Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.229
Filtrar
1.
Braz. j. biol ; 83: e244479, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1285635

RESUMO

Abstract The objective of the present study was to analyse the bioactive compounds of the leaves of Conocarpus lancifolius (C. lancifolius). The GC-MS analysis of the hot methanolic extract of the leaves (HMEL) of C. lancifolius exhibited the bioactive compounds such as 1-(3-Methoxy-2-nitrobenzyl) iso quinoline, morphin-4-ol-6,7-dione, 1-bromo-N-methyl-, phytol, hexadecanoic acid, 2,3-dihydroxypropyl ester, 2,2':4',2"-terthiophene, ethyl iso-allocholate, caryophyllene oxide, campesterol, epiglobulol, cholestan-3-ol, 2-methylene-, (3á,5à)-, dasycarpidan-1-methanol, acetate (ester) and oleic acid, eicosyl ester. The FT-IR analysis of HMEL of C. lancifolius showed a unique peak at 3184, 2413, 1657 cm-1 representing coumaric acid, chlorogenic acid and ferulic acid. The HMEL of C. lancifolius was actively inhibiting the proliferation of breast cancer cells MCF-7 ATCC at the concentration of 72.66 ± 8.21 µg/ml as IC50 value. The HMEL of C. lancifolius also revealed a good spectrum of activity against Gram-positive and Gram-negative bacterial cultures screened in this work. The activity observed has shown more or less similar effects against screened bacteria. However, the magnitude of potentiality was significantly lesser compared to standard ciprofloxacin disc at p< 0.001 level (99% confidence intervals). Furthermore, the study demonstrating the bioactive compounds can be isolated from the leaves of C. lancifolius.


Resumo O objetivo do presente estudo foi analisar os compostos bioativos das folhas de Conocarpus lancifolius (C. lancifolius). A análise por GC-MS do extrato metanólico quente das folhas (HMEL) de C. lancifolius exibiu os compostos bioativos como 1- (3-Metoxi-2-nitrobenzil) isoquinolina, morfina-4-ol-6,7- diona, 1-bromo-N-metil-, fitol, ácido hexadecanoico, 2,3-di-hidroxipropil éster, 2,2 ': 4', 2 " - tertiofeno, isoalocolato de etil, óxido de cariofileno, campesterol, epiglobulol, colestano -3-ol, 2-metileno-, (3á, 5à) -, dasycarpidan-1-metanol, acetato (éster) e ácido oleico, éster eicosílico. A análise FT-IR de HMEL de C. lancifolius mostrou um pico único em 3184, 2413, 1657 cm-1 representando ácido cumarico, ácido clorogênico e ácido ferúlico. O HMEL de C. lancifolius inibiu ativamente a proliferação de células de câncer de mama MCF-7 ATCC na concentração de 72,66 ± 8,21 µg / ml como valor de IC50. O HMEL de C. lancifolius também revelou bom espectro de atividade contra culturas de bactérias Gram-positivas e Gram-negativas rastreadas neste trabalho. A atividade observada mostrou efeitos mais ou menos semelhantes contra bactérias rastreadas. No entanto, a magnitude da potencialidade foi significativamente menor em comparação com o disco de ciprofloxacina padrão em nível de p < 0,001 (intervalos de confiança de 99%). Além disso, o estudo demonstrando os compostos bioativos pode ser isolado das folhas de C. lancifolius.


Assuntos
Árvores , Folhas de Planta , Arábia Saudita , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia
2.
Biomed Res Int ; 2022: 2426960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909483

RESUMO

Herein, we report nanogels comprising diverse feed ratio of polymer hydroxypropyl methylcellulose (HPMC), monomer acrylic acid (AA), and cross-linker methylene bisacrylamide (MBA) fabricated for transdermal delivery of finasteride (FIN). Free radical solution polymerization method with subsequent condensation was employed for the synthesis using ammonium per sulfate (APS) and sodium hydrogen sulfite (SHS) as initiators. Carbopol-940 gel (CG) was formulated as assisting platform to deliver FIN nanogels transdermally. Developed formulations were evaluated by several in vitro, ex vivo, and in vivo parameters such as particle size and charge distribution analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffractogram (XRD), rheological testing, in vitro swelling and drug release, and ex vivo skin permeation, irritation, and toxicity assessment. The results endorsed the nanogel formation (117.3 ± 29.113 nm), and the impact of synthesizing method was signified by high yield of nanogels (≈91%). Efficient response for in vitro swelling and FIN release was revealed at pH 5.5 and 7.4. Skin irritation and toxicity assessment ensured the biocompatibility of prepared nanocomposites. On the basis of the results obtained, it can be concluded that the developed nanogels were stable with excellent drug permeation profile across skin.


Assuntos
Finasterida , Administração Cutânea , Liberação Controlada de Fármacos , Finasterida/farmacologia , Derivados da Hipromelose , Nanogéis , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Biomater Adv ; 138: 212855, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913247

RESUMO

The use of chemically synthesized nanoparticles and crude plant extracts as antimicrobial -anticancer agents have many limitations. In this study, we have used Centella asiatica extract (CaE) having relatively less explored but tremendous medicinal properties, as reducing and stabilizing agents to green synthesize magnesium oxide nanoparticles (MgONPs) using magnesium nitrate. In comparison to the bulk material, capabilities of Ca-MgONPs as an improved antibacterial, antifungal, and anticancer agent in human prostatic carcinoma cells (PC3), as well as membranolytic capability in model cell membrane, were studied. The phyto-functionalized Ca-MgONPs were characterized using UV-Visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDX), X-ray Diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FT-IR) and Atomic Force Microscopy (AFM). Observation of characteristic peaks by spectroscopic and microscopic analysis confirmed the synthesis of Ca-MgONPs. The Ca-MgONPs showed broad spectrum of bactericidal activity against both gram-positive and gram-negative bacteria and fungicidal activity against two species of the Candida fungus. The Ca-MgONPs also exhibited dose-dependent and selective inhibition of proliferating PC3 cells with IC50 of 123.65 ± 4.82 µg/mL at 24 h, however, without having any cytotoxicity toward non-cancerous HEK293 cells. Further studies aimed at understanding the probable mechanism of toxicity of Ca-MgONPs in PC3 cells, the results indicated a significant reduction in cell migration capacities, increment in cytosolic ROS, loss of mitochondrial transmembrane potential, DNA damage and S-phase cell cycle arrest. Ca-MgONPs also induced pore formation in a synthetic large unilamellar vesicle. Thus, Ca-MgONPs might be useful in the effective management of several human pathogens of concern and some more cancer types.


Assuntos
Anti-Infecciosos , Centella , Nanopartículas Metálicas , Antibacterianos/farmacologia , Anti-Infecciosos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Química Verde , Células HEK293 , Humanos , Óxido de Magnésio/química , Nanopartículas Metálicas/uso terapêutico , Extratos Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier , Triterpenos
4.
Biomater Adv ; 138: 212870, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913251

RESUMO

Drug delivery systems that not only show efficacy through multiple therapeutic pathways but also facilitate patient drug use and exhibit a high bioavailability profile represent a promising strategy in the treatment of Alzheimer's disease (AD). Here, donepezil (DO)/memantine (MM)/curcumin (CUR)-loaded electrospun nanofibers (NFs) were produced for the treatment of AD. DSC, XRD, and FT-IR studies demonstrated the complete incorporation of the drug into PVA/PVP NFs. The disintegration profile was improved by loading the drugs in PVA/PVP with fast wetting (less than 1 s), the start of disintegration (21 s), and dispersion in 110 s. The desired properties for sublingual application were achieved with the dissolution of NFs in 240 s. The cell viability in DO/MM/CUR-loaded NFs was similar to the control group after 48 h in the cell culture. DO/MM/CUR-loaded NFs enhanced the expressions of BDNF (13.5-fold), TUBB3 (8.9-fold), Neurog2 (5.6-fold), NeuroD1 (5.8-fold), Nestin (166-fold), and GFAP (115-fold). DO/MM/CUR-loaded NFs and powder of these drugs contained in these fibers were daily administered sublingually to intracerebroventricular-streptozotocin (icv-STZ) treated rats. DO/MM/CUR-loaded NFs treatment improved the short-term memory damage and enhanced memory, learning ability, and spatial exploration talent. Results indicated that the levels of Aß, Tau protein, APP, GSK-3ß, AChE, and TNF-α were significantly decreased, and BDNF was increased by DO/MM/CUR-loaded NFs treatment compared to the AD group. In the histopathological analysis of the hippocampus and cortex, neuritic plaques and neurofibrillary nodes were not observed in the rats treated with DO/MM/CUR-loaded NFs. Taken together, the sublingual route delivery of DO/MM/CUR-loaded NFs supports potential clinical applications for AD.


Assuntos
Doença de Alzheimer , Curcumina , Nanofibras , Doença de Alzheimer/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Curcumina/farmacologia , Donepezila/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Memantina/uso terapêutico , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
PLoS One ; 17(8): e0271269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35917314

RESUMO

Fungal infection causes deterioration, discoloration, and loss of nutritional values of food products. The use of lactic acid bacteria has diverse applications in agriculture to combat pathogens and to improve the nutritional values of cereal grains. The current research evaluated the potential of Loigolactobacillus coryniformis BCH-4 against aflatoxins producing toxigenic Aspergillus flavus strain. The cell free supernatant (CFS) of Loig. coryniformis was used for the protection of Zea mays L. treated with A. flavus. No fungal growth was observed even after seven days. The FT-IR spectrum of untreated (T1: without any treatment) and treated maize grains (T2: MRS broth + A. flavus; T3: CFS + A. flavus) showed variations in peak intensities of functional group regions of lipids, proteins, and carbohydrates. Total phenolics, flavonoid contents, and antioxidant activity of T3 were significantly improved in comparison with T1 and T2. Aflatoxins were not found in T3 while observed in T2 (AFB1 and AFB2 = 487 and 16 ng/g each). HPLC analysis of CFS showed the presence of chlorogenic acid, p-coumaric acid, 4-hydroxybenzoic acid, caffeic acid, sinapic acid, salicylic acid, and benzoic acid. The presence of these acids in the CFS of Loig. coryniformis cumulatively increased the antioxidant contents and activity of T3 treated maize grains. Besides, CFS of Loig. coryniformis was passed through various treatments (heat, neutral pH, proteolytic enzymes and catalase), to observe its stability. It suggested that the inhibitory potential of CFS against A. flavus was due to the presence of organic acids, proteinaceous compounds and hydrogen peroxide. Conclusively, Loig. coryniformis BCH-4 could be used as a good bioprotecting agent for Zea mays L. by improving its nutritional and antioxidant contents.


Assuntos
Aflatoxinas , Síndrome de Fadiga Crônica , Aflatoxinas/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aspergillus flavus/metabolismo , Lactobacillus , Espectroscopia de Infravermelho com Transformada de Fourier , Zea mays/metabolismo
6.
AAPS PharmSciTech ; 23(6): 214, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918468

RESUMO

The present study investigates the preparation of amorphous solid dispersions (ASD) for the ent-kaurane diterpenoid siderol (SDR). Initially, evaluation of the pure drug (isolated from Sideritis scardica) revealed that the API is a non-stable glass former, and hence the selection of a suitable ASD's matrix/carrier needs special attention. For this reason, four commonly used polymers and copolymers, namely poly(vinylpyrrolidone), copovidone, hydroxypropyl cellulose, and Soluplus® (SOL), were screened via film casting and crystal growth rate measurements. Amongst them, SOL showed the highest SDR's crystal growth rate reduction, and, since it was also miscible with the drug, it was selected for further testing. In this direction, SDR-SOL ASDs were successfully prepared via melt-quench cooling. These formulations showed full API amorphization, while good physical stability (i.e., a stable SDR amorphous dispersions) were obtained after storage for several months. Finally, evaluation of molecular interactions (with the aid of ATR-FTIR spectroscopy) showed strong H-bonds between SOL and SDR, while the use of molecular dynamics (MD) simulations unraveled the nature of these interactions. Therefore, based on the findings of the present work, SOL seems to be an appropriate matrix/carrier for the preparation of SDR ASDs, although further studies are needed in order to explore its full potentials.


Assuntos
Excipientes , Polímeros , Composição de Medicamentos/métodos , Polímeros/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
7.
J Oleo Sci ; 71(8): 1181-1188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922930

RESUMO

Bacterial resistance to already present antibiotics demands for new approaches in field of medicine. Scientists prefer nanoparticles (NPs) due to their promising potential in many applications. Two bacterial strains, Escherichia coli and Bacillus subtilis were used for biogenic synthesis of NPs. Characterization of prepared NPs was accomplished using UV-vis spectroscopy and fourier transform infrared spectroscopy (FTIR). The prepared NPs were confirmed by the color change from pale yellow to having white deposition for Zn NPs while from dark green to light green for Ni NPs. UV-vis spectroscopy of E. coli and B. subtilis based ZnNPs showed highest peak at 354nm and 362nm, respectively. Likewise, E. coli and B. subtilis NiNPs showed peaks at 246 nm and 238 nm, respectively. Antibacterial activity of B. subtilis based ZnNPs showed significant (p ≤ 0.05) zone of inhibition (ZOI; 27.3±0.6) against B. subtilis and 26.66±0.67 against E. coli at 100 mg/mL. Antibacterial activity of E. coli based ZnNPs showed 8.3±0.3 ZOI against B. subtilis and 6.6±0.3 ZOI against E. coli while NiNPs showed (25.0±0.0 mm) (ZOI) against B. subtilis and (25.0 ± 0.3 mm) against E. coli. Minimum inhibitory concentration (MIC) of E. coli ZnNPs showed values of 6.7±0.3 µg/mL for E. coli and 4.7±0.3 µg/mL for B. subtilis. MIC of B. subtilis ZnNPs showed 5.3±0.3 µg/mL for E. coli and 6.6±0.3 µg/mL for B. subtilis while NiNPs showed 33.0±1.0 µg/mL against E. coli and 24.0±1.0 µg/mL against B. subtilis as effective inhibitory concentrations. Minimum bactericidal concentration (MBC) of E. coli ZnNPs showed 7.3±0.3 µg/mL for E. coli and 8.3±0.3 µg/mL for B. subtilis. MBC of B. subtilis ZnNPs showed 7.6±0.3 µg/mL for E. coli and 8.6±0.3 µg/mL for B. subtilis while NiNPs showed 45.7±1.3 µg/mL against E. coli and 33.0±1.0 µg/mL against B. subtilis as effective inhibitory concentrations. It was concluded from the current study that biogenically synthesized ZnNPs and NiNPs are effective as promising antibacterial agents and have potential applications in biomedical fields.


Assuntos
Escherichia coli , Nanopartículas Metálicas , Antibacterianos/química , Bacillus subtilis , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Níquel/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/química , Zinco/farmacologia
8.
PLoS One ; 17(8): e0272457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35926002

RESUMO

Nigella sativa is one of the medicinal plant species that gained popularity for a wide range of medicinal applications due to its seeds which are rich in phytoconstituents. Continuous scientific investigations on N. sativa seeds are needed to better understand its many medicinal potentials. This will also form a composition-based foundation that support several old and/or new case beneficial histories of its seeds. In this study, the antimicrobial activity of N. sativa seeds was phytochemically characterized and evaluated. Different extracts of N. sativa seeds were obtained by maceration and soxhlet extraction methods using different extraction solvents. The obtained extracts were tested using UV-Vis, FTIR, TLC, and GC-MS techniques. Antimicrobial analysis against pathogenic bacterial strains (E. coli, P. aeruginosa, S. aureus and B. subtilis) was carried out by disc diffusion method using different preparations of N. sativa seeds. The screening analysis revealed the presence of all the tested phytochemicals. FT-IR analysis of N. sativa seeds oil extracted with absolute ethanol revealed functional groups that are associated with active ingredients of medicinal value. The GC-MS chromatograms revealed different chemical constituents whose known bioactivities and/or applications are essential in the management of life-threatening infections. Different extracts of N. sativa seeds showed antimicrobial activity with different efficacy against the tested pathogenic bacterial strains. Therefore, this study shows that extracts of N. sativa seeds contain a variety of chemical components and functional groups linked to their antimicrobial properties, and they might be natural precursors of nutraceuticals.


Assuntos
Anti-Infecciosos , Nigella sativa , Antibacterianos/análise , Antibacterianos/farmacologia , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Bactérias , Escherichia coli , Testes de Sensibilidade Microbiana , Nigella sativa/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Pseudomonas aeruginosa , Sementes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
9.
Sci Rep ; 12(1): 13425, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927566

RESUMO

Although Bioactive Glasses (BGs) have been progressively optimized, their preparation often still involves the use of toxic reagents and high calcination temperatures to remove organic solvents. In the present work, these synthesis related drawbacks were overcome by treating the ashes from the Equisetum hyemale plant in an ethanol/water solution to develop a bioactive composite [glass/carbon (BG-Carb)]. The BG-Carb was characterized by scanning electron microscopy, and transmission electron microscopy; and its chemical composition was assessed by inductively coupled plasma-optical emission spectroscopy. Brunauer-Emmett-Teller gas adsorption analysis showed a specific surface area of 121 m2 g-1. The formation of hydroxyapatite (HA) surface layer in vitro was confirmed by Fourier-transform infrared spectroscopy analysis before and after immersion in simulated body fluid (SBF) solution. The Rietveld refinement of the XRD patterns and selected area electron diffraction analyses confirmed HA in the sample even before immersing it in SBF solution. However, stronger evidences of the presence of HA were observed after immersion in SBF solution due to the surface mineralization. The BG-Carb samples showed no cytotoxicity on MC3T3-E1 cells and osteo-differentiation capacity similar to the positive control. Altogether, the BG-Carb material data reveals a promising plant waste-based candidate for hard and soft tissue engineering.


Assuntos
Materiais Biocompatíveis , Equisetum , Materiais Biocompatíveis/química , Durapatita/química , Vidro/química , Microscopia Eletrônica de Varredura , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Difração de Raios X
10.
Biomater Adv ; 137: 212814, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929253

RESUMO

In order to increase the bioavailability of mountain ginseng (MG), gold nanoparticles (MG-AuNPs) were biologically synthesized from MG extract, and an oil-in-water (O/W) nanoemulsion (SMG-AuNEs) was prepared from MG-AuNPs and a phytochemical silydianin. The physical stability of SMG-AuNEs were monitored and optimized in terms of particle size, pH value, zeta potential, and polydispersity index. The chemicostructural properties of the prepared MG-AuNPs and SMG-AuNEs were characterized using various spectrometric and microscopic analyses, such as EDX spectroscopy, FT-IR spectroscopy, and TEM. The effect of both nanomaterial samples on the anti-inflammatory activity and their underlying mechanism was compared in LPS-stimulated RAW 264.7 cells. SMG-AuNEs did not show toxic effects against RAW 264.7 macrophages, HaCaT keratinocytes, and normal dermal fibroblasts. SMG-AuNEs exhibited significantly higher inhibition of pro-inflammatory genes and proteins, including IL-1ß, IL-6, and TNF-α, compared with those of MG-AuNPs and silydianin. Western blotting analysis revealed that the MAPK and NF-κB signalings were highly inhibited by SMG-AuNEs treatment. Hence, this study shows that nano-emulsification of gold nanoparticles prepared from MG is a useful method for augmenting the anti-inflammatory potential of MG. This study may serve as a foundation for using MG as a functional ingredient in anti-inflammatory agents. Our results may implicate the use of nanoemulsions to develop new anti-inflammatory products using MG.


Assuntos
Nanopartículas Metálicas , Panax , Anti-Inflamatórios/farmacologia , Ouro/farmacologia , Lipopolissacarídeos/farmacologia , Nanopartículas Metálicas/química , NF-kappa B , Panax/metabolismo , Transdução de Sinais , Silimarina , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Sci Rep ; 12(1): 11473, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794461

RESUMO

The adsorption of cadmium ions by magnetite (Fe3O4)@biosilica/alginate (MBA nano-hybrid) was the main aim of the present investigation. Herein, MBA nano-hybrid was synthesized via chemical precipitation technique. As-synthesized MBA nano-hybrid was characterized using FT-IR, FESEM and XRD analyzes. Based on the results, the maximum adsorption capacity of the adsorbent for the removal of Cd(II) was obtained at the initial pH of 7.0. At the initial Cd(II) concentration of 40 mg/L, increasing the reaction time to 180 min led to the Cd adsorption of 35.36 mg/g. Since the removal of Cd(II) after the reaction time of 60 min was insignificant, the reaction time of 60 min was considered as optimum reaction time for performing the experimental runs. According to the results, Langmuir isotherm and pseudo-second order kinetic models were the best fitted models with high correlation coefficients (R2 > 0.99). The results of thermodynamic study indicated exothermic (positive ΔH°) and spontaneous nature (negative ΔG°) of the adsorption of Cd(II) on the surface of MBA nano-hybrid. Negligible reduction in the adsorption capacity of the nano-hybrid was observed (16.57%) after fifth experimental runs, indicating high reusability potential of the as-synthesized nano-hybrid adsorbent.


Assuntos
Nanopartículas de Magnetita , Adsorção , Alginatos , Cádmio/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Sci Rep ; 12(1): 11939, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831386

RESUMO

The magnetic nanoparticles of Fe3O4 were synthesized through a solid-state reaction of hydrated iron (III) chloride, hydrated iron (II) chloride and NaOH, and then purified by calcination at high temperature. In order to protect ferrite nanoparticles from oxidation and agglomeration, and to manufacture a novel catalytic system of anchored copper on the magnetic substrate, the Fe3O4 was core-shelled by adding tetraethyl orthosilicate. Next, the prepared Fe3O4@SiO2 was supported by phosphomolybdic acid (PMA) as the second layer of nanocomposite at 80 °C in 30 h. Eventually, the new nanocomposite of Fe3O4@SiO2-PMA-Cu was successfully synthesized by adding copper (II) chloride solution and solid potassium borohydride. The structure of magnetic nanocatalyst was acknowledged through different techniques such as EDS, VSM, XRD, TEM, FT-IR, XPS, TGA, BET and FESEM. The synthesis of ß-thiolo/benzyl-1,2,3-triazoles from various thiiranes, terminal alkynes and sodium azide was catalyzed by Fe3O4@SiO2-PMA-Cu nanocomposite in aqueous medium. In order to obtain the optimum condition, the effects of reaction time, temperature, catalyst amount and solvent were gauged. The recycled catalyst was used for several consecutive runs without any loss of activity.


Assuntos
Nanopartículas de Magnetita , Dióxido de Silício , Catálise , Cloretos , Cobre/química , Ferro , Nanopartículas de Magnetita/química , Molibdênio , Ácidos Fosfóricos , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Sulfidrila , Triazóis
13.
Sci Rep ; 12(1): 11881, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831423

RESUMO

The present paper evaluates the photocatalytic degradation (PCD) performance of the biofabricated hematite nanoparticles (α-HNPs) for the degradation approach of the Cefotaxime (Cfm). The optimum pH of the solution to achieve the best PCD was found to be 10.5. The kinetics study for the PCD of the Cfm via α-HNPs has been investigated and the reaction was found to be fellow pseudo-first-order at R2 = 0.992. The mass loading impact of α-HNPs was investigated and estimated for the maximum degradation of Cfm 0.4 mg/mL. UV-Vis confirmed that α-HNPs had a direct transition bandgap at 3.78 eV at a maximum absorption wavelength of 362 nm with suspension stability for 7 days. The probable mechanism of the Cfm PCD via α-HNPs and the degradation pathway was conducted. The validation of the suspension stability of the α-HNPs (-68.6 ± 11.8 mV) was determined using the zeta potential investigation test. XRD investigation was conducted after Cfm PCD showing an average crystallite size of 27.0 nm. XRD, TEM, SEM, EDX, and FT-IR analyses have been conducted for the α-HNPs before and after Cfm PCD confirming the high efficiency for the reusability of the current biocatalyst α-HNPs for further use. TEM results of the particle sizes of α-HNPs were found at 19.2 ± 4.4 and 20.6 ± 7.4 nm respectively before and after Cfm PCD. The efficiency of the Cfm PCD was found to be 99.1% after 6 h. High potent as an antibacterial agent of α-HNPs was investigated either α-HNPs alone or after its PCD activity against Cfm. The antibacterial activity revealed high sensitivity, especially toward Gram-positive species indicating its promising ability against pathogenic issues. Interestingly, Cfm@α-HNPs showed superior anti-proliferative activity as tested by MTT assay and were able to induce apoptosis in MCF7 and HepG2 cell lines using the flow cytometry technique at 20.7% and 17% respectively. Also, The IC50 of hydrogen peroxide scavenging was estimated and it was manifested that 635.8 and 665.6 µg/mL of α-HNPs before and after the PCD process of Cfm respectively.


Assuntos
Antibacterianos , Cefotaxima , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Fenômenos Químicos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Water Sci Technol ; 86(1): 95-109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35838285

RESUMO

To improve the photocatalytic degradation efficiency of photocatalytic materials UIO-66 and La-MOFs under visible-light irradiation, a series of photocatalytic materials with La and Zr as metal centers and terephthalic acid (H2BDC) and 2-amino terephthalic acid (H2ATA) as organic ligands were prepared by solvothermal method. The photocatalytic materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and Mott-Schottky test. The photocatalytic degradation performance to Rhodamine B of the catalysts was fully investigated. Results show that the H2ATA series had stronger visible-light absorption capacity and better photocatalytic performance. The 0.35 La/Zr-H2ATA composite showed the best photocatalytic degradation. The quenching experiments confirmed that the active species in the photocatalytic degradation were the holes and superoxide radicals. The possible mechanisms of the carrier migration paths in the energy level matching for La/Zr-H2BDC and La/Zr-H2ATA were also discussed in detail.


Assuntos
Compostos Organometálicos , Catálise , Luz , Estruturas Metalorgânicas , Ácidos Ftálicos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Water Sci Technol ; 86(1): 194-210, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35838291

RESUMO

This study reports the feasibility of recycled polyvinylidene difluoride (PVDF) beads to decolourize methylene blue (MB) from aqueous streams. The beads were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) for its morphological and structural analysis. The effect of various process parameters such as adsorbent dose, initial concentration, contact time, and pH was studied. The first principle density functional theory (DFT) calculations were performed to investigate the underlying mechanism behind the adsorption process. The MB dye adsorption on recycled PVDF beads followed the pseudo-second-order kinetics and Langmuir isotherm, indicating the adsorption was chemical and monolayer. The maximum adsorption capacity obtained was 27.86 mg g-1. The adsorption energy of MB-PVDF predicted from the DFT study was -64.7 kJ mol-1. The HOMO-LUMO energy gap of PVDF decreased from 9.42 eV to 0.50 eV upon interaction with MB dye due to the mixing of molecular orbitals. The DFT simulations showed that the interaction of the MB dye molecule was from the electronegative N atom of the MB dye molecule, implying that electrostatic interactions occurred between the recycled PVDF beads and the positively charged quaternary ammonium groups in MB dye. The present study demonstrates the potential of recycled PVDF beads for a low-cost dye removal technique from textile wastewater.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Estudos de Viabilidade , Polímeros de Fluorcarboneto , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Polímeros , Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sci Rep ; 12(1): 11660, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804003

RESUMO

In this work boehmite nanoparticles (BNPs) were prepared through addition of aqueous solution of NaOH to solution of Al(NO3)3·9H2O. Then, the surface of BNPs was modified by (3-chloropropyl)trimethoxysilane (CPTMS) and further tetradentate ligand (MP-bis(AMP)) was anchored on its surface. At final step, a tetradentate organometallic complex of copper was stabilized on the surface of modified BNPs (Cu(II)-MP-bis(AMP)@boehmite). These obtained nanoparticles were characterized using SEM imaging, WDX, EDS, AAS and TGA analysis, BET method, FT-IR spectroscopy, and XRD pattern. In continue, the catalytic activity of Cu(II)-MP-bis(AMP)@boehmite has been used as a much efficient, reusable and hybrid of organic-inorganic nanocatalyst in the synthesis of ether derivatives through C-O coupling reaction under palladium-free and phosphine-free conditions. Cu(II)-MP-bis(AMP)@boehmite catalyst has been recovered and reused again for several times in the synthesis of ether derivatives.


Assuntos
Cobre , Nanopartículas , Monofosfato de Adenosina , Hidróxido de Alumínio , Óxido de Alumínio , Cobre/química , Éteres , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Sci Rep ; 12(1): 11582, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804178

RESUMO

This article presents the binding interaction between mebendazole (MBZ) and bovine serum albumin. The interaction has been studied using different techniques, such as fluorescence quenching spectroscopy, UV-visible spectroscopy, synchronous fluorescence spectroscopy, fourier transform infrared, and fluorescence resonance energy transfer in addition to molecular docking. Results from Stern Volmer equation stated that the quenching for MBZ-BSA binding was static. The fluorescence quenching spectroscopic study was performed at three temperature settings. The binding constant (kq), the number of binding sites (n), thermodynamic parameters (ΔHο, ΔSο and ΔGο), and binding forces were determined. The results exhibited that the interaction was endothermic. It was revealed that intermolecular hydrophobic forces led to the stabilization of the drug-protein system. Using the site marker technique, the binding between MBZ and BSA was found to be located at subdomain IIA (site I). This was furtherly approved using the molecular docking technique with the most stable MBZ configuration. This research may aid in understanding the pharmacokinetics and toxicity of MBZ and give fundamental data for its safe usage to avoid its toxicity.


Assuntos
Mebendazol , Soroalbumina Bovina , Sítios de Ligação , Dicroísmo Circular , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
18.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806012

RESUMO

The digital twin concept lays the foundation of the virtual vibrational analytics suggested in the current paper. The latter presents extended virtual experiments aimed at determining the specific features of the optical spectra of the studied molecules that provide reliable express analysis of the body spatial structure and chemical content. Reduced graphene oxide was selected as the virtual experiment goal. A set of nanosize necklaced graphene molecules, based on the same graphene domain but differing by the necklace contents, were selected as the relevant DTs. As shown, the Raman spectra signatures contained information concerning the spatial structure of the graphene domains, while the molecule necklaces were responsible for the IR spectra. Suggested sets of general frequency kits facilitate the detailed chemical analysis. Express analysis of a shungite carbon, composed of rGO basic structural units, revealed the high ability of the approach.


Assuntos
Grafite , Modelos Químicos , Conformação Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Vibração
19.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806022

RESUMO

In this study, we synthesized a poly(cyclohexene carbonate) (PCHC) through alternative ring-opening copolymerization of CO2 with cyclohexene oxide (CHO) mediated by a binary LZn2OAc2 catalyst at a mild temperature. A two-dimensional Fourier transform infrared (2D FTIR) spectroscopy indicated that strong intramolecular [C-H···O=C] hydrogen bonding (H-bonding) occurred in the PCHC copolymer, thereby weakening its intermolecular interactions and making it difficult to form miscible blends with other polymers. Nevertheless, blends of PCHC with poly(vinyl phenol) (PVPh), a strong hydrogen bond donor, were miscible because intermolecular H-bonding formed between the PCHC C=O units and the PVPh OH units, as evidenced through solid state NMR and one-dimensional and 2D FTIR spectroscopic analyses. Because the intermolecular H-bonding in the PCHC/PVPh binary blends were relatively weak, a negative deviation from linearity occurred in the glass transition temperatures (Tg). We measured a single proton spin-lattice relaxation time from solid state NMR spectra recorded in the rotating frame [T1ρ(H)], indicating full miscibility on the order of 2-3 nm; nevertheless, the relaxation time exhibited a positive deviation from linearity, indicating that the hydrogen bonding interactions were weak, and that the flexibility of the main chain was possibly responsible for the negative deviation in the values of Tg.


Assuntos
Dióxido de Carbono , Fenol , Cicloexenos , Resinas Epóxi , Ligação de Hidrogênio , Fenóis/química , Polímeros/química , Cloreto de Polivinila , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806176

RESUMO

The plethora of flavonoid antioxidants in plant organisms, widespread in nature, and the appropriate metal ions known for their influence on biological processes constitute the crux of investigations toward the development of preventive metallodrugs and therapeutics in several human pathophysiologies. To that end, driven by the need to enhance the structural and (bio)chemical attributes of the flavonoid chrysin, as a metal ion complexation agent, thereby rendering it bioavailable toward oxidative stress, synthetic efforts in our lab targeted ternary Cr(III)-chrysin species in the presence of auxiliary aromatic N,N'-chelators. The crystalline metal-organic Cr(III)-chrysin-L (L = bipyridine (1) and phenanthroline (2)) compounds that arose were physicochemically characterized by elemental analysis, FT-IR, UV-Visible, ESI-MS, luminescence, and X-ray crystallography. The properties of these compounds in a solid state and in solution formulate a well-defined profile for the two species, thereby justifying their further use in biological experiments, intimately related to cellular processes on oxidative stress. Experiments in C2C12 myoblasts at the cellular level (a) focus on the antioxidant capacity of the Cr(III)-complexed flavonoids, emphasizing their distinct antiradical activity under oxidative stress conditions, and (b) exemplify the importance of structural speciation in Cr(III)-flavonoid interactions, thereby formulating correlations with the antioxidant activity of a bioavailable flavonoid toward cellular pathophysiologies, collectively supporting flavonoid introduction in new metallo-therapeutics.


Assuntos
Antioxidantes , Cromo , Antioxidantes/farmacologia , Quelantes/química , Cromo/química , Flavonoides/química , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...