxa or lead to uncovering novel ones. MAGs can provide insights into how microbes interact with the environment. Here, we performed genome-resolved metagenomics on sequencing data from four studies using sequencing batch reactors at microcosm (~25 mL) and mesocosm (~4 L) scales inoculated with sludge from full-scale wastewater treatment plants. These studies investigated how microbial communities in such plants respond to two environmental disturbances: the presence of toxic 3-chloroaniline and changes in organic loading rate. We report 839 non-redundant MAGs with at least 50% completeness and 10% contamination (MIMAG medium-quality criteria). From these, 399 are of putative high-quality, while sixty-seven meet the MIMAG high-quality criteria. MAGs in this catalogue represent the microbial communities in sixty-eight laboratory-scale reactors used for the disturbance experiments, and in the full-scale wastewater treatment plant which provided the source sludge. This dataset can aid meta-studies aimed at understanding the responses of microbial communities to disturbances, particularly as ecosystems confront rapid environmental changes.
Assuntos
Reatores Biológicos , Metagenoma , Esgotos , Esgotos/microbiologia , Metagenômica , MicrobiotaRESUMO
The utilization of Bacillus sp. for the production of bio-CaCO3 in concrete crack repair and strength enhancement has attracted considerable attention. However, microbial-induced calcium carbonate precipitation (MICP) has yet to be explored as a precedent with activated sludge. Here calcium sourced from concrete slurry waste (CSW) and carbon from sludge microbial ß-oxidation under alkaline were used to generate micro/nano CaCO3. The results indicate that the main crystalline form of the generated precipitated particles is calcite, with a particle size ranging from 0.7 to 10 µm. Minimal heavy metals were found in the supernatant following settling. And at the optimum pH of 8.5-9, carbon capture reached 743 mg L-1, and CaCO3 production reached 1,191 mg L-1, and dominant phylum were Proteobacteria and Bacteroidota, with Thauera being a prevalent genus adept in ß-oxidation. Mass balance analysis showed that alkali promotes microbial ß-oxidation of organisms to produce CO2 and facilitate storage. Thus, the alkaline regulation of metabolism between microbe and CSW provides a novel way of sludge to initiate MICP.
Assuntos
Carbonato de Cálcio , Materiais de Construção , Esgotos , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Álcalis/químicaRESUMO
This study characterized the microbial community present in the bench scale horizontal-flow anaerobic immobilized biomass bioreactor (HAIB) used in the removal of limonene, a compound present in citrus processing industries. The HAIB was filled with three support materials (coal, polyurethane foam and gravel) which were inoculated with anaerobic sludge. The limonene initial concentration on the substrate ranged from 10 mg/L to 500 mg/L. The analysis of 16S rRNA showed the presence of 22 OTUs (based on ⩾97% sequence identity), distributed in 57 genera, considering three different matrices. Higher relative abundance of phyla was observed as Synergistetes (43-57%), Proteobacteria (32-42%), Firmicutes (7-8%) and Acidobacteria (2-3%). Actinobacteria, Bacterioidetes and Chloroflexi had the lowest relative abundances between 1 and 2%. Synergistaceae family was the predominated group (47.6%-mineral coal, 55.9%-foam and 43.5%-gravel) followed by Syntrophaceae (2.4%-coal, 1.5%-foam and 2.2%-gravel), which kept a syntrophic relationship with methanogenesis (hydrogenotrophic methanogens) to maintain the anaerobic digestion. Among the Proteobacteria phylum, the Pseudomonadaceae family was predominant in the system with 12.0% on coal, 13.1% on foam, and 20.4% on gravel. The metabolic versatility of Pseudomonas sp. makes them an important bioremediation agent by being capable of metabolizing xenobiotic and chemical toxic compounds, thus having great prominence for the limonene removal in the HAIB bioreactor.
Assuntos
Bactérias , Biomassa , Reatores Biológicos , Limoneno , RNA Ribossômico 16S , Reatores Biológicos/microbiologia , Limoneno/metabolismo , Anaerobiose , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Filogenia , Esgotos/microbiologia , MicrobiotaRESUMO
Producing medium chain fatty acids (MCFAs) from waste activated sludge (WAS) is crucial for sustainable chemical industries. This study addressed the electron donor requirement for MCFAs production by inoculating Lactobacillus at varying concentrations (7.94 × 1010, 3.18 × 1011, and 6.35 × 1011 cell/L) to supply lactate internally. Interestingly, the highest MCFAs yield (â¼2000 mg COD/L) occurred at the lowest Lactobacillus inoculation. Higher inoculation concentrations redirected more carbon from WAS towards alcohols production rather than MCFAs generation, with up to 2852 mg COD/L alcohols obtained under 6.35 × 1011 cell/L inoculation. Clostridium dominance and increased genes abundance for substrate hydrolysis, lactate conversion, and MCFAs/alcohol production collectively enhanced WAS-derived MCFAs and alcohols synthesis after Lactobacillus inoculation. Overall, the strategy of Lactobacillus inoculation regulated fermentation outcomes and subsequent carbon recovery in WAS, presenting a sustainable technology to achieve liquid bio-energy production from underutilized wet wastes.
Assuntos
Álcoois , Fermentação , Lactobacillus , Esgotos , Esgotos/microbiologia , Lactobacillus/metabolismo , Álcoois/metabolismo , Ácidos Carboxílicos/metabolismo , Redes e Vias MetabólicasRESUMO
Anammox granular sludge (AnGS) has received considerable attention due to its low carbon footprint (less aeration energy and carbon source consumption) and high biomass density, but growth rate and stability are still the bottlenecks of AnGS process. Calcium ion (Ca2+) is essential for the growth of anaerobic ammonium oxidation bacteria (AnAOB) and plays an important role in the formation and stability of AnGS. Response of AnGS to Ca2+ under different concentrations was comprehensively investigated by multi-spectral and metagenomics analysis in four aspects: nitrogen removal performance, surface morphology, extracellular polymeric substance (EPS) composition and characterization, and microbial community. The nitrogen removal efficiency was significantly enhanced at appropriate Ca2+ concentration (2 mmol/L), owning to the more favorable morphology and functional microbial composition of AnGS. However, the nitrogen removal performance of AnGS declined with the Ca2+concentration increased from 2 to 8 mmol/L, due to the negative effects of excess Ca2+on EPS, mass transfer efficiency, and functional microorganisms. Meanwhile, an unexpected slight "rebound" of nitrogen removal efficiency was observed at Ca2+ = 6 mmol/L and attributed to the defense mode transformation of AnGS (from "ion stabilization" to "precipitate shield" modes) against excess Ca2+ stress. Based on the findings, the response mechanism of AnGS to Ca2+ with different concentrations was established. Our results enhanced the understanding of the interaction between AnGS and Ca2+, which may be valuable for filling the theoretical gap in enhancing the granulation and stability of AnGS and providing a reference for the practical operation of the AnGS process.
Assuntos
Cálcio , Nitrogênio , Esgotos , Esgotos/microbiologia , Cálcio/metabolismo , Nitrogênio/metabolismo , Anaerobiose , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Oxirredução , Compostos de Amônio/metabolismo , Bactérias/metabolismoRESUMO
This study investigated the performance of microalgal-bacterial granular sludge (MBGS) in the restoration of Qingling Lake and Huangjia Lake, focusing on nitrogen removal under varying water quality conditions. Significant color changes in MBGS and differences in granule characteristics were observed, with Qingling Lake demonstrating superior removal efficiencies for ammonia nitrogen, nitrate nitrogen, and total nitrogen compared to Huangjia Lake. Stoichiometric analysis revealed that when the chemical oxygen demand (COD) and carbon-to-nitrogen (C/N) ratios were less than 20 mg/L and 20, respectively, assimilatory nitrate reduction was positively correlated with both, whereas denitrification was negatively correlated. Gene function analysis showed that Qingling Lake had a more active microbial community supporting efficient nitrogen metabolism. The findings highlighted the enormous potential of MBGS in lake restoration, demonstrating its ability to adapt to different COD concentrations and C/N ratios by altering its nitrogen removal pathways.
Assuntos
Bactérias , Análise da Demanda Biológica de Oxigênio , Carbono , Lagos , Microalgas , Nitrogênio , Esgotos , Lagos/microbiologia , Carbono/farmacologia , Microalgas/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Desnitrificação , Purificação da Água/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação AmbientalRESUMO
The polymer-based denitrification system is an effective nitrate removal process for treating low carbon/nitrogen wastewater. However, in polymer denitrification systems, carbon used for the denitrification reaction is weakly targeted. Improving the efficiency of carbon utilization in denitrification is important to reduce carbon wastage. In this study, a symbiotic biofilm-sludge denitrification system was constructed using polycaprolactone as electron donors. Results show that the carbon release amount in 120 days was 85.32±0.46 g, and the unit mass of polycaprolactone could remove 1.55±0.01 g NO3--N. Meaningfully, the targeted carbon utilization efficiency for denitrification could achieve 79%-85%. The quantitative results showed that the release of electron donors can be well matched to the demand for electron acceptors in the biofilm-sludge denitrification system. Overall, the symbiotic system can improve the nitrate removal efficiency and reduce the waste of carbon source.
Assuntos
Biofilmes , Carbono , Desnitrificação , Esgotos , Esgotos/microbiologia , Nitratos/metabolismo , Elétrons , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Simbiose/fisiologia , Purificação da Água/métodos , Reatores BiológicosRESUMO
For revealing the influence of temperature on volatile fatty acids (VFAs) generation from primary sludge (PS) during the anaerobic fermentation process facilitated by peroxymonosulfate (PMS), five fermentation groups (15, 25, 35, 45, and 55 °C) were designed. The results indicated that the production of VFAs (5148 mg COD/L) and acetic acid (2019 mg COD/L) reached their peaks at 45 °C. High-throughput sequencing technology disclosed that Firmicutes, Proteobacteria, and Actinobacteria was the dominant phyla, carbohydrate metabolism and membrane transport were the most vigorous at 45 °C. Additionally, higher temperature and PMS exhibit synergistic effects in promoting VFAs accumulation. This study unveiled the mechanism of the effect of the pretreatment of PS with PMS on the VFAs production, which established a theoretical foundation for the production of VFAs.
Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Temperatura , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Peróxidos , Anaerobiose , Bactérias/metabolismo , Reatores BiológicosRESUMO
This study proposes an innovative strategy for achieving PN in synthetic domestic wastewater by side-stream sludge treatment using sulfide as the sole control factor. By conducting controllable batch experiments and response surface analysis, optimal sulfide treatment conditions were firstly determined as 90 mg/L of sulfide, 7.5 of pH, 100 rpm of rotation and 12 h of treatment time. After treatment, half of ammonia oxidizing bacteria (AOB) activity remained, but nitrite oxidizing bacteria (NOB) activity was barely detected. Nitrite accumulation rate of long-term running PN steadily reached 83.9 % with 99.1 % of ammonia removal efficiency. Sulfide treatment increased community diversity and facilitated stability of microbiota functioning with PN phenotype, which might be sustained by the positive correlation between ammonia oxidation gene (amoA) and sulfur oxidation gene (soxB). Correspondingly, the network analysis identified the keystone microbial taxa of persistent PN microbiota as Nitrosomonas, Thauera, Truepera, Defluviimonas and Sulitalea in the later stage of long-term reactor.
Assuntos
Amônia , Bactérias , Nitrificação , Esgotos , Sulfetos , Sulfetos/química , Esgotos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Amônia/metabolismo , Reatores Biológicos/microbiologia , Nitritos/metabolismo , Purificação da Água/métodos , MicrobiotaRESUMO
The objective of this study was to improve the nitrogen removal efficiency and reduce the start-up period of a single-stage partial nitritation-anammox (SPNA) system using iron particle-integrated anammox granules (IP-IAGs). Anammox granules were enriched in sequencing batch and expanded granular sludge bed (EGSB) reactors. The EGSB reactor produced larger and more uniform granules with higher specific anammox activity. IP-IAGs were then inoculated into a two-stage partial nitritation-anammox reactor treating anaerobic digestion (AD) effluent, followed by an internal recirculation strategy to acclimate the granules to oxygen exposure for SPNA. Finally, the SPNA process operated to treat real AD effluent under optimal conditions of 0.05 L/min aeration intensity (0.01 vvm) and 24 h of hydraulic retention time, achieving TNRE of 86.01 ± 2.64 % and nitrogen removal rate of 0.74 ± 0.04 kg-N/m3·d for 101 d.
Assuntos
Reatores Biológicos , Nitrificação , Nitrogênio , Esgotos , Anaerobiose , Esgotos/microbiologia , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodosRESUMO
This study evaluates the anaerobic mesophilic mono- and co-digestion of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) plastic bottles as a proxy for rigid packaging materials. Initial tests showed a 97.3 ± 0.2 % reduction in weight and an observable alteration in the surface (thinning, color fading and pitting) of the PHBH bottles after eight weeks. Subsequent tests showed that PHBH squares (3 × 3 cm) produced 400 NmL-CH4/g-VSfed, at a slower rate compared to powdered PHBH but with similar methane yield. Co-digestion experiments with food waste, swine manure, or sewage sludge showed successful digestion of PHBH alongside organic waste (even at a high bioplastic loading of 20 % volatile solids basis), with methane production comparable to or slightly higher than that observed in mono-digestion. Molecular analyses suggested that the type of co-substrate influenced microbial activity and that methane production was mainly driven by hydrogenotrophic methanogenesis. These results suggest the potential for integrating rigid PHBH packaging into anaerobic digesters.
Assuntos
Caproatos , Metano , Caproatos/química , Caproatos/metabolismo , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Reatores Biológicos , Animais , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Esterco , Biodegradação Ambiental , Suínos , Embalagem de Produtos , Poli-HidroxibutiratosRESUMO
Anammox is recognized as a prospective alternative for future biological nitrogen removal technologies. However, the nitrate by-products produced by anammox bacteria limit its overall nitrogen removal efficiency below 88 %. This study introduced Fe(III) into the anammox bioreactor to enhance the nitrogen removal efficiency to approximately 95 %, surpassing the biochemical limit of 88 % imposed by anammox stoichiometry. Anammox sludge was demonstrated to utilize extracellular polymeric substances to reduce Fe(III) into Fe(II), and this process promoted the dominance of Ca. Brocadia. The iron addition improved the abundance of narGHI genes and facilitated the partial dissimilatory nitrate reduction to ammonium, with nitrite as the end product. The accumulated nitrite was then eliminated through the anammox pathway, along with the excess ammonium (30 mg/L) in the influent. Overall, this study deepens our understanding of the enhanced nitrogen removal triggered by Fe(III) in anammox sludge and offers an effective approach to boost anammox process.
Assuntos
Reatores Biológicos , Nitratos , Nitrogênio , Oxirredução , Esgotos , Nitrogênio/metabolismo , Nitratos/metabolismo , Esgotos/microbiologia , Compostos de Amônio/metabolismo , Compostos Férricos/metabolismo , Anaerobiose , Ferro/metabolismo , Bactérias/metabolismoRESUMO
Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.
Assuntos
Biofilmes , Reatores Biológicos , Percepção de Quorum , Esgotos , Anaerobiose , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Biofilmes/crescimento & desenvolvimento , Acil-Butirolactonas/metabolismo , Bactérias/metabolismoRESUMO
Azo dye-containing sewage is commonly detected at high salinity, temperature and pH. In this study, a halo-thermoalkalophilic azo dye decolorization consortium was enriched and named "consortium HL". Consortium HL which was dominated by Marinobacter (84.30%), Desulfocurvibacter (1.89%), and Pseudomonas (1.85%), was able to completely decolorize Direct Blue 5B (DB5) during incubation with the material at 5% salinity, 50 °C, and pH 9 for 30 h. The decolorization mechanism was proposed based on combined metagenomic analysis, GCâMS, and enzymatic activity detection. The action of the consortium HL showed great tolerance to variations in salinity, temperature and pH. A phytotoxicity study indicated that the metabolic intermediates showed no significant toxicity to the generation of Cucumis sativus and Oryza sativa seeds. This study, in which azo dye decolorization and degradation under high-salt, high-temperature and high-alkalinity conditions were investigated and deeply analyzed by metagenomic information, is the first report regarding the ability of Marinobacter to decolorize azo dyes at high temperatures.
Assuntos
Biodegradação Ambiental , Marinobacter , Marinobacter/metabolismo , Marinobacter/genética , Compostos Azo/metabolismo , Compostos Azo/química , Corantes/metabolismo , Corantes/química , Consórcios Microbianos , Salinidade , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , OryzaRESUMO
A novel Pseudochrobactrum saccharolyticum strain NBRI-CRB 13, isolated from tannery sludge, was studied to grow up to 500 mgL-1 of Cr(VI) and showed Cr(VI) detoxification by reducing > 90% of Cr(VI) at different concentrations 25, 50 and 100 mgL-1. Kinetic studies showed that first-order models were fitted (R2 = 0.998) to the time-dependent Cr(VI) reduction with degradation rate constant (k) (1.03-0.429 h-1). Cr(VI) detoxification was primarily related to the extracellular fraction of microbial cells, which showed a maximum extracellular reductase enzyme activity led to 94.6% reduction of Cr(VI). Moreover, the strain showed maximum extracellular polymeric substances (EPS) production at 100 mgL-1 Cr(VI), which is presumably the reason for Cr(VI) removal as EPS serves as the metal binding site for Cr(VI) ions. Further, an optimization study using Box-Behnken design was conducted considering parameters viz., pH, temperature, and initial concentration of Cr(VI). The maximum percent reduction of Cr(VI) was obtained at pH 6.5, temperature 30 °C with 62.5 mgL-1Cr(VI) concentration. Further, the Cr(VI) reduction and adsorption ability of strain P. saccharolyticum NBRI-CRB13 were confirmed by SEM-EDS, FTIR, and XRD analyses. FTIR analysis confirmed the presence of functional groups (-OH, -COOH, -PO4) on bacterial cell walls, which were more likely to interact with positively charged chromium ions. The study elucidated the reduction of Cr(VI) by the novel bacterium within 24 h using the response surface methodology approach and advocated its application in real-time situations.