RESUMO
Calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) contribute to many forms of synaptic plasticity and pathology. They can be distinguished from GluA2-containing calcium-impermeable AMPARs by the inward rectification of their currents, which reflects voltage-dependent channel block by intracellular spermine. However, the efficacy of this weakly permeant blocker is differentially altered by the presence of AMPAR auxiliary subunits - including transmembrane AMPAR regulatory proteins, cornichons, and GSG1L - which are widely expressed in neurons and glia. This complicates the interpretation of rectification as a measure of CP-AMPAR expression. Here, we show that the inclusion of the spider toxin analog 1-naphthylacetyl spermine (NASPM) in the intracellular solution results in a complete block of GluA1-mediated outward currents irrespective of the type of associated auxiliary subunit. In neurons from GluA2-knockout mice expressing only CP-AMPARs, intracellular NASPM, unlike spermine, completely blocks outward synaptic currents. Thus, our results identify a functional measure of CP-AMPARs, that is unaffected by their auxiliary subunit content.
Assuntos
Cálcio , Espermina , Camundongos , Animais , Espermina/farmacologia , Espermina/metabolismo , Cálcio/metabolismo , Receptores de AMPA/metabolismo , Neurônios/fisiologia , Cálcio da Dieta , Proteínas de Membrana/metabolismoRESUMO
The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant's defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study's main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak.
Assuntos
Micorrizas , Quercus , Micorrizas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Quercus/metabolismo , Resistência à Seca , Ácido Abscísico/metabolismo , Betaína/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Secas , Prolina/metabolismoRESUMO
The Vanilloid thermoTRP (TRPV1-4) subfamily of TRP channels are involved in thermoregulation, osmoregulation, itch and pain perception, (neuro)inflammation and immune response, and tight control of channel activity is required for perception of noxious stimuli and pain. Here we report voltage-dependent modulation of each of human TRPV1, 3, and 4 by the endogenous intracellular polyamine spermine. As in inward rectifier K channels, currents are blocked in a strongly voltage-dependent manner, but, as in cyclic nucleotide-gated channels, the blockade is substantially reduced at more positive voltages, with maximal blockade in the vicinity of zero voltage. A kinetic model of inhibition suggests two independent spermine binding sites with different affinities as well as different degrees of polyamine permeability in TRPV1, 3, and 4. Given that block and relief occur over the physiological voltage range of action potentials, voltage-dependent polyamine block may be a potent modulator of TRPV-dependent excitability in multiple cell types.
Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Espermina , Humanos , Espermina/farmacologia , Espermina/metabolismo , Poliaminas/farmacologia , Poliaminas/metabolismo , Potenciais de Ação/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismoRESUMO
Polyamines (PAs), one of plant growth regulators, play an important role in the plant resistance to drought stress. However, the precise function of putrescine (Put) transformation to other forms of PAs is not clear in filling maize grain embryos. In this study, two maize (Zea mays L.) cultivars, Yedan No. 13 (drought-resistant) and Xundan No. 22 (drought-sensitive), were used as experimental materials. Maize was planted in big plastic basins during whole growth period, and from the 25th day after fertilization, the plants were treated with drought (-1.0 MPa), PAs and inhibitors for 12 d. The experiments were performed during three consecutive years. The changes in the levels of three main free PAs, Put, spermidine (Spd) and spermine (Spm), covalently conjugated PAs (perchloric acid-soluble), covalently bound PAs (perchloric acid-insoluble), the activities of arginine decarboxylase, S-adenosylmethionine decarboxylase, and transglutaminase were investigated in embryos of filling grains. During drought stress, free Put increased from 109 to 367 nmol g-1 FW and from 107 to 142 nmol g-1 FW in Xundan 22 and in Yedan 13, respectively. Meanwhile, free Spd, free Spm and bound Put increased 2.7, 3.0 and 4.2 times in Yedan 13, respectively, and they merely increased about 1.5 times in Xundan 22. These results suggested that free Spd/Spm and bound Put, which were transformed from free Put, were possibly involved in drought resistance. Exogenous Spd treatment enhanced the drought-induced increase in endogenous free Spd/Spm content in drought-sensitive Xundan 22, coupled with the increase in drought resistance, as judged by the decrease in ear leaf relative plasma membrane permeability and increases in ear leaf relative water content, 1000-grain weight and grain number per ear. The suggestion was further testified with methylglyoxal-bis guanylhydrazone and o-phenanthrolin treatments. Collectively, it could be inferred that transformation of free Put to free Spd/Spm and bound Put in filling grain embryos functioned in enhancing the resistance of maize plants to soil drought.
Assuntos
Poliaminas , Putrescina , Poliaminas/metabolismo , Putrescina/metabolismo , Zea mays/metabolismo , Secas , Espermidina/farmacologia , Espermina/metabolismo , Grão Comestível/metabolismoRESUMO
Honey bee health has been an important and ongoing topic in recent years. Honey bee is also an important model organism for aging studies. Polyamines, putrescine, spermidine and spermine, are ubiquitous polycations, involved in a wide range of cellular processes such as cell growth, gene regulation, immunity, and regulation of lifespan. Spermidine, named longevity elixir, has been most analysed in the context of aging. One of the several proposed mechanisms behind spermidine actions is antioxidative activity. In present study we showed that dietary spermidine supplementation: (a) improved survival, (b) increased the average lifespan, (c) influenced the content of endogenous polyamines by increasing the level of putrescine and spermidine and decreasing the level of spermine, (d) reduced oxidative stress (MDA level), (e) increased the antioxidant capacity of the organism (FRAP), (f) increased relative gene expression of five genes involved in polyamine metabolism, and (g) upregulated vitellogenin gene in honey bees. To our knowledge, this is the first study on honey bee polyamine levels in reference to their longevity. These results provide important information on possible strategies for improving honey bee health by introducing spermidine into their diet. Here, we offer spermidine concentrations that could be considered for that purpose.
Assuntos
Poliaminas , Espermidina , Abelhas , Animais , Espermidina/farmacologia , Espermidina/metabolismo , Poliaminas/metabolismo , Espermina/farmacologia , Espermina/metabolismo , Putrescina/metabolismo , Longevidade , Suplementos NutricionaisRESUMO
Leishmania is a protozoan that causes leishmaniasis, a neglected tropical disease with clinical manifestations classified as cutaneous, mucocutaneous, and visceral leishmaniasis. In the infection context, the parasite can modulate macrophage gene expression affecting the microbicidal activity and immune response. The metabolism of L-arginine into polyamines putrescine, spermidine, and spermine reduces nitric oxide (NO) production, favoring Leishmania survival. Here, we investigate the effect of supplementation with L-arginine and polyamines in infection of murine BALB/c macrophages by L. amazonensis and in the transcriptional regulation of genes involved in arginine metabolism and proinflammatory response. We showed a reduction in the percentage of infected macrophages upon putrescine supplementation compared to L-arginine, spermidine, and spermine supplementation. Unexpectedly, deprivation of L-arginine increased nitric oxide synthase (Nos2) gene expression without changes in NO production. Putrescine supplementation increased transcript levels of polyamine metabolism-related genes Arg2, ornithine decarboxylase (Odc1), Spermidine synthase (SpdS), and Spermine synthase (SpmS), but reduced Arg1 in L. amazonensis infected macrophages, while spermidine and spermine promoted opposite effects. Putrescine increased Nos2 expression without leading to NO production, while L-arginine plus spermine led to NO production in uninfected macrophages, suggesting that polyamines can induce NO production. Besides, L-arginine supplementation reduced Il-1b during infection, and L-arginine or L-arginine plus putrescine increased Mcp1 at 24h of infection, suggesting that polyamines availability can interfere with cytokine/chemokine production. Our data showed that putrescine shifts L-arginine-metabolism related-genes on BALB/c macrophages and affects infection by L. amazonensis.
Assuntos
Leishmania , Leishmaniose , Animais , Camundongos , Putrescina/farmacologia , Putrescina/metabolismo , Espermidina/farmacologia , Espermidina/metabolismo , Espermina/metabolismo , Poliaminas/metabolismo , Leishmaniose/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Óxido Nítrico Sintase/metabolismo , Macrófagos/metabolismo , Arginina/farmacologia , Arginina/metabolismo , Suplementos NutricionaisRESUMO
Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: ⢠Polyamine supplementation enhanced cell growth and production in a dose-dependent manner ⢠Polyamine type and concentration in the media affected mAb quality ⢠Optimizing polyamines in the media is suggested in CHO cell bioprocessing.
Assuntos
Poliaminas , Espermidina , Cricetinae , Animais , Poliaminas/farmacologia , Poliaminas/metabolismo , Células CHO , Cricetulus , Espermidina/metabolismo , Putrescina/farmacologia , Putrescina/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Proliferação de CélulasRESUMO
Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N1 -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity). Combining kinetics, HPLC-MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays, acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl-CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N6 -acetyl-Lys, whereas N5 -acetyl-Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta.
Assuntos
Poliaminas , Espermidina , Animais , Humanos , Poliaminas/metabolismo , Espermina/metabolismo , Zea mays/metabolismo , Lisina/metabolismo , Ornitina/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Mamíferos/metabolismoRESUMO
Regarding the development of new antineoplastic agents, with a view to assess the selective antitumoral potential which aims at causing irreversible damage to cancer cells while preserving the integrity of their healthy counterparts, it is essential to evaluate the cytotoxic effects in both healthy and malignant human cell lines. In this study, a complex with two Pd(II) centers linked by the biogenic polyamine spermine (Pd2Spm) was tested on healthy (PNT-2) and cancer (LNCaP and PC-3) prostate human cell lines, using cisplatin as a reference. To understand the mechanisms of action of both cisplatin and Pd2Spm at a molecular level, Fourier Transform Infrared (FTIR) and Raman microspectroscopies were used. Principal component analysis was applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug impact. The main changes were observed between the B-DNA native conformation and either Z-DNA or A-DNA, with a higher effect on lipids having been detected in the presence of cisplatin as compared to Pd2Spm. In turn, the Pd-agent showed a more significant impact on proteins.
Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Espermina/farmacologia , Espermina/metabolismo , Lipídeos , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Acrolein (CH2=CH-CHO), an unsaturated aldehyde produced from spermine, is one of the major contributors to oxidative stress. Acrolein has been found to be more toxic than reactive oxygen species (H2O2 and â¢OH), and it can be easily conjugated with proteins, bringing about changes in nature of the proteins. Acrolein is detoxified by glutathione in cells and was found to be mainly produced from spermine through isolating two cell lines of acrolein-resistant Neuro2a cells. The molecular characteristics of acrolein toxicity and tissue damage elicited by acrolein were investigated. It was found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH); cytoskeleton proteins such as vimentin, actin, α- and ß-tubulin proteins; and apolipoprotein B-100 (ApoB100) in LDL are strongly damaged by acrolein conjugation. In contrast, activities of matrix metalloproteinase-9 (MMP-9) and proheparanase (proHPSE) are enhanced, and antibody-recognizing abilities of immunoglobulins are modified by acrolein conjugation, resulting in aggravation of diseases. The functional changes of these proteins by acrolein have been elucidated at the molecular level. The findings confirmed that acrolein is the major contributor causing tissue damage in the elderly.
Assuntos
Acroleína , Espermina , Humanos , Idoso , Espermina/metabolismo , Acroleína/metabolismo , Peróxido de Hidrogênio/metabolismo , Aldeídos , ProteínasRESUMO
Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure-activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.
Assuntos
Poliaminas , Espermidina , Animais , Poliaminas/metabolismo , Espermidina/metabolismo , Compostos de Boro , Espermina/metabolismo , Putrescina/metabolismo , Transporte Biológico , Mamíferos/metabolismo , Corantes Fluorescentes , Adenosina Trifosfatases/metabolismoRESUMO
We aimed to examine the effects of brain ischemia-reperfusion (IR) especially on serum parameters or liver enzymes, free radicals, cytokines, oxidatively damaged DNA, spermidine/spermine N-1-acetyltransferase (SSAT). The effects of addition of putrescine on IR will be evaluated in terms of inflammation and oxidant-antioxidant balance in liver.The study was conducted on 46 male Albino Wistar rats weighing 200-250 g. The rats were grouped into: 1-Sham group (n = 6). 2-IR group (n = 8): The carotid arteries were ligated for 30-min and reperfusion was achieved for 30-min under general anesthesia. 3-Ischemia + putrescine + reperfusion group (IPR) (n = 8): Unlike the IR group, a single dose of 250 µmol kg-1 putrescine was given by gavage at the beginning of reperfusion. In putrescine treatment groups in addition to the procedures performed in the IR group a total of 4 doses of 250 µmol kg-1 putrescine were given at 12-h intervals, with the first dose immediately after 30-min reperfusion (4-IR+putrescine group (IR+P1) (n = 8)); 3 h after the 30-min reperfusion (5-IR+putrescine group (IR+P2) (n = 8)); 6 h after the 30-min reperfusion (6-IR+putrescine group (IR+P3) (n = 8)). ALT, AST, ATP, NO, SSAT, 8-OHdG levels were analyzed in the serum, and liver samples. NF-κB and IL-6 levels were analyzed in the liver samples.Brain IR causes inflammatory, oxidative and DNA damage in the liver, and putrescine supplementation through gavage reduces liver damage by showing anti-inflammatory and antioxidant effects.
Assuntos
Isquemia Encefálica , Putrescina , Ratos , Masculino , Animais , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo , Espermina/farmacologia , Fígado , Inflamação/metabolismo , Ratos Wistar , Estresse Oxidativo , Isquemia Encefálica/metabolismo , Reperfusão , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferases/farmacologiaRESUMO
Polyamines are low molecular weight compounds that are present in all living organisms. They are related to the pathological processes, and have been studied as biomarkers for tumor progression, being analyzed in patients' biological fluids. However, polyamines can undergo degradation in serum samples, depending on storage conditions, which impairs their quantification in these matrices. In this work, capillary electrophoresis using indirect ultraviolet detection has been developed and applied to evaluate the stability of polyamines [cadaverine (Cad), putrescine (Put), spermine (Spm), and spermidine (Spd)] in human serum at different storage temperatures. By using this method, Cad, Put, Spm, and Spd were separated in less than 4 min. The range of the correlation coefficients was 0.993-0.998. The corresponding limits of detection and quantification were as follows (in mg L-1 ): Spm: 0.209 and 0.697; Spd: 0.165 and 0.549; Put: 0.189 and 0.632; Cad: 0.125 and 0.417. Besides, the coefficient of variation was lower than 1% for all analytes and the recovery was 92%-110%. The method was successfully applied for polyamines spiked in human serum samples from healthy people. The results showed that the degradation of polyamines was lower in samples stored in a freezer (-20°C).
Assuntos
Poliaminas , Espermidina , Humanos , Poliaminas/análise , Poliaminas/metabolismo , Temperatura , Espermidina/metabolismo , Putrescina/metabolismo , Espermina/metabolismo , Cadaverina , Eletroforese Capilar/métodosRESUMO
Inward-rectifier potassium channels (Kirs) are lipid-gated ion channels that differ from other K+ channels in that they allow K+ ions to flow more easily into, rather than out of, the cell. Inward rectification is known to result from endogenous magnesium ions or polyamines (e.g., spermine) binding to Kirs, resulting in a block of outward potassium currents, but questions remain regarding the structural and dynamic basis of the rectification process and lipid-dependent channel activation. Here, we present the results of long-timescale molecular dynamics simulations starting from a crystal structure of phosphatidylinositol 4,5-bisphosphate (PIP2)-bound chicken Kir2.2 with a non-conducting pore. After introducing a mutation (G178R) that is known to increase the open probability of a homologous channel, we were able to observe transitions to a stably open, ion-conducting pore, during which key conformational changes occurred in the main activation gate and the cytoplasmic domain. PIP2 binding appeared to increase stability of the pore in its open and conducting state, as PIP2 removal resulted in pore closure, with a median closure time about half of that with PIP2 present. To investigate structural details of inward rectification, we simulated spermine binding to and unbinding from the open pore conformation at positive and negative voltages, respectively, and identified a spermine-binding site located near a previously hypothesized site between the pore cavity and the selectivity filter. We also studied the effects of long-range electrostatics on conduction and spermine binding by mutating charged residues in the cytoplasmic domain and found that a finely tuned charge density, arising from basic and acidic residues within the cytoplasmic domain, modulated conduction and rectification.
Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Espermina/metabolismo , Poliaminas/metabolismo , Potássio/metabolismo , Lipídeos , Oócitos/metabolismoRESUMO
Deoxyribonucleic acid-protein (DNAP) of the cell nucleus was purified from developing wheat (Triticum aestivum L.) embryo cells under drought stress, with two cultivars differing in drought tolerance as experimental materials - Longmai No. 079 (drought-tolerant) and Wanmai No. 52 (drought-sensitive). Levels of polyamines (PAs) non-covalently conjugated to the DNA and covalently conjugated to the proteins of DNAP were detected. After soil drought treatment for 10 days, in drought-tolerant Longmai No. 079, the increases in the levels of spermine and spermidine non-covalently conjugated to DNA of DNAP were more statistically significant (P<0.05) than in drought-sensitive Wanmai No. 52. Treatment of Wanmai No. 52 with exogenous Spm could not only enhance the tolerance of the cultivar to drought stress, as judged by flag leaf water content, plasma membrane permeability and grain growth, but also elevate the levels of spermine and spermidine noncovalently conjugated to the DNA of the cultivar. On the contrary, treatment of Longmai No. 079 with methylglyoxyl-bis guanylhydrazone, an inhibitor of S-adenosylmethionine decarboxylase, could significantly (P<0.05) aggravate the drought stress to this cultivar, accompanied by a marked decreases in the levels of spermine and spermidine non-covalently conjugated to the DNA of the cultivar. On the other hand, the content of putrescine covalently conjugated to the proteins of DNAP rose more markedly (P<0.05) in Longmai No. 079 than in Wanmai No. 52. The transglutaminase inhibitor, o-phenanthrolin, could markedly reduce the drought-induced increase in the level of putrescine covalently conjugated to the proteins of DNAP and aggravate drought stress to the two cultivars. Collectively, it could be inferred that spermine and spermidine non-covalently conjugated to the DNA and putrescine covalently conjugated to the proteins of DNAP in the developing grain embryo cell nucleus might enhance the tolerance of wheat plants to soil drought.
Assuntos
Poliaminas , Espermina , Poliaminas/metabolismo , Espermina/metabolismo , Espermidina/metabolismo , Triticum , Putrescina , Secas , Grão Comestível/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/metabolismoRESUMO
An extreme thermophile, Thermus thermophilus, produces 16 different polyamines including long-chain and branched-chain polyamines. The composition and content of polyamines in the thermophile cells change not only with growth temperature but also with pH changes. In particular, cell growth decreased greatly at alkaline medium together with significant changes in the composition and content of polyamines. The amounts of tetraamines (spermine and its homologs) markedly decreased at alkaline pH. Thus, we knocked out the speE gene, which is involved in the biosynthesis of tetraamines, and changes of composition of polyamines with pH changes in the mutant cells were studied. Cell growth in the ΔspeE strain was decreased compared with that of the wild-type strain for all pHs, suggesting that tetraamines are important for cell proliferation. Interestingly, the amount of spermidine decreased and that of putrescine increased in wild-type cells at elevated pH, although T. thermophilus lacks a putrescine synthesizing pathway. In addition, polyamines possessing a diaminobutane moiety, such as spermine, decreased greatly at high pH. We assessed whether the speB gene encoding aminopropylagmatine ureohydrolase (TtSpeB) is directly involved in the synthesis of putrescine. The catalytic assay of the purified enzyme indicated that TtSpeB accepts agmatine as its substrate and produces putrescine due to the change in substrate specificity at high pH. These results suggest that pH stress was exacerbated upon intracellular depletion of polyamines possessing a diaminobutane moiety induced by unusual changes in polyamine biosynthesis under high pH conditions.
Assuntos
Espermina , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Espermina/metabolismo , Putrescina/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismoRESUMO
Endogenous polyamines such as putrescine (Put), spermidine (Spd), and spermine (Spm) affect adipocyte differentiation. In this study, we investigated the effect of exogenously supplemented polyamines on mouse adipocyte differentiation and anti-obesity actions in vitro and in vivo. The preadipocyte cell line, 3T3-L1, was cultured with Put, Spd, or Spm, and lipid accumulation in the cells was measured by Oil Red O staining. Lipid accumulation was significantly suppressed by Spm. Suppression of CCAAT/enhancer binding protein α mRNA by Spm suggested that the decreased lipid accumulation was due to delaying the cell differentiation. The body weight and fat of obese mice induced with a high-fat diet were reduced by oral ingestion of Spm. In conclusion, oral supplementation of Spm has the ability to prevent obesity through inhibition of adipocyte differentiation.
Assuntos
Fármacos Antiobesidade , Espermina , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Diferenciação Celular , Lipídeos/farmacologia , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , RNA Mensageiro/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Espermina/farmacologiaRESUMO
Previously, we reported that the combined use of spermine (SPM) and sodium taurocholate (STC) (SPM-STC) significantly improves the oral absorption of rebamipide (BCS class IV) and pulmonary absorption of interferon-α without any harmful histopathological changes in the gastrointestinal tract and lungs, respectively. In the present study, we examined the effect of SPM-STC on the transport of fluorescein isothiocyanate-labeled dextrans (FDs) across Caco-2 cell monolayers and attempted to clarify the mechanisms underlying the transport enhancement caused by SPM-STC. SPM-STC were found to significantly enhance the transport of FDs, while the treatment with SPM-STC was not harmful, and the decrease in transepithelial electrical resistance was transient and reversible. The voltage-clamp study clearly indicated that the opening of the paracellular route could be mainly responsible for the enhanced transport of FD-4. As for the mechanisms, it was found that SPM-STC caused a significant increase in membrane fluidity, which would lead to the enhanced transport of small-molecule drugs such as rebamipide. Since SPM-STC increased intracellular Ca2+ via Ca2+ uptake through Ca2+ channels and Ca2+ release from the endoplasmic reticulum stimulated by the IP3 pathway, the subsequent possible activation of the MLCK signaling pathway would have led to the contraction of the actin-myosin ring. The rearrangement of tight junction-constituting proteins induced through the MAPK pathway has also been suggested as a possible mechanism for opening tight junctions. Claudin-4, a key protein constituting the tight junction, merged with F-actin along with the plasma membrane, was significantly decreased, which would be at least partial structural evidence for the tight-junction opening.
Assuntos
Espermina , Ácido Taurocólico , Humanos , Espermina/farmacologia , Espermina/química , Espermina/metabolismo , Células CACO-2 , Ácido Taurocólico/metabolismo , Ácido Taurocólico/farmacologia , Fluoresceína-5-Isotiocianato/metabolismo , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismoRESUMO
Postbiotics is a novel term proposed to describe as a set of bioactive compounds obtained from beneficial microorganisms. In this work, postbiotics from four lactic acid bacteria (LAB) including Leuconostoc mesenteroides subsp. cremoris, Pediococcus acidilactici, Lactococcus lactis subsp. lactis and Streptococcus thermophilus were prepared in MRS broth. The antimicrobial properties and organic acids content of postbiotics were also investigated. Postbiotics were used to tentatively reduce the production of biogenic amines by foodborne pathogens (i.e., Salmonella paratyphi A and Escherichia coli) on lysine decarboxylase broth (LDB). Experimental data showed that acetic, propionic, and butyric acids were in the range of 387.51-709.21 mg/L, 0.00-1.28 mg/L, and 0.00-20.98 mg/L, respectively. The inhibition zone of postbiotics on E. coli and S. paratyphi A were 11.67, and 12.33 mm, respectively. Two different levels of postbiotics (25%, and 50%) were used in LDB to measure the diamines (cadaverine and putrescine), polyamines (agmatine, spermidine, and spermine, ammonia), and other biogenic amine formation by pathogens. E. coli produced cadaverine and putrescine with concentrations of 1072.21 and 1114.18 mg/L, respectively. The postbiotics reduced cadaverine formation by 67% in E. coli, and cadaverine production was mostly suppressed by postbiotics from P. acidilactici in E. coli (97%) and L. lactis subsp. lactis in S. paratyphi A (90%). Putrescine production by E. coli was reduced by 94% with postbiotics of P. acidilactici at a concentration of 25%, whereas putrescine production by S. paratyphi A has been decreased by 61% in the presence of postbiotics from L. lactis subsp. Lactis with a 25% concentration. The results revealed that an increase in postbiotics concentration (from 25% to 50%) in LDB may lead to synergistic effects, resulting from the production of biogenic amines by microbial pathogens. It was importantly concluded that postbiotics of LAB may degrade biogenic amines or prevent their formation by foodborne pathogens.
Assuntos
Agmatina , Carboxiliases , Lactococcus lactis , Agmatina/metabolismo , Agmatina/farmacologia , Amônia/metabolismo , Aminas Biogênicas/metabolismo , Aminas Biogênicas/farmacologia , Butiratos/metabolismo , Cadaverina/metabolismo , Carboxiliases/metabolismo , Escherichia coli/metabolismo , Lactococcus lactis/metabolismo , Lisina/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo , Espermina/farmacologiaRESUMO
Manganese (Mn) toxicity in soil is a widely observed phenomenon, which seriously restricts growth, quality, and yield of various crops and fruits including apples. However, mechanisms underlying the regulation of polyamines (PAs) by brassinosteroids (BRs) to improve tolerance to Mn stress are still unclear. In this study, we investigated the effects of 2,4-epibrassinolide (EBL; a BR) on the expression of genes involved in BR signaling pathway, Mn accumulation, PAs-mediated responses (PA precursor levels, metabolic enzymes, and genes), and growth parameters in Mn-stressed Malus robusta Rehd. EBL application significantly modulated the expressions of genes related to BR signaling (MdBRI, MdBSK, etc.) and reduced Mn accumulation, along with improving the rate of increase in root length and plant height, relative water content, chlorophyll content, maximum photochemical efficiency of PSII (Fv/Fm), and actual photochemical efficiency (ΦPSII) and decreasing electrical conductivity. Furthermore, EBL application significantly reduced putrescine (Put) accumulation and increased spermine (Spm) content and (Spd + Spm)/Put ratio. EBL weakened ornithine (Orn) pathway, decreased ornithine decarboxylase (ODC) activity, and increased biosynthesis of Spm from Put via elevating the PA oxidase (PAO) activity and expression of MdSPDS, MdSPMS, and MdPAO. The trends for free, PS-conjugated, and PIS-bound PAs were similar to that of total PAs, except that no significant change was observed in free Spm, PS-conjugated Spd, and Spm, as well as PIS-bound Spd. This study revealed that BR-regulated PAs help in mitigating Mn toxicity and clarified the mechanisms of regulation of PAs by BRs in apple trees.