Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.750
Filtrar
1.
Food Chem ; 336: 127587, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32777657

RESUMO

Thermal processing or the digestion process can alter the forms of arsenic (As) present in food. Identification of As species is necessary to accurately determine the risk associated with food consumption. X-ray absorption near-edge structure (XANES) was used to investigate As species in rice, asparagus, and garlic boiled in water containing As(V), and in their bioaccessible fractions (solubilized As after gastrointestinal digestion). The XANES analysis revealed the presence of As(III) (11871.5 eV) or As(III)-S [As(III)-Cys, 11869.6 eV] solution in the cooked foods and in their bioaccessible fractions. The percentage of trivalent species (12-55%) followed the order asparagus ≫ rice ≈ garlic. In the asparagus and garlic samples, part of the As(V) (tetrahedral form) [11875 eV] that had been added appeared in the form of an octahedral As(V) compound [As(V)-glycerol, 11876 eV]. All these changes could considerably modify the risk associated with ingestion of As-contaminated food.


Assuntos
Arsênico/análise , Espectroscopia por Absorção de Raios X/métodos , Asparagus (Planta)/química , Asparagus (Planta)/metabolismo , Culinária , Análise de Alimentos , Alho/química , Alho/metabolismo , Oryza/química , Oryza/metabolismo
2.
Nat Commun ; 11(1): 5075, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033245

RESUMO

Nickel-iron composites are efficient in catalyzing oxygen evolution. Here, we develop a microorganism corrosion approach to construct nickel-iron hydroxides. The anaerobic sulfate-reducing bacteria, using sulfate as the electron acceptor, play a significant role in the formation of iron sulfide decorated nickel-iron hydroxides, which exhibit excellent electrocatalytic performance for oxygen evolution. Experimental and theoretical investigations suggest that the synergistic effect between oxyhydroxides and sulfide species accounts for the high activity. This microorganism corrosion strategy not only provides efficient candidate electrocatalysts but also bridges traditional corrosion engineering and emerging electrochemical energy technologies.


Assuntos
Desulfotomaculum/metabolismo , Hidróxidos/metabolismo , Níquel/metabolismo , Oxigênio/metabolismo , Corrosão , Teoria da Densidade Funcional , Eletroquímica , Eletrodos , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
3.
J Environ Qual ; 49(1): 184-193, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33016369

RESUMO

Phosphorus deficiency and excess are concomitant problems in agricultural soils of the mid-Atlantic region. A fundamental understanding of soil P speciation is essential to assess P fate and transport in these soils. Current methods for soil P speciation often rely on sequential chemical extractions, which can introduce artifacts during analysis. To overcome limitations of current methods, this study evaluated synchrotron-based micro-focused X-ray fluorescence (µ-XRF) and X-ray absorption near-edge spectroscopy (µ-XANES) techniques to assess soil P speciation in agricultural soils collected from the mid-Atlantic region of the United States. Three soils with varying chemical and physical properties were analyzed with µ-XRF maps collected at high (12,000 eV) and tender (2240 eV) energies to evaluate colocation of P with Fe, Al, Ca, and Si in soil samples, and µ-XANES spectra were collected at the P K-edge for P hotspots. Combined µ-XRF and µ-XANES analysis was useful for identifying Ca phosphate, Fe phosphate, Al-sorbed P, and Fe-sorbed P species in heterogeneous soil samples. X-ray fluorescence maps were valuable to distinguish Al-oxide sorbed P from Fe-oxide sorbed P species. A low signal-to-noise ratio often limited µ-XANES data collection in regions with diffuse, low concentrations of P. Therefore, some P species may not have been detected during analysis. Even with varying degrees of self-absorption and signal-to-noise ratios in µ-XANES spectra, important inferences regarding P speciation in mid-Atlantic soils were made. This study highlights the potential of µ-XANES analysis for use in environmental and agricultural sciences to provide insights into P fate and transport in soils.


Assuntos
Poluentes do Solo/análise , Solo , Fósforo , Síncrotrons , Espectroscopia por Absorção de Raios X
4.
J Environ Qual ; 49(3): 712-722, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33016406

RESUMO

Chromite ore processing residue (COPR) is a waste derived from the chromate extraction from roasted ores and is deposited in some countries in landfills. The objective of this study was to investigate the leaching characteristics of hexavalent Cr [Cr(VI)] from two COPR samples obtained from unlined landfills in the Kanpur area of northern India. Column experiments were conducted under water-saturated conditions to simulate Cr release from the wastes caused by tropical heavy-rain events. Leached Cr(VI) decreased from 1,800 to 300 mg L-1 (Rania site) and 1,200 to 163 mg L-1 (Chhiwali site) during exchange of 12 pore volumes, which approximately corresponds to 2 yr of monsoon precipitation. Flow interruptions for 10, 100, and 1,000 h had little effect on Cr(VI) concentrations in the leachate, suggesting that Cr(VI) leaching was not limited by slow release kinetics. Calcium aluminum chromium oxide hydrates (CAC), and highly soluble phases such as Na2 CrO4 may play a role in controlling Cr(VI) concentration in the leachates. The amount of Cr(VI) leached from the columns accounted for 16% of the total Cr(VI) present in both COPR samples. A decrease in the solid-phase Cr(VI)/Crtotal ratio along the column was identified by X-ray absorption near edge structure (XANES) spectroscopy. Consistently, the smallest Cr(VI)/Crtotal ratios were found in the lower column section closest to the inflow. Our results suggest that Cr(VI) leaching from the unlined COPR landfills will continue for centuries, highlighting the urgent need to remediate these dumpsites.


Assuntos
Cromo/análise , Resíduos Industriais/análise , Índia , Espectroscopia por Absorção de Raios X
5.
Chemosphere ; 254: 126859, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957279

RESUMO

Understanding the long-term fate, stability, and bioavailability of uranium (U) in the environment is important for the management of nuclear legacy sites and radioactive wastes. Analysis of U behavior at natural analogue sites permits evaluation of U biogeochemistry under conditions more representative of long-term equilibrium. Here, we have used bulk geochemical and microbial community analysis of soils, coupled with X-ray absorption spectroscopy and µ-focus X-ray fluorescence mapping, to gain a mechanistic understanding of the fate of U transported into an organic-rich soil from a pitchblende vein at the UK Needle's Eye Natural Analogue site. U is highly enriched in the Needle's Eye soils (∼1600 mg kg-1). We show that this enrichment is largely controlled by U(VI) complexation with soil organic matter and not U(VI) bioreduction. Instead, organic-associated U(VI) seems to remain stable under microbially-mediated Fe(III)-reducing conditions. U(IV) (as non-crystalline U(IV)) was only observed at greater depths at the site (>25 cm); the soil here was comparatively mineral-rich, organic-poor, and sulfate-reducing/methanogenic. Furthermore, nanocrystalline UO2, an alternative product of U(VI) reduction in soils, was not observed at the site, and U did not appear to be associated with Fe-bearing minerals. Organic-rich soils appear to have the potential to impede U groundwater transport, irrespective of ambient redox conditions.


Assuntos
Água Subterrânea/química , Resíduos Radioativos/análise , Solo/química , Urânio/análise , Poluentes Radioativos da Água/análise , Compostos Férricos , Microbiologia do Solo , Urânio/química , Compostos de Urânio/análise , Espectroscopia por Absorção de Raios X
6.
Chemosphere ; 260: 127577, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32758784

RESUMO

Tungsten (W) occurrence and speciation was investigated in sediments collected from Fallon, Nevada where previous studies have linked elevated W levels in human body fluids to an unusual cluster of childhood leukemia cases. The speciation of sedimentary W was determined by µ-XRF mapping and µ-XANES. The W content of the analyzed surface sediments ranged between 81 and 25,908 mg/kg, which is significantly higher than the W content in deeper sediments which ranged from 37 to 373 mg/kg at 30 cm depth. The µ-XANES findings reveal that approximately 20-50% of the total W in the shallow sediment occurs in the metallic form (W0); the rest occurs in the oxide form (WVIO3). Because W0 does not occur naturally, its elevated concentrations in surface sediments point toward a possible local anthropogenic origin. The oxidation of metallic W0 with meteoric waters likely leads to the formation of WVIO3. The chief water-soluble W species was identified as WO42- by chromatographic separation and speciation modeling. These results led us to postulate that W0 particles from a currently unknown but local source(s) is (are) deposited onto the soils and/or surface sediments. The W0 in interaction with meteoric water is oxidized to WVIO3, and as these sediment-water interactions progress, WO42- is formed in the water at pH ∼7. Under pH < 7, and sufficient W concentrations, tungstate tends to polymerize, and polymerized species are less likely to adsorb onto sediments. Polymerized species have lower affinity than monomers, which leads to enhanced mobility of W.


Assuntos
Sedimentos Geológicos/química , Tungstênio/química , Adsorção , Concentração de Íons de Hidrogênio , Nevada , Solo/química , Síncrotrons , Compostos de Tungstênio/química , Espectroscopia por Absorção de Raios X
7.
Proc Natl Acad Sci U S A ; 117(36): 21914-21920, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848065

RESUMO

The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kß X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Humanos , Ferro/química , Ferro/metabolismo , Cinética , Domínios Proteicos , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X
8.
Environ Sci Process Impacts ; 22(7): 1577-1585, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632425

RESUMO

An environmentally aged radioactive particle of UFeO4 recovered from soil contaminated with munitions depleted uranium (DU) was characterised by microbeam synchrotron X-ray analysis. Imaging of uranium speciation by spatially resolved X-ray diffraction (µ-XRD) and X-ray absorption spectroscopy (µ-XAS) was used to localise UFeO4 in the particle, which was coincident with a distribution of U(v). The U oxidation state was confirmed using X-ray Absorption Near Edge Structure (µ-XANES) spectroscopy as +4.9 ± 0.15. Le-Bail fitting of the particle powder XRD pattern confirmed the presence of UFeO4 and a minor alteration product identified as chernikovite (H3O)(UO2)(PO4)·3H2O. Refined unit cell parameters for UFeO4 were in good agreement with previously published values. Uranium-oxygen interatomic distances in the first co-ordination sphere were determined by fitting of Extended X-ray Absorption Fine Structure (µ-EXAFS) spectroscopy. The average first shell U-O distance was 2.148 ± 0.012 Å, corresponding to a U valence of +4.96 ± 0.13 using bond valence sum analysis. Using bond distances from the published structure of UFeO4, U and Fe bond valence sums were calculated as +5.00 and +2.83 respectively, supporting the spectroscopic analysis and confirming the presence of a U(v)/Fe(iii) pair. Overall this investigation provides important evidence for the stability of U(v) ternary oxides, in oxic, variably moist surface environment conditions for at least 25 years.


Assuntos
Poluentes Radioativos do Solo , Urânio , Microanálise por Sonda Eletrônica , Compostos Férricos , Óxidos , Espectroscopia por Absorção de Raios X
9.
Environ Res ; 186: 109607, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32668549

RESUMO

This study investigated the sequestration of dissolved selenate (SeO42-) via co-precipitation in barite for a range of SeO42- concentrations (0-~8650 mg/L), as well as its release at near neutral pH conditions (pH = ~5.5-6.5). Solid precipitates were characterized via X-ray diffraction and subsequent Rietveld refinements, Raman spectroscopy, Brunauer-Emmett-Teller surface area analyses, scanning electron microscopy, electron probe microanalyses (EPMA), inductively coupled plasma optical emission spectroscopy (ICP-OES), and X-ray absorption spectroscopy (XAS). ICP-OES results suggested barite efficiently removed >99% of SeO42- from the test solutions during all co-precipitation experiments. EPMA results showed the SeO42- was sequestered from the aqueous phase via co-precipitation with barite. XAS analyses indicated the SeO42- tetrahedron is incorporated into the barite structure by substituting for sulfate (SO42-) and bonding to Ba2+ atoms through bidentate mononuclear and bidentate binuclear complexes. Dissolution data showed the release of SeO42- sequestered in barite to the aqueous phase is unlikely due to the low solubility and stability of the barite phase. As such, co-precipitation of SeO42- with barite could be effective for removing SeO42- from waters affected by mining and metallurgical operations.


Assuntos
Sulfato de Bário , Sulfatos , Mineração , Ácido Selênico , Espectroscopia por Absorção de Raios X
10.
Chemosphere ; 258: 127285, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32540537

RESUMO

Many instrumental methods of analysis require the daily collection of calibrator signals to calibrate their response. The quality of quantifications based on these calibrations depends on calibrators quality, instrumental signal performance and regression model fitness. Linear Ordinary Least Squares (LOLS), Linear Weighted Least Squares (LWLS) or Linear Bivariate Least Squares (LBLS) regression models can be used to calibrate and evaluate the uncertainty from instrumental quantifications, but require the fulfilment of some assumptions, namely, constant signal variance (LOLS), high calibrators quality (LOLS and LWLS) and linear variation of instrumental signal with calibrator values. The LBLS is flexible regarding calibrator values uncertainty and correlation but requires the determination of calibrator values and signals covariances. This work developed a computational tool for the bottom-up evaluation of global instrumental quantifications uncertainty which simulates calibrator values correlations from entered calibrators preparation procedure and simulates calibrators and samples signals precision from prior precision data, allowing accurate uncertainty evaluation from a few replicate signals of the daily calibration. The used signal precision models were built from previously observed repeatability variation throughout the calibration interval adjusted to daily precision condition from a residual standard deviation adjustment factor. This approach was implemented in a user-friendly MS-Excel file and was successfully applied to the analysis of As, Cd, Ni and Pb in marine sediment extracts by Absorption Spectroscopy. Evaluations were tested by the metrological compatibility of estimated and reference values of control standards for confidence levels of 95% and 99%. The success rates of the compatibility tests were statistically equivalent to the confidence level (p-value>0.01).


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Método de Monte Carlo , Incerteza , Poluentes Químicos da Água/análise , Calibragem , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Metais Pesados/análise , Variações Dependentes do Observador , Valores de Referência , Reprodutibilidade dos Testes , Espectroscopia por Absorção de Raios X/métodos , Espectroscopia por Absorção de Raios X/estatística & dados numéricos
11.
Environ Sci Technol ; 54(11): 6937-6946, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32364717

RESUMO

The rapid progression of piezoelectric technology and the upgradation of electronic devices have resulted in a global increase in Pb-based piezoelectric ceramic materials. In this study, the feasibility of incorporating Pb into a PbZr(PO4)2 double orthophosphate structure was evaluated by investigating the interaction mechanism of the perovskite with phosphate. The unique combination of X-ray absorption spectroscopy, selected area electronic diffraction, and Pawley refinement revealed that Pb was incorporated into a hexagonal structure and tetra-coordinated with oxygen in the phosphate-treated product. The chemical durability was enhanced through the structural alterations via Zr-O-P and Pb-O-P bond linkages. The stable phase encapsulating both Pb and phosphate showed effectiveness not only in stabilizing Pb but also in inhibiting P release as a secondary pollution risk within a wide pH range (1 ≤ pH ≤ 13). Despite the excellent chemical durability of the robust PbZr(PO4)2 crystalline phase, the increased Ti doping amounts at the Zr site resulted in a slight decrease in the lattice parameters and further enhanced the Pb stabilization effect through the formation of PbZrxTi(1-x)(PO4)2 solid solutions. This study demonstrates that the newly robust crystalline structure, developed through a well-designed thermal treatment scheme, provides an effective strategy for the treatment of Pb frequently encountered in electronic wastes.


Assuntos
Chumbo , Fosfatos , Cerâmica , Espectroscopia por Absorção de Raios X , Raios X
12.
Nat Commun ; 11(1): 1757, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273505

RESUMO

NifB is a radical S-adenosyl-L-methionine (SAM) enzyme that is essential for nitrogenase cofactor assembly. Previously, a nitrogen ligand was shown to be involved in coupling a pair of [Fe4S4] clusters (designated K1 and K2) concomitant with carbide insertion into an [Fe8S9C] cofactor core (designated L) on NifB. However, the identity and function of this ligand remain elusive. Here, we use combined mutagenesis and pulse electron paramagnetic resonance analyses to establish histidine-43 of Methanosarcina acetivorans NifB (MaNifB) as the nitrogen ligand for K1. Biochemical and continuous wave electron paramagnetic resonance data demonstrate the inability of MaNifB to serve as a source for cofactor maturation upon substitution of histidine-43 with alanine; whereas x-ray absorption spectroscopy/extended x-ray fine structure experiments further suggest formation of an intermediate that lacks the cofactor core arrangement in this MaNifB variant. These results point to dual functions of histidine-43 in structurally assisting the proper coupling between K1 and K2 and concurrently facilitating carbide formation via deprotonation of the initial carbon radical.


Assuntos
Proteínas de Bactérias/metabolismo , Methanosarcina/metabolismo , Nitrogênio/metabolismo , Nitrogenase/biossíntese , Alanina/genética , Alanina/metabolismo , Proteínas de Bactérias/genética , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/genética , Histidina/metabolismo , Ligantes , Methanosarcina/genética , Mutagênese , Nitrogenase/genética , Espectroscopia por Absorção de Raios X
13.
Sci Total Environ ; 724: 138196, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272405

RESUMO

Direct phytostabilization of alkaline and finely textured Fe-ore tailings is a key challenge for sustainable rehabilitation of tailings landscapes, due to limited topsoil resources available for constructing functional root-zones. The eco-engineering of soils (i.e. technosol) from tailings through the deliberate combination of technic materials with ecological inputs (e.g. biomass, water, topsoil and organisms) may provide a cost-effecctive and sustainable alternative to topsoil-based option for tailings rehabilitation. This approach purposefully accelerates in situ mineral weathering and the development of soil-like physicochemical and biological properties and functions in the tailings. The present study aimed to characterize mineralogical and geochemical changes associated with soil formation in Fe-ore tailings, by admixing biomass organic matter (BOM) and soil inoculum under well-watered conditions. Magnetite Fe-ore tailings (pH ~9.5) were amended with 3% (w/w) BOM (Lucerne hay) and natural soil microbial communities and incubated for 68 days in a microcosm study. BOM amendment with soil inoculum resulted in a rapid neutralization of alkaline pH conditions in the tailings. The weathering of magnetite and biotite-like phyllosilicates were accelerated, resulting in increased concentrations of soluble Mg, K, Fe, Ca, and Si in porewater. Evidence of the accelerated weathering was verified by synchrotron-based Fe K-edge X-ray absorption fine structure (XAFS) spectroscopy analysis, showing the presence of possibly Fe (III)-oxalates. The weathering resulted in eroded morphological surfaces of Fe-bearing minerals in the BOM treated tailings. This study confirmed the expected geochemical and mineralogical changes in the magnetite Fe-ore tailings induced by BOM amendment, providing a fundamental basis for eco-engineering tailings into soil-like technosol.


Assuntos
Óxido Ferroso-Férrico , Poluentes do Solo/análise , Biomassa , Minerais , Solo , Espectroscopia por Absorção de Raios X
14.
Environ Sci Pollut Res Int ; 27(19): 24320-24328, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32306248

RESUMO

Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants such as chromium in its hexavalent state (Cr(VI)). This hazardous form of chromium is therefore regulated with low limit values for agricultural products even though the correct determination of Cr(VI) in these fertilizers may be hampered by redox processes, leading to false results. Thus, we applied the novel diffusive gradients in thin-films (DGT) technique for Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and for most tested materials selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) so that Cr(VI) values are overestimated. Since certain types of the P-fertilizers contain mobile Cr(III) or partly immobile Cr(VI), it is necessary to optimize the DGT binding layers to avoid aforementioned over- or underestimation. Furthermore, our investigations showed that the Cr K-edge XANES spectroscopy technique is unsuitable to determine small amounts of Cr(VI) in fertilizers (below approx. 1% of Cr(VI) in relation to total Cr).


Assuntos
Fertilizantes/análise , Fósforo , Cromo , Difusão , Espectroscopia por Absorção de Raios X
15.
Environ Sci Technol ; 54(7): 4006-4015, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142601

RESUMO

Vanadium contamination is a growing environmental hazard worldwide. Aqueous vanadate (HxVVO4(3-x)-(aq)) concentrations are often controlled by surface complexation with metal (oxyhydr)oxides in oxic environments. However, the geochemical behavior of this toxic redox-sensitive oxyanion in anoxic environments is poorly constrained. Here, we describe results of batch experiments to determine kinetics and mechanisms of aqueous H2VVO4- (100 µM) removal under anoxic conditions in suspensions (2.0 g L-1) of magnetite, siderite, pyrite, and mackinawite. We present results of parallel experiments using ferrihydrite (2.0 g L-1) and Fe2+(aq) (200 µM) for comparison. Siderite and mackinawite reached near complete removal (46 µmol g-1) of aqueous vanadate after 3 h and rates were generally consistent with ferrihydrite, whereas magnetite removed 18 µmol g-1 of aqueous vanadate after 48 h and uptake by pyrite was limited. Removal during reaction with Fe2+(aq) was observed after 8 h, concomitant with precipitation of secondary Fe phases. X-ray absorption spectroscopy revealed V(V) reduction to V(IV) and formation of bidentate corner-sharing surface complexes on magnetite and siderite, and with Fe2+(aq) reaction products. These data also suggest that V(IV) is incorporated into the mackinawite structure. Overall, we demonstrate that Fe(II)-bearing phases can promote aqueous vanadate attenuation and, therefore, limit dissolved V concentrations in anoxic environments.


Assuntos
Compostos Férricos , Vanadatos , Óxido Ferroso-Férrico , Compostos Ferrosos , Oxirredução , Água , Espectroscopia por Absorção de Raios X
16.
Environ Sci Technol ; 54(7): 4641-4650, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32167751

RESUMO

The transformation of Fe-P complexes in bioreactors can be important for phosphorus (P) recovery from sludge. In this research, X-ray absorption near-edge structure analysis was conducted to quantify the transformation of Fe and P species in the sludge of different aging periods and in the subsequent acidogenic cofermentation for P recovery. P was readily removed from wastewater by Fe-facilitated coprecipitation and adsorption and could be extracted and recovered from sludge via acidogenic cofermentation and microbial iron reduction with food waste. The fresh Fe-based sludge mainly contained fresh ferrihydrite and amorphous FePO4 with sufficient accessible surface area, which was favorable for Fe-P mobilization and dissolution via microbial reaction. Ferric iron dosed into wastewater underwent rapid hydrolysis, clustering, aggregation, and slow crystallization to form hydrous iron oxides (HFO) with various complicated structures. With the aging of sludge in bioreactors, the HFO densified into phases with much reduced surface area and reactivity (e.g., goethite), which greatly increased the difficulty of P release and recovery. Thus, aging of P-containing sludge should be minimized in wastewater treatment systems for the purpose of P recovery.


Assuntos
Eliminação de Resíduos , Esgotos , Reatores Biológicos , Compostos Férricos , Alimentos , Ferro , Eliminação de Resíduos Líquidos , Espectroscopia por Absorção de Raios X
17.
Environ Sci Technol ; 54(8): 4840-4846, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32167294

RESUMO

Uranium (U) in situ bioremediation has been investigated as a cost-effective strategy to tackle U contamination in the subsurface. While uraninite was believed to be the only product of bioreduction, numerous studies have revealed that noncrystalline U(IV) species (NCU(IV)) are dominant. This finding brings into question the effectiveness of bioremediation because NCU(IV) species are expected to be labile and susceptible to oxidation. Thus, understanding the stability of NCU(IV) in the environment is of crucial importance. Fe(II) minerals (such as FeS) are often associated with U(IV) in bioremediated or naturally reduced sediments. Their impact on the stability of NCU(IV) is not well understood. Here, we show that, at high dissolved oxygen concentrations, FeS accelerates NCU(IV) reoxidation. We hypothesize that either highly reactive ferric minerals or radical S species produced by the oxidation of FeS drive this rapid reoxidation of NCU(IV). Furthermore, we found evidence for the contribution of reactive oxygen species to NCU(IV) reoxidation. This work refines our understanding of the role of iron sulfide minerals in the stability of tetravalent uranium in the presence of oxygen in a field setting such as contaminated sites or uranium-bearing naturally reduced zones.


Assuntos
Compostos de Urânio , Urânio , Biodegradação Ambiental , Compostos Ferrosos , Sedimentos Geológicos , Oxirredução , Espectroscopia por Absorção de Raios X
18.
Environ Sci Technol ; 54(8): 4820-4828, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32195581

RESUMO

The interaction mechanisms of heavy metals with organo-Fe hydroxides co-precipitates (OFC) remain unclear due to the structural complexity of the OFC. In this study, batch experiments were conducted to investigate the immobilization mechanisms of Cr(III) by the OFC, which was prepared by co-precipitating Fe3+ with rice/rape straw-derived dissolved organic carbon, through sorption and co-precipitation using synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy and scanning transmission X-ray microscopy (STXM). At an Fe/C molar ratio ≥ 0.3, both the sorption and co-precipitation immobilized the majority of Cr(III), but the co-precipitation desorbed less Cr(III) than the sorption regardless of DOC loadings and sources. In contrast, Cr(III) immobilization was significantly reduced at an Fe/C molar ratio of 0.1 for both reactions. Linear combination fitting of Cr K-edge XANES spectra revealed the predominance of ferrihydrite-bound Cr(III), but enhanced organic Cr(III) occurred with increased organic carbon (OC) loading for both the sorption and co-precipitation. STXM coupled with multi-edge XANES analysis confirmed the primary association of Cr(III) with ferrihydrite and directly probed carboxyl as the binding site for Cr(III) retention on the OC constituents of the OFC. These results provided new molecular-level insights into the Cr(III) retention mechanisms on the OFC, particularly for the interactions of Cr(III) and OC constituents of the OFC, which could benefit the management of Cr-contaminated soils with straw returning.


Assuntos
Cromo , Compostos Férricos , Hidróxidos , Espectroscopia por Absorção de Raios X
19.
Chemosphere ; 249: 126173, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32065993

RESUMO

Research presented here utilizes silver nanoparticles (AgNPs) as a case study for how the immediate local environment alters the physical and chemical properties of nanomaterials. Dermal exposure is a primary route for exposure to many of the consumer products containing AgNPs. Interactions between AgNPs and human sweat/perspiration are critical for understanding how changes in Ag speciation will impact exposure. Previous studies have examined silver release from AgNP-containing products after exposure to artificial sweat (AS), however there is no basic assessment of how mixtures of AgNPs and AS alter the physical and chemical properties of AgNPs. The current research evaluated changes in size, aggregation, chemical composition, and silver speciation of four different sizes of AgNPs exposed to four different formulations of AS. The AS formulations were from standardized methods with different chemical compositions, ionic strengths, and pH. Samples were collected at four-time intervals for analysis using dynamic light scattering , UV-Vis spectroscopy, and single-particle inductively coupled plasma-mass spectrometry . Each mixture was also prepared for speciation analysis using X-ray absorption spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray analysis. The equivalent diameter measurements from the three techniques followed the order of DLS > UV-Vis > spICP-MS. Speciation analyses indicate significant changes for the smaller NPs, while the largest (100 nm) NPs had less measurable differences. This study shows the need to fully understand what specific information an analytical technique might provide and to use those techniques properly in tandem to give the fullest answer to a given research question.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Suor/química , Difusão Dinâmica da Luz , Humanos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia por Absorção de Raios X
20.
Environ Sci Technol ; 54(5): 2832-2842, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32019302

RESUMO

Underground repository in crystalline bedrock is a widely accepted solution for long-term disposal of spent nuclear fuels. During future deglaciations, meltwater will intrude via bedrock fractures to the depths of future repositories where O2 left in the meltwater could corrode metal canisters and enhance the migration of redox-sensitive radionuclides. Since glacial meltwater is poor in reduced phases, the quantity and (bio)accessibility of minerogenic Fe(II) in bedrock fractures determine to what extent O2 in future meltwater can be consumed. Here, we determined Fe valence and mineralogy in secondary mineral assemblages sampled throughout the upper kilometer of fractured crystalline bedrock at two sites on the Baltic Shield, using X-ray absorption and Mössbauer spectroscopic techniques that were found to deliver matching results. The data point to extensive O2-consuming capacity of the bedrock fractures, because Fe(II)-rich phyllosilicates were abundant and secondary pyrite was dispersed deep into the bedrock with no overall increase in Fe(II) concentrations and Fe(II)/Fe(III) proportions with depth. The results imply that repeated Pleistocene deglaciations did not cause a measurable decrease in the Fe(II) pool. In surficial fractures, largely opened during glacial unloading, ferrihydrite and illite have formed abundantly via oxidative transformation of Fe(II)-rich phyllosilicates and recently exposed primary biotite/hornblende.


Assuntos
Compostos Férricos , Geologia , Oxirredução , Espectroscopia de Mossbauer , Espectroscopia por Absorção de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA