Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.472
Filtrar
1.
Chemosphere ; 260: 127681, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32758785

RESUMO

In this work, magnetic separably barium ferrite nanomaterial (BaFeO) was synthesized via citrate acid assisted sol-gel combustion method. Subsequently, X-ray diffraction (XRD), scanning electron microscopy-energy dispersion spectroscopy (SEM-EDS), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) were applied for its structural, morphological, and electromagnetic characterization. In addition, microwave (MW) absorption and thermal conversion test results indicated the BaFeO had electrothermal rather than magnetothermal conversion capacity. Meanwhile, the synthesized BaFeO showed satisfactory performance in both eliminating and mineralization of a typical triphenylmethane dye, brilliant green (BG), in MW-induced catalytic oxidation (MICO) process without extra oxidant addition. Besides, changes in element valence and content of BaFeO before and after MICO process investigated with XRD, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) showed its relatively stable properties. Furthermore, transition oxygen species involved in MICO process was deduced as lattice oxygen species. Then, the possible degradation pathway of BG was proposed as demethylation, open-loop of triphenylmethane, releasing one ring, formation of the benzene ring and the ultimate mineralization based on the degradation intermediates tentatively identified by gas chromatography mass spectrometry (GC/MS) and liquid chromatography mass spectrometry (LC/MS), respectively. Finally, ecotoxicity analysis by ecological structure activity relationships (ECOSAR) showed that both the acute and chronic toxicity of these intermediates were lower than that of parent BG. These findings are important regarding the development of efficient catalysts in MICO process for degradation of BG analogues in wastewater.


Assuntos
Compostos de Bário/química , Compostos Férricos/química , Nanoestruturas/química , Compostos de Amônio Quaternário/química , Catálise , Corantes/química , Magnetismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Micro-Ondas , Espectroscopia Fotoeletrônica , Águas Residuárias , Difração de Raios X
2.
J Chromatogr A ; 1627: 461387, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823095

RESUMO

A simple and efficient magnetic solid-phase extraction (MSPE) method was established with magnetic covalent organic framework (COF) as adsorbent to enrich organophosphorus pesticides from fatty milk samples, followed by the sensitive determination via LC-MS/MS. The key parameters influencing the MSPE efficiency were comprehensively investigated to afford an optimized procedure. All the target analytes could be captured directly by magnetic COF from milk without protein precipitation, making the pretreatment rapid and convenient. Systematic method validation demonstrated its satisfactory linearity, recoveries (80.0-105 %), and precision (RSDs <12.3 %). The method limits of quantification were 0.2-0.5 µg L-1. A comparison experiment to the reported solid-phase extraction fully verified the present MSPE more rapid, accurate, and environment-friendly. Furthermore, FT-IR and XPS analysis were performed to reveal the adsorption mechanisms of magnetic COF to organophosphorus pesticides, which could offer guidance on the rational design of COF adsorbent for various target analytes.


Assuntos
Fenômenos Magnéticos , Estruturas Metalorgânicas/química , Leite/química , Compostos Organofosforados/análise , Praguicidas/análise , Extração em Fase Sólida/métodos , Acetonitrilos/análise , Adsorção , Animais , Limite de Detecção , Espectroscopia Fotoeletrônica , Padrões de Referência , Reprodutibilidade dos Testes , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Chromatogr A ; 1627: 461393, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823098

RESUMO

The selective extraction and column separation rear earth elements (REEs) were investigated in the present work. Herein, the functional ligand of N, N-dioctyldiglycolic acid (DODGA) was synthesized and chemically grafted on the silica gel (SG) particles to give the novel material SG@DODGA. The obtained SG@DODGA was fully characterized by NMR, BET (Brunauer-Emmett-Teller) N2 physisorption analysis, atom force microscopy (AFM), scanning electronic microscopy (SEM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). After investigating the adsorption capability of the SG@DODGA towards 16 kinds of REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Td, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc), the results showed that the adsorption kinetic data was better fitted with pseudo-second-order model and Elovich model, the adsorption isotherms data was suitable for Freundlich model. The above result also indicated that the adsorption mechanism between the SG@DODGA and REEs was chemical ion exchange. Moreover, choose SG@DODGA as the column chromatography stationary phase and packed in a glass column for the column studies to obtain breakthroughs profile of each REEs. Furthermore, the column was used to try to separate the mixed 16 kinds of REEs. The first attempt to preliminary separate REEs result showed that this column could be applied for simply separating REEs. The light REEs La, Ce, Pr, Nd exhibited better separation effect than the other REEs.


Assuntos
Glicolatos/química , Metais Terras Raras/isolamento & purificação , Sílica Gel/química , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Ligantes , Nitrogênio/química , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
4.
Chemosphere ; 260: 127555, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32673870

RESUMO

As (III) is widely distributed in groundwater which is relatively harder to be removed comparing to As (V). Co-grinding Ca(OH)2 with Al(OH)3 was conducted to manufacture katoite (Ca3Al2(OH)12) for the complete removal of As(III) (concentration below drinking water standard of WHO (<10 ppb)) during one-step agitation operation. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG), and X-ray photoelectron spectroscopy (XPS) were applied for the illustration of adsorption mechanism. Katoite could intercalate As(III) into the layered space forming arsenite pillared Ca-Al layered double hydroxide (LDH). The coexisting anions such as Cl-, SO42-, and NO3- had minor effects on As (III) removal performance using katoite. Techno-economic analysis demonstrated the feasibility of large-scale katoite production and its practical application for As(III) polluted groundwater purification, especially in the undeveloped areas where groundwater was used as irrigation and drinking water.


Assuntos
Arsenitos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Hidróxidos/química , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Água/análise , Poluentes Químicos da Água/análise , Difração de Raios X
5.
Environ Sci Pollut Res Int ; 27(25): 31120-31129, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32474782

RESUMO

Diamond-like carbon (DLC) and titanium-doped DLC coatings were prepared by hybrid PECVD/direct current magnetron sputtering (DCMS). In this study, we show that the operating conditions of titanium-doped DLC coatings used for implants in surgical devices significantly modify their surface properties and consequently their interaction with cells. The coatings showed uniform distribution on the substrate and their biocompatibility was tested by way of rat calvaria osteoblasts. Doping DLC with Ti changed the roughness and wettability of the film interface. The autoclaving of the samples led to the surface oxidation and the formation of TiO2 on the top-most layers of Ti-doped DLC. This was quantitatively assessed by X-ray photoelectron spectroscopy (XPS) and revealed the presence of Ti3+ and Ti4+ species in redox reactions during their interactions with cells. By XPS analysis, the oxidative carbonaceous species C=O and O=C-C were detected during the bacterial inactivation. Reactive oxygen species (ROS) were identified on the sputtered samples and the ⦁OH radical was identified as the most important oxidative radical intermediate leading to bacterial disinfection. The position of the intra-gap of the oxidized C species is suggested within the TiO2 bandgap.


Assuntos
Carbono , Diamante , Animais , Espectroscopia Fotoeletrônica , Ratos , Propriedades de Superfície , Titânio
6.
Chemosphere ; 258: 127289, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32535447

RESUMO

Anammox-based processes and microbial consortia have drawn extensive attention for their use in high-efficiency wastewater treatment technologies. Metals substantially affect the activity of anammox consortia and the quality of wastewater treatment plant effluent. Here, we explored the role of anammox consortia in terms of metals complexation in both single and multi-metal systems. Adsorption edges of single metal cations indicate that the adsorption preference was in the order: Pb(II) > Cd(II) > Cr(VI). A competitive effect was observed in multi-metal cations systems, with Pb(II) being preferably adsorbed and the degree of adsorption somewhat reduced in the presence of either Cd(II) or Cr(VI), while Cd(II) and Cr(VI) were easily exchanged and substituted by other metals. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) further suggest that the adsorption of Pb(II) and Cd(II) are as inner-sphere ion-exchange mechanisms, while Cr(VI) adsorption is mainly by outer-sphere complexation. Density functional theory (DFT) calculations highlight that Cd(II) and Pb(II) have different binding sites compared to Cr(VI), and the order of binding energy (Ebd) of three metal cations were Pb(II) > Cd(II) > Cr(VI). These calculations support the adsorption data in that Pb forms more stable complexes with anammox bacterial surface ligands. Surface complexation modelling (SCM) further predicted both the sorption of single metal cations and competitive adsorption of the three metals to anammox consortia, the exception being Cd at higher loadings. The results of this study highlight the potential role of anammox consortia in removing metal cations from wastewater in treatment systems.


Assuntos
Amônia/metabolismo , Reatores Biológicos/microbiologia , Metais Pesados/química , Consórcios Microbianos/fisiologia , Adsorção , Anaerobiose , Cátions , Teoria da Densidade Funcional , Metais Pesados/metabolismo , Oxirredução , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
7.
Chemosphere ; 258: 127316, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32559494

RESUMO

In this study, graphene oxide (GO), polyethyleneimine (PEI) and potassium hydroxide (KOH) were used to synthesize reduced graphene oxide (rGO/PEI-KOH) nanocomposite. The presence and grafting of PEI molecules on the reduced GO surface were assessed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analyses. The rGO/PEI-KOH nanocomposite was successfully applied for hexavalent chromium, Cr(VI), wastewater elimination. The resulting rGO/PEI-KOH adsorbent was found to be highly effective for Cr(VI) removal at low pH values and achieved a maximum capacity of experimental adsorption of 398.9 mg/g, which is one of the highest sorption capacity of most GO- and PEI-based adsorbents reported in the literature up to date. Studying the adsorption mechanism, the sorption isotherm revealed that the modified-Langmuir model was the best fit and Cr(VI) removal follows a pseudo-second-order kinetics, with the predominance of intraparticle diffusion during the first step of adsorption. XPS analysis indicated the presence of appreciable amount of Cr(III) on the adsorbent surface, which suggests that the adsorbed Cr(VI) ions were effectively reduced to Cr(III) on the rGO/PEI-KOH adsorbent surface (∼70% of the total adsorbed Cr). Cr(VI) adsorption and subsequent reduction to Cr(III) both contributed to the Cr(VI) removal. The results of the present study highlight the benefits of rGO/PEI-KOH like low cost, environmentally friendly, large toxic Cr(VI) ions adsorption capacity and its effective reduction to less-toxic Cr(III).


Assuntos
Cromo/química , Grafite/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Hidróxidos , Cinética , Nanocompostos , Espectroscopia Fotoeletrônica , Polietilenoimina/química , Compostos de Potássio , Águas Residuárias
8.
Chemosphere ; 258: 127373, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32569957

RESUMO

The development of an adsorbent with high adsorption ability and favorable cyclic regeneration performance for the removal of nitrate residues from wastewater is a task of vital importance. To this end, polyacrylonitrile fiber (PANF) was modified with polyethyleneimine (PEI), and alkyl groups were then introduced around the active amine groups to prepare three polymer-based anion exchange fibers (PAN-PEI-3C, PAN-PEI-5C, and PAN-PEI-8C). The novel fibers were characterized using techniques such as scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The adsorption isotherms of the fibers were best fitted by the Langmuir model, and PAN-PEI-5C exhibited a higher adsorption amount of nitrate (31.32 mg/g) than the other adsorbents. The equilibrium was reached expeditiously (within 10 min), and both pseudo-first-order and pseudo-second-order models could well describe the adsorption kinetics. More attractively, the saturated PAN-PEI-5C could be eluted using a low-concentration (0.3 M) NaCl solution, without any sharp loss of adsorption amount for five consecutive cycles in the presence of dissolved organic matter (DOM). Furthermore, PAN-PEI-5C could effectively adsorb low-concentration nitrate from real secondary effluents in a fixed-bed column experiment. Our work provides a promising and low-cost material for the removal of nitrate residues in practical applications.


Assuntos
Resinas Acrílicas/química , Nitratos/análise , Polietilenoimina/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Resinas de Troca de Ânions , Ânions , Cinética , Microscopia Eletrônica de Varredura , Nitratos/química , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
9.
PLoS One ; 15(6): e0234524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579584

RESUMO

The purpose of this study was to evaluate the adherence of streptococci to disks of titanium (commercially pure titanium: CpTi) and zirconia (tetragonal zirconia polycrystals: TZP). CpTi and yttria-stabilized TZP disks with a mirror-polished surface were used as specimens. The arithmetic mean surface roughness (Ra and Sa) and the surface wettability of the experimental specimens were measured. For analyzing the outermost layer of the experimental specimens, X-ray photoelectron spectroscopy (XPS) analysis was performed. Streptococcus sanguinis, S. gordonii, S. oralis, and S. mutans were used as streptococcal bacterial strains. These bacterial cultures were grown for 24 h on CpTi and TZP. The number of bacterial adhesions was estimated using an ATP-bioluminescent assay, and scanning electron microscope (SEM) observation of the adhered bacterial specimens was performed. No significant differences in surface roughness or wettability were found between CpTi and TZP. In XPS analyses, outermost layer of CpTi included Ti0 and Ti4+, and outermost layer of TZP included Zr4+. In the cell adhesion assay, the adherences of S. sanguinis, S. gordonii, and S. oralis to TZP were significantly lower than those to CpTi (p < 0.05); however, significant difference was not observed for S. mutans among the specimens. The adherence to CpTi and TZP of S. mutans was significantly lower than that of S. sanguinis, S. gordonii, and S. oralis. These results were confirmed by SEM. S. sanguinis, S. gordonii, and S. oralis adhered less to TZP than to CpTi, but the adherence of S. mutans was similar to both surfaces. S. mutans was less adherent compare with the other streptococci tested in those specimens.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Streptococcus sanguis/efeitos dos fármacos , Titânio/química , Zircônio/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Streptococcus sanguis/química , Streptococcus sanguis/ultraestrutura , Propriedades de Superfície/efeitos dos fármacos , Ítrio/química
10.
Chemosphere ; 251: 126382, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443238

RESUMO

A single metal Pd/γ-Al2O3 catalyst and a bimetallic Pd-Ce/γ-Al2O3 catalyst were prepared by the equal-volume impregnation method to investigate the effect of CeO2 loading on the catalytic oxidation of toluene. The specific surface area, surface morphology, and redox performance of the catalyst were characterized by N2 desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), H2-TPR, O2-TPD, and electron paramagnetic resonance (EPR). The results showed that bimetal catalysts loaded CeO2 had smaller nano-PdO particles than those of the Pd/γ-Al2O3 catalyst. Compared with the catalyst of 0.2Pd/γ-Al2O3 (percentage of mass, the same as below), the catalyst doped with 0.3CeO2 had a stronger reduction peak, which was shifted to the low-temperature zone by more than 80 °C. The results of XPS and O2-TPD showed that the introduction of CeO2 provided more surface oxygen vacancy for the catalyst and enhanced its catalytic oxidation ability, and the amount of desorbed O2 increased from 3.55 µmol/g to 8.54 µmol/g. The results of EPR were that the addition of CeO2 increased the content of active oxygen species and oxygen vacancies on the surface of the catalysts, which might be due to the supply of electrons to the O2 and PdO during the Ce3+toCe4+ conversion process. That could have accelerated the catalytic reaction process. Compared with the single precious metal catalyst, the T10 and T90 of the Pd-Ce/γ-Al2O3 catalyst were decreased by 22 °C and 40 °C, respectively.


Assuntos
Tolueno/química , Óxido de Alumínio/química , Catálise , Cério/química , Chumbo/química , Oxirredução , Oxigênio/química , Espectroscopia Fotoeletrônica
11.
J Chromatogr A ; 1623: 461065, 2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32448558

RESUMO

We report the preparation of high performance, sputtered, polydimethylsiloxane (PDMS)-coated solid phase microextraction (SPME) fibers that show negligible carry-over and phase bleed. This process involves sputtering silicon onto silica fibers and functionalizing the resulting porous nanostructures with ultrathin films of vapor-deposited PDMS. Different thicknesses of silicon (0.25, 0.8, and 1.8 µm) and PDMS (8, 16, and 36 nm) were produced and their extraction efficiencies evaluated. The deposition of PDMS was confirmed by time-of-fight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), and contact angle goniometry on model, planar silicon substrates. These fibers were investigated using direct immersion SPME coupled with gas chromatography-mass spectrometry (GC-MS) analysis of a series of polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic pollutants. The 1.8 µm thick silicon coating with 16 nm of PDMS (Si (1.8 µm)/PDMS (16 nm)) produced the best response among the combinations tested. Conditions for the extraction of PAHs with this fiber were optimized and its extraction performance was compared to that of a commercial 7 µm PDMS fiber. The linearity (1-110 µgL-1), repeatability (RSD%, n = 3) (17% ave.), and minimum detection limits (0.6-1.5 µgL-1) of the sputtered fibers were determined and found to be superior to the commercial 7 µm PDMS fiber in many respects. Carry-over and phase bleed from commercial PDMS-based SPME fibers are two of their major drawbacks, which decrease their lifetimes and usefulness. Minimal carry-over and phase bleed were observed for our sputtered PDMS-coated fibers. In particular, our fiber only shows 12% of the phase bleed of the comparable commercial fiber. In addition, it shows no carry-over for analytes with retention times greater than pyrene, and only 5% of the carry-over of the other analytes. Our fibers could be used for at least 300 injections without any significant loss of performance.


Assuntos
Dimetilpolisiloxanos/química , Silício/química , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Espectroscopia Fotoeletrônica , Hidrocarbonetos Policíclicos Aromáticos/análise , Temperatura , Fatores de Tempo , Água/química , Poluentes Químicos da Água/análise
12.
Chemosphere ; 255: 126942, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32387732

RESUMO

Knowledge of the geochemical behavior of uranium is critical for the safe disposal of radioactive wastes. Biotite, a Fe(II)-rich phyllosilicate, is a common rock-forming mineral and a major component of granite or granodiorite. This work comprehensively studied the sorption of U(VI) on biotite surface with batch experiments and analyzed the uranium speciation with various spectroscopic techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and time-resolved fluorescence spectra (TRFS). Our results indicated that uranyl ions could penetrate into the interlayer of biotite, this ion-exchange process was pH-dependent and only favorable under acidic condition. Instead of precipitation or reduction to uraninite, the TRFS results strongly suggests U(VI) forms surface complexes under the neutral and alkaline condition, though the number and structure of surface species could not be identified accurately. Besides, the oxidation of biotite with peroxide hydrogen showed that structural Fe(II) would have a very low redox reactivity. With leaching experiments, zeta potential analysis and thermodynamics calculation, we discussed the possible reasons for inhibition of U(VI) reduction at the biotite-water interface. Our results may provide insight on interaction mechanism of uranium at mineral-water interface and help us understand the migration behavior of uranium in natural environments.


Assuntos
Silicatos de Alumínio/química , Compostos Ferrosos/química , Urânio/química , Concentração de Íons de Hidrogênio , Troca Iônica , Minerais , Oxirredução , Espectroscopia Fotoeletrônica , Resíduos Radioativos , Dióxido de Silício , Termodinâmica
13.
Int J Nanomedicine ; 15: 2515-2527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368038

RESUMO

Purpose: Reactive oxygen species (ROS)-induced oxidative stress plays a key role in the pathogenesis and progression of psoriasis by causing inflammation. Antioxidative strategies eradicating ROS may serve as effective and easy treatment options for psoriasis, while nanozymes with intrinsic antioxidant enzyme-like activity have not been explored for psoriasis treatment. The aim of this study is to fabricate ß-cyclodextrins (ß-CDs)-modified ceria nanoparticles (ß-CDs/CeO2 NPs) with drug-loaded and multimimic-enzyme activities for combinational psoriasis therapy. Methods: The ß-CDs/CeO2 NPs were synthesized by a hydrothermal method using unmodified ß-CDs as a protecting agent. The structure, size and morphology were analyzed by dynamic light scattering, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. Considering the superoxide dismutase (SOD)- and catalase-mimetic activities, the in vitro antioxidant activity of the ß-CDs/CeO2 NPs was investigated. After dithranol (DIT) was loaded, the drug-loading capacity and release profile were determined by UV-visible light spectrophotometer and high-performance liquid chromatography. The anti-psoriatic efficacy was studied in the imiquimod (IMQ)-induced mouse model on the basis of morphological evaluation, psoriasis area and severity index calculation (PASI), and inflammatory cytokine expression. Results: The average particle size of the blank ß-CDs/CeO2 NPs was 60.89±0.32 nm with a polydispersity index (PDI) of 0.12, whereas that of the DIT-loaded NPs was 79.38±1.06 nm with a PDI of 0.27. TEM results showed the as-prepared NPs formed a uniform quasi-spherical shape with low polydispersity. XPS indicates synthesized NPs have a mixed Ce3+/Ce4+ valence state. FTIR spectroscopy confirmed the presence of ß-CDs and DIT in the NPs. Inhibition of superoxide anion rate by NPs could be reached to 79.4% in the presence of 200 µg/mL, and elimination of H2O2 efficiency reached about 50% in the presence of 40 µg/mL, demonstrating excellent superoxide dismutase- and catalase-mimicking activities, thereby providing remarkable cryoprotection against ROS-mediated damage. Furthermore, ß-CDs on the surface endowed the NPs with drug-loading function via host-guest interactions. The entrapment efficiency and drug loading of DIT are 94.7% and 3.48%, respectively. The in vitro drug release curves revealed a suitable release capability of DIT@ß-CDs/CeO2 NPs under physiological conditions. In IMQ-induced psoriatic model, the DIT@ß-CDs/CeO2 NPs exhibited excellent therapeutic effect. Conclusion: This study may pave the way for the application of nanozyme ß-CDs/CeO2 NPs as a powerful tool for psoriasis therapy.


Assuntos
Cério/química , Nanopartículas/química , Psoríase/terapia , beta-Ciclodextrinas/química , Animais , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular , Terapia Combinada , Depuradores de Radicais Livres/química , Hidrodinâmica , Imiquimode/farmacologia , Imiquimode/uso terapêutico , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Psoríase/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-Ciclodextrinas/síntese química
14.
Int J Nanomedicine ; 15: 2501-2513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368037

RESUMO

Purpose: The extracellular matrix (ECM) labyrinthine network secreted by mesenchymal stem cells (MSCs) provides a microenvironment that enhances cell adherence, proliferation, viability, and differentiation. The potential of graphene-based nanomaterials to mimic a tissue-specific ECM has been recognized in designing bone tissue engineering scaffolds. In this study, we investigated the expression of specific ECM proteins when human fat-derived adult MSCs adhered and underwent osteogenic differentiation in the presence of functionalized graphene nanoparticles. Methods: Graphene nanoparticles with 6-10% oxygen content were prepared and characterized by XPS, FTIR, AFM and Raman spectroscopy. Calcein-am and crystal violet staining were performed to evaluate viability and proliferation of human fat-derived MSCs on graphene nanoparticles. Alizarin red staining and quantitation were used to determine the effect of graphene nanoparticles on osteogenic differentiation. Finally, immunofluorescence assays were used to investigate the expression of ECM proteins during cell adhesion and osteogenic differentiation. Results: Our data show that in the presence of graphene, MSCs express specific integrin heterodimers and exhibit a distinct pattern of the corresponding bone-specific ECM proteins, primarily fibronectin, collagen I and vitronectin. Furthermore, MSCs undergo osteogenic differentiation spontaneously without any chemical induction, suggesting that the physicochemical properties of graphene nanoparticles might trigger the expression of bone-specific ECM. Conclusion: Understanding the cell-graphene interactions resulting in an osteogenic niche for MSCs will significantly improve the application of graphene nanoparticles in bone repair and regeneration.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Grafite/farmacologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Integrinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxigênio/química , Espectroscopia Fotoeletrônica , Multimerização Proteica
15.
J Phys Chem Lett ; 11(11): 4346-4352, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32401519

RESUMO

This work showcases cryogenic and temperature-dependent "iodide-tagging" photoelectron spectroscopy to probe specific binding sites of amino acids using the glycine-iodide complex (Gly·I-) as a case study. Multiple Gly·I- isomers were generated from ambient electrospray ionization and kinetically isolated in a cryogenic ion trap. These structures were characterized with temperature-dependent "iodide-tagging" negative ion photoelectron spectroscopy (NIPES), where iodide was used as the "messenger" to interpret electronic energetics and structural information of various Gly·I- isomers. Accompanied by theoretical computations and Franck-Condon simulations, a total of five cluster structures have been identified along with their various binding motifs. This work demonstrates that "iodide-tagging" NIPES is a powerful general means for probing specific binding interactions in biological molecules of interest.


Assuntos
Glicina/química , Iodetos/química , Espectroscopia Fotoeletrônica/métodos , Sítios de Ligação
16.
Chemosphere ; 253: 126662, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32268253

RESUMO

In this study, pyrite (FeS2) was used as a novel activator of calcium peroxide (CaO2) for the degradation of diethyl phthalate (DEP) in both aqueous solution and soil. DEP (10 mg/L) in aqueous solution was completely degraded within 5.0 min by the FeS2 (0.30 g/L)/CaO2 (1.0 mM) system at pH 3.5. X-ray diffraction (XRD), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), free radical quenching, and X-ray photoelectron spectroscopy (XPS) were used to elucidate the mechanism of the catalytic decomposition of CaO2, radical formation and DEP degradation in the presence of by pyrite. The results show that hydroxyl radicals (OH) are the dominant active species responsible for DEP degradation. Surface or lattice Fe(II) of FeS2 readily activates H2O2 generated by CaO2 decomposition to produce OH, while the reducing sulfur species of FeS2 promotes the regeneration of surface of Fe(II) that catalyzes the production of additional OH, leading to the efficiently oxidative degradation of DEP. Although high concentration of common anions, such as Cl-, NO3-, SO42-, and HCO3-, exert inhibitory effects on DEP degradation by pyrite/CaO2, the reaction system can still efficiently degrade DEP in realistic soil. It was observed that 78% of DEP (25 mg kg-1) was degraded by 2.5% CaO2 (w/w) and 0.5% FeS2 (w/w) within 24 h. These results provide new insight into the mechanistic processes of CaO2 activation and OH formation by the novel FeS2 catalyst, demonstrating a promising alternative to the traditional H2O2-base Fenton process for contaminated soil remediation.


Assuntos
Ferro/química , Peróxidos/química , Ácidos Ftálicos/química , Sulfetos/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Espectroscopia Fotoeletrônica , Enxofre
17.
Int J Nanomedicine ; 15: 2095-2118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273705

RESUMO

Purpose: Zinc (Zn), an essential trace element in the body, has stable chemical properties, excellent osteogenic ability and moderate immunomodulatory property. In the present study, a Zn-incorporated TiO2 nanotube (TNT) was fabricated on titanium (Ti) implant material. We aimed to evaluate the influence of nano-scale topography and Zn on behaviors of murine RAW 264.7 macrophages. Moreover, the effects of Zn-incorporated TNT surface-regulated macrophages on the behaviors and osteogenic differentiation of murine MC3T3-E1 osteoblasts were also investigated. Methods: TNT coatings were firstly fabricated on a pure Ti surface using anodic oxidation, and then nano-scale Zn particles were incorporated onto TNTs by the hydrothermal method. Surface topography, chemical composition, roughness, hydrophilicity, Zn release pattern and protein adsorption ability of the Zn-incorporated TiO2 nanotube surface were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), surface profiler, contact angle test, Zn release test and protein adsorption test. The cell behaviors and both pro-inflammatory (M1) and pro-regenerative (M2) marker gene and protein levels in macrophages cultured on Zn-incorporated TNTs surfaces with different TNT diameters were detected. The supernatants of macrophages were extracted and preserved as conditioned medium (CM). Furthermore, the behaviors and osteogenic properties of osteoblasts cultured in CM on various surfaces were evaluated. Results: The release profile of Zn on Zn-incorporated TNT surfaces revealed a controlled release pattern. Macrophages cultured on Zn-incorporated TNT surfaces displayed enhanced gene and protein expression of M2 markers, and M1 markers were moderately inhibited, compared with the LPS group (the inflammation model). When cultured in CM, osteoblasts cultured on Zn-incorporated TNTs showed strengthened cell proliferation, adhesion, osteogenesis-related gene expression, alkaline phosphatase activity and extracellular mineralization, compared with their TNT counterparts and the Ti group. Conclusion: This study suggests that the application of Zn-incorporated TNT surfaces may establish an osteogenic microenvironment and accelerate bone formation. It provided a promising strategy of Ti surface modification for a better applicable prospect.


Assuntos
Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Nanotubos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Zinco/farmacocinética , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Microscopia Eletrônica de Varredura , Nanotubos/química , Osteoblastos/citologia , Osteogênese/genética , Espectroscopia Fotoeletrônica , Células RAW 264.7 , Propriedades de Superfície , Titânio/química , Difração de Raios X , Zinco/química
18.
Nat Commun ; 11(1): 2051, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345967

RESUMO

A key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory-Huggins solution theory supplemented by the critical influence of the volume fraction of the block components. Here we show that a completely different approach can lead to tunable 2D lamellar organization of nanoparticles with homopolymers only, on condition that few elementary rules are respected: 1) the polymer spontaneously allows a structural preorganization, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the nanoparticles show a surface accessible for coordination.


Assuntos
Nanopartículas Metálicas/química , Peptídeos/química , Platina/química , Polímeros/química , Nanopartículas Metálicas/ultraestrutura , Espectroscopia Fotoeletrônica , Polimerização
19.
Environ Sci Pollut Res Int ; 27(16): 20055-20065, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32236807

RESUMO

It is very necessary to produce bio-activated carbon for special use with easy procedure and low cost. One kind of huge surface area microporous bio-material was successfully prepared from agricultural residues (peanut shell, Arachis hypogaea Linn.) and beneficially applied to control elemental mercury (Hg0) in simulated coal-fired flue gas in this study. The possible effects of experimental factors including activator, reaction temperature, and flue components were investigated. The physicochemical properties of the prepared adsorbents were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDX), and X-ray photoelectron spectroscopy (XPS). The results indicated that the peanut shell activated carbon presented excellent Hg0 removal efficiency near 90% at 150 °C. The characterization analysis indicated that the removal characteristics were governed by both physical adsorption and chemical adsorption. The chemisorbed mercury on the activated carbon was mainly distinguished into mercuric chloride (HgCl2) and mercuric oxide (HgO). The presence of C-Cl and O* promoted Hg0 into HgCl2 and HgO. Zinc chloride could not only improve the micropore quantity of activated carbon but also have remarkably positive effects on the elemental mercury removal. This study provided a practical and easy preparation method of bio-activated carbon for Hg0 removal with low cost. Graphical Abstract.


Assuntos
Mercúrio , Adsorção , Arachis , Carvão Vegetal , Espectroscopia Fotoeletrônica
20.
Chemosphere ; 249: 126497, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32273124

RESUMO

According to the search in the state of the art, no antecedents were found in which photocatalytic degradation of 17α-methyltestosterone (MT) hormone has been carried out using doped-TiO2. Nor have the transformation products formed during the heterogeneous photocatalysis (FH) been identified. Therefore, in this study we analyzed the photocatalytic degradation of the MT in aqueous solution, using doped TiO2 with Sm3+ or Gd3+ at 0.3 and 0.5 %wt. Thermal treatment temperature (500 °C and 800 °C) and MT (20 mgL-1) mineralization were also studied. All photocatalysts were synthesized using the sol-gel method and characterized by X-ray Diffraction (XRD), Specific Surface Area (BET), Ultraviolet-visible Spectroscopy (UV-vis), High-Resolution Transmission Electron Microscope/Energy-Dispersive X-ray analysis (HRTEM/EDS) and, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL). MT mineralization was followed by a total organic carbon analyzer (TOC). The route of the photocatalytic mineralization of the hormone was obtained from the analysis of intermediate compounds determined by high performance liquid chromatography coupled to mass spectrometry (LC-TOF-MS). The results showed that TM and its transformation products were not degraded by photolysis. However, the degree of mineralization of the hormone was greater when the photocatalytic process was used. The photocatalytic efficiency was related to the dopant concentration, dopant type and thermal treatment. Therefore, Sm (0.3%)/TiO2 calcined at 500 °C showed the best performance for photocatalytic mineralization of MT.


Assuntos
Metiltestosterona/química , Fotólise , Catálise , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Titânio/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA