Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.749
Filtrar
1.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610025

RESUMO

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Assuntos
Antineoplásicos , Ganoderma , Células-Tronco Mesenquimais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Docetaxel , Cisplatino , Espécies Reativas de Oxigênio , Esporos Fúngicos , Hematopoese , Fluoruracila , Lipídeos
2.
Appl Microbiol Biotechnol ; 108(1): 291, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592509

RESUMO

Melanin is an Aspergillus flavus cell wall component that provides chemical and physical protection to the organism. However, the molecular and biological mechanisms modulating melanin-mediated host-pathogen interaction in A. flavus keratitis are not well understood. This work aimed to compare the morphology, surface proteome profile, and virulence of melanized conidia (MC) and non-melanized conidia (NMC) of A. flavus. Kojic acid treatment inhibited melanin synthesis in A. flavus, and the conidial surface protein profile was significantly different in kojic acid-treated non-melanized conidia. Several cell wall-associated proteins and proteins responsible for oxidative stress, carbohydrate, and chitin metabolic pathways were found only in the formic acid extracts of NMC. Scanning electron microscopy (SEM) analysis showed the conidial surface morphology difference between the NMC and MC, indicating the role of melanin in the structural integrity of the conidial cell wall. The levels of calcofluor white staining efficiency were different, but there was no microscopic morphology difference in lactophenol cotton blue staining between MC and NMC. Evaluation of the virulence of MC and NMC in the Galleria mellonella model showed NMC was less virulent compared to MC. Our findings showed that the integrity of the conidial surface is controlled by the melanin layer. The alteration in the surface protein profile indicated that many surface proteins are masked by the melanin layer, and hence, melanin can modulate the host response by preventing the exposure of fungal proteins to the host immune defense system. The G. mellonella virulence assay also confirmed that the NMC were susceptible to host defense as in other Aspergillus pathogens. KEY POINTS: • l-DOPA melanin production was inhibited in A. flavus isolates by kojic acid, and for the first time, scanning electron microscopy (SEM) analysis revealed morphological differences between MC and NMC of A. flavus strains • Proteome profile of non-melanized conidia showed more conidial surface proteins and these proteins were mainly involved in the virulence, oxidative stress, and metabolism pathways • Non-melanized conidia of A. flavus strains were shown to be less virulent than melanised conidia in an in vivo virulence experiment with the G. melonella model.


Assuntos
Melaninas , Proteínas de Membrana , Aspergillus flavus , Esporos Fúngicos , Proteoma , Virulência
3.
Food Microbiol ; 121: 104518, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637080

RESUMO

Pulsed light (PL) inactivates microorganisms by UV-rich, high-irradiance and short time pulses (250 µs) of white light with wavelengths from 200 nm to 1100 nm. PL is applied for disinfection of food packaging material and food-contact equipment. Spores of seven Bacillus ssp. strains and one Geobacillus stearothermophilus strain and conidia of filamentous fungi (One strain of Aspergillus brasiliensis, A. carbonarius and Penicillium rubens) were submitted to PL (fluence from 0.23 J/cm2 to 4.0 J/cm2) and UVC (at λ = 254 nm; fluence from 0.01 J/cm2 to 3.0 J/cm2). One PL flash at 3 J/cm2 allowed at least 3 log-reduction of all tested microorganisms. The emetic B. cereus strain F4810/72 was the most resistant of the tested spore-forming bacteria. The PL fluence to 3 log-reduction (F3 PL) of its spores suspended in water was 2.9 J/cm2 and F3 UVC was 0.21 J/cm2, higher than F3 PL and F3 UVC of spores of B. pumilus SAFR-032 2.0 J/cm2 and 0.15 J/cm2, respectively), yet reported as a highly UV-resistant spore-forming bacterium. PL and UVC sensitivity of bacterial spores was correlated. Aspergillus spp. conidia suspended in water were poorly sensitive to PL. In contrast, PL inactivated Aspergillus spp. conidia spread on a dry surface more efficiently than UVC. The F2 PL of A. brasiliensis DSM1988 was 0.39 J/cm2 and F2 UVC was 0.83 J/cm2. The resistance of spore-forming bacteria to PL could be reasonably predicted from the knowledge of their UVC resistance. In contrast, the sensitivity of fungal conidia to PL must be specifically explored.


Assuntos
Esporos Bacterianos , Raios Ultravioleta , Esporos Bacterianos/fisiologia , Esporos Fúngicos , Luz , Bactérias , Água
4.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642078

RESUMO

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Assuntos
Cordyceps , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento , Melhoramento Vegetal , Adenosina , Esporos Fúngicos/genética
5.
Fungal Biol ; 128(2): 1643-1656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575237

RESUMO

Microsclerotia (MS) are considered one of the most promising propagules for use as active ingredients in biopesticides due to their tolerance to abiotic factors and ability to produce infective conidia for the control of pests. Therefore, the objective of this research was to establish the conditions required to induce the formation of microsclerotia in Metarhizium robertsii Mt004 and to study its development process, tolerance to abiotic factors and insecticidal activity of MS-derived conidia. M. robertsii started to form hyphal aggregates after 2 days and looked more compact after 8 days. MS were mature and pigmented after 20 days. The final yield was 2.0 × 103 MS/mL and MS size varied between 356.9 and 1348.4 µm. Ultrastructure analysis revealed that mature MS contained only a few live cells embedded in an extracellular matrix. Mature MS were more tolerance to UV-B radiation, heat and storage trials than conidia from Solid State Fermentation. MS-derived conidia were as virulent as conidia against Diatraea saccharalis larvae. These results showed that MS are promising propagules for the development of more persistent and efficient biopesticides for harsh environmental conditions. Our findings provide a baseline for production and a better understanding of microsclerotia development in M. robertsii strains.


Assuntos
Inseticidas , Metarhizium , Inseticidas/farmacologia , Agentes de Controle Biológico , Meios de Cultura/química , Esporos Fúngicos , Controle Biológico de Vetores/métodos
6.
Fungal Biol ; 128(2): 1705-1713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575244

RESUMO

The effects of acoustic waves on growth inhibition of food spoilage fungi (Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus and Botrytis cinerea) on the medium and strawberry surfaces were investigated. Firstly, single-frequency sound waves (250, 500, 1000, 2000, 4000, 8000, 12,000 and 16,000 Hz) were induced on inoculated medium with fungi spores for 24 h and growth diameter of each mold was evaluated during the incubation period. In the second stage, the sound waves with two frequencies of 250 Hz and 16,000 Hz were induced on inoculated strawberries with fungi spores at 5 °C for different times (2, 4, 6, 8 and 10 days). The results from the first stage indicated that the sound waves inhibited the growth of A. niger (20.02%) at 250 Hz and B. cinerea (4/64%) at 4000 Hz on potato dextrose agar (PDA) surface. Also, comparison of the growth diameter of some species of Aspergillus revealed various responses in presence of 250 Hz frequency. In the second stage, applying a frequency of 250 Hz over a period of 10 days proved to be more effective in inhibiting the growth of A. niger and B. cinerea on strawberries inoculated with fungal spores. Consequently, the shelf lives of the strawberries significantly increased to 26 days and 18 days, respectively, under this treatment. Based on the findings, it is concluded that sounding with acoustic waves can be used as a green and cheap technology along with other technologies to improve food safety.


Assuntos
Fragaria , Fragaria/microbiologia , Frutas/microbiologia , Esporos Fúngicos , Aspergillus niger , Som
7.
PLoS One ; 19(4): e0301584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578716

RESUMO

Argentina is among the most important lemon fruit producers in the world. Penicillium digitatum is the primary lemon fungal phytopathogen, causing green mold during the postharvest. Several alternatives to the use of synthetic fungicides have been developed, being the use of biocontrol yeasts one of the most promising. Although many of the reports are based on the use of a single yeast species, it has been shown that the combination of agents with different mechanisms of action can increase control efficiency through synergistic effects. The combined use of native yeasts with different mechanisms of action had not been studied as a biological control strategy in lemons. In this work, the mechanisms of action of native yeasts (Clavispora lusitaniae AgL21, Clavispora lusitaniae AgL2 and Clavispora lusitaniae AcL2) with biocontrol activity against P. digitatum were evaluated. Isolate AgL21 was selected for its ability to form biofilm, colonize lemon wounds, and inhibit fungal spore germination. The compatibility of C. lusitaniae AgL21 with two killer yeasts of the species Kazachstania exigua (AcL4 and AcL8) was evaluated. In vivo assays were then carried out with the yeasts applied individually or mixed in equal cell concentrations. AgL21 alone was able to control green mold with 87.5% efficiency, while individual killer yeasts were significantly less efficient (43.3% and 38.3%, respectively). Inhibitory effects were increased when C. lusitaniae AgL21 and K. exigua strains were jointly applied. The most efficient treatment was the combination of AgL21 and AcL4, reaching 100% efficiency in wound protection. The combination of AgL21 with AcL8 was as well promising, with an efficiency of 97.5%. The combined application of native yeasts showed a synergistic effect considering that the multiple mechanisms of action involved could hinder the development of green mold in lemon more efficiently than using single yeasts. Therefore, this work demonstrates that the integration of native yeasts with diverse modes of action can provide new insights to formulate effective microbial consortia. This could lead to the development of tailor-made biofungicides, allowing control of postharvest fungal diseases in lemons while remaining competitive with traditionally used synthetic chemicals.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , Saccharomycetales , Leveduras , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Esporos Fúngicos , Frutas/microbiologia , Doenças das Plantas/microbiologia
8.
J Cell Mol Med ; 28(6): e18223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451046

RESUMO

Hepatoblastoma (HB), a primary liver tumour, is notorious for its high metastatic potential and poor prognosis. Ganoderma lucidum, an edible mushroom species utilized in traditional Chinese medicine for addressing various tumour types, presents an intriguing avenue for HB treatment. However, the effectiveness of G. lucidum in managing HB and its underlying molecular mechanism necessitates further exploration. Standard in vitro assays were conducted to evaluate the impact of sporoderm-broken spores of G. lucidum (SBSGL) on the malignant characteristics of HB cells. The mechanism of SBSGL in treating HB and its tumour immunomodulatory effects were explored and validated by various experiments, including immunoprecipitation, Western blotting, mRFP-GFP-LC3 adenovirus transfection and co-localization analysis, as well as verified with in vivo experiments in this regard. The results showed that SBSGL effectively inhibited the malignant traits of HB cells and suppressed the O-GlcNAcylation of RACK1, thereby reducing its expression. In addition, SBSGL inhibited immune checkpoints and regulated cytokines. In conclusion, SBSGL had immunomodulatory effects and regulated the malignancy and autophagy of HB by regulating the O-GlcNAcylation of RACK1. These findings suggest that SBSGL holds promise as a potential anticancer drug for HB treatment.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Reishi , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Esporos Fúngicos , Autofagia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética
9.
Microbiol Res ; 282: 127661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432016

RESUMO

In yeasts, ferric reductase catalyzes reduction of ferric ion to ferrous form, which is essential for the reductive iron assimilation system. However, the physiological roles of ferric reductases remain largely unknown in the filamentous fungi. In this study, genome-wide annotation revealed thirteen ferric reductase-like (Fre) proteins in the filamentous insect pathogenic fungus Beauveria bassiana, and all their functions were genetically characterized. Ferric reductase family proteins exhibit different sub-cellular distributions (e.g., cell periphery and vacuole), which was due to divergent domain architectures. Fre proteins had a synergistic effect on fungal virulence, which was ascribed to their distinct functions in different physiologies. Ten Fre proteins were not involved in reduction of ferric ion in submerged mycelia, but most proteins contributed to blastospore development. Only two Fre proteins significantly contributed to B. bassiana vegetative growth under the chemical-induced iron starvation, but most Fre proteins were involved in resistance to osmotic and oxidative stresses. Notably, a bZIP-type transcription factor HapX bound to the promoter regions of all FRE genes in B. bassiana, and displayed varying roles in the transcription activation of these genes. This study reveals the important role of BbFre family proteins in development, stress response, and insect pathogenicity, as well as their distinctive role in the absorption of ferric iron from the environment.


Assuntos
Beauveria , FMN Redutase , Animais , Virulência/genética , Beauveria/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos Fúngicos , Insetos , Ferro/metabolismo
10.
Microbiol Mol Biol Rev ; 88(1): e0019623, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38440970

RESUMO

SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of Cryptococcus into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of Cryptococcus basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of Cryptococcus research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.


Assuntos
Cryptococcus neoformans , Humanos , Germinação , Esporos Fúngicos
11.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542264

RESUMO

The multifunctional carbon catabolite repression negative on TATA-box-less complex (CCR4-NOT) is a multi-subunit complex present in all eukaryotes, including fungi. This complex plays an essential role in gene expression; however, a functional study of the CCR4-NOT complex in the rice blast fungus Magnaporthe oryzae has not been conducted. Seven genes encoding the putative CCR4-NOT complex were identified in the M. oryzae genome. Among these, a homologous gene, MoNOT3, was overexpressed during appressorium development in a previous study. Deletion of MoNOT3 in M. oryzae resulted in a significant reduction in hyphal growth, conidiation, abnormal septation in conidia, conidial germination, and appressorium formation compared to the wild-type. Transcriptional analyses suggest that the MoNOT3 gene affects conidiation and conidial morphology by regulating COS1 and COM1 in M. oryzae. Furthermore, Δmonot3 exhibited a lack of pathogenicity, both with and without wounding, which is attributable to deficiencies in the development of invasive growth in planta. This result was also observed in onion epidermal cells, which are non-host plants. In addition, the MoNOT3 gene was involved in cell wall stress responses and heat shock. Taken together, these observations suggest that the MoNOT3 gene is required for fungal infection-related cell development and stress responses in M. oryzae.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Esporos Fúngicos , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
12.
Microb Ecol ; 87(1): 50, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466433

RESUMO

Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supplemented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.


Assuntos
Micorrizas , Rubus , Micorrizas/fisiologia , Esporos Fúngicos , Plantas/microbiologia , Bactérias , Clorofila , Água
13.
Antonie Van Leeuwenhoek ; 117(1): 58, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502333

RESUMO

Genes flbA-E are involved in sporulation and vegetative growth in Aspergillus nidulans. Inactivation of either of these genes results in a fluffy phenotype with delayed or even abolished sporulation. Previously, a non-sporulating phenotype was obtained by inactivating flbA in Aspergillus niger, which was accompanied by lysis, thinner cell walls, and an increased secretome complexity. Here, we further studied the role of the flb genes of A. niger. Strains ΔflbA, ΔflbB and ΔflbE showed increased biomass formation, while inactivation of flbA-D reduced, or even abolished, formation of conidia. Strain ΔflbA was more sensitive to H2O2, DTT, and the cell wall integrity stress compounds SDS and Congo Red (CR). Also, ΔflbC was more sensitive to SDS, while ΔflbB, ΔflbD, and ΔflbE were more sensitive to CR. On the other hand, inactivation of flbE increased resistance to H2O2. Enzyme secretion was impacted when the Δflb strains were grown on xylose. Strain ΔflbE showed reduced xylanase, cellulase and amylase secretion. On the other hand, amylase secretion at the periphery of the ΔflbA colony was reduced but not in its center, while secretion of this enzyme was increased in the center of the ΔflbB colony but not at its periphery. Inactivation of flbC and flbD also impacted zonal cellulase and amylase activity. Together, the Flb protein family of A. niger function in biomass formation, sporulation, stress response, and protein secretion.


Assuntos
Aspergillus niger , Celulases , Animais , Aspergillus niger/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estágios do Ciclo de Vida , Celulases/metabolismo , Amilases/metabolismo , Esporos Fúngicos
14.
BMC Complement Med Ther ; 24(1): 125, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500118

RESUMO

BACKGROUND: Osimertinib is regarded as a promising third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) for advanced non-squamous non-small cell lung cancer (NSCLC) patients who developed T790M. However the adverse effects, primarily fatigue, remain an overwhelming deficiency of Osimertinib, hindering it from achieving adequate clinical efficacy for such NSCLC. Ganoderma lucidum has been used for thousands of years in China to combat fatigue, while Ganoderma Lucidum spores powder (GLSP) is the main active ingredient. The aim of this study is to investigate whether GLSP is sufficiently effective and safe in improving fatigue and synergizing with Osimertinib in non-squamous NSCLC patients with EGFR mutant. METHOD/DESIGN: A total of 140 participants will be randomly assigned to receive either de-walled GSLP or placebo for a duration of 56 days. The primary outcome measure is the fatigue score associated with EGFR-TKI adverse reactions at week 8, evaluated by the Chinese version of the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire for Cancer Patients (QLQ-C30). Secondary outcomes include evaluation of treatment effectiveness, assessment of quality of life (QoL), and exploration of immune indicators and gut microbiota relationships. Following enrollment, visits are scheduled biweekly until week 12. TRIAL REGISTRATION: China Clinical Trial Registry ChiCTR2300072786. Registrated on June 25, 2023.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Reishi , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Qualidade de Vida , Pós/uso terapêutico , Receptores ErbB/genética , Inibidores de Proteínas Quinases/efeitos adversos , Mutação , Esporos Fúngicos , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Fungal Genet Biol ; 171: 103877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447800

RESUMO

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.


Assuntos
Aspergillus nidulans , Animais , Humanos , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Mensageiro , Quitina/genética
16.
World J Microbiol Biotechnol ; 40(5): 141, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519797

RESUMO

Metarhizium robertsii, a vital entomopathogenic fungus for pest management, relies on various virulence-related proteins for infection. Identifying these proteins, especially those with unknown functions, can illuminate the fungus's virulence mechanisms. Through RNA-seq, we discovered that the hypothetical protein MAA_07646 was significantly upregulated during appressorium formation in M. robertsii. In this study, we characterized MAA_07646, finding its presence in both the nucleus and cytoplasm. Surprisingly, it did not affect vegetative growth, conidiation, or chemical tolerance. However, it played a role in heat and UV radiation sensitivity. Notably, ΔMAA_07646 exhibited reduced virulence in Galleria mellonella larvae due to impaired appressorium formation and decreased expression of virulence-related genes. In conclusion, MAA_07646 contributes to thermotolerance, UV resistance, and virulence in M. robertsii. Understanding its function sheds light on the insecticidal potential of M. robertsii's hypothetical proteins.


Assuntos
Metarhizium , Mariposas , Animais , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mariposas/metabolismo , Esporos Fúngicos
17.
Appl Environ Microbiol ; 90(4): e0126023, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501925

RESUMO

The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.


Assuntos
Aspergilose , Aspergillus fumigatus , Aspergillus fumigatus/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/genética , Aspergilose/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Dissulfetos/metabolismo
18.
mBio ; 15(4): e0334423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501872

RESUMO

Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus Magnaporthe oryzae. Still, the mechanism of how MoMkk1 regulates autophagy is unclear. Interestingly, we found that MoMkk1 regulates the autophagy protein MoAtg9 through phosphorylation. MoAtg9 is a transmembrane protein subjected to phosphorylation by autophagy-related protein kinase MoAtg1. Here, we provide evidence demonstrating that MoMkk1-dependent MoAtg9 phosphorylation is required for phospholipid translocation during isolation membrane stages of autophagosome formation, an autophagic process essential for the development and pathogenicity of the fungus. In contrast, MoAtg1-dependent phosphorylation of MoAtg9 negatively regulates this process, also impacting growth and pathogenicity. Our studies are the first to demonstrate that MoAtg9 is subject to MoMkk1 regulation through protein phosphorylation and that MoMkk1 and MoAtg1 dichotomously regulate autophagy to underlie the growth and pathogenicity of M. oryzae.IMPORTANCEMagnaporthe oryzae utilizes multiple signaling pathways to promote colonization of host plants. MoMkk1, a cell wall integrity signaling kinase, plays an essential role in autophagy governed by a highly conserved autophagy kinase MoAtg1-mediated pathway. How MoMkk1 regulates autophagy in coordination with MoAtg1 remains elusive. Here, we provide evidence that MoMkk1 phosphorylates MoAtg9 to positively regulate phospholipid translocation during the isolation membrane or smaller membrane structures stage of autophagosome formation. This is in contrast to the negative regulation of MoAtg9 by MoAtg1 for the same process. Intriguingly, MoMkk1-mediated MoAtg9 phosphorylation enhances the fungal infection of rice, whereas MoAtg1-dependant MoAtg9 phosphorylation significantly attenuates it. Taken together, we revealed a novel mechanism of autophagy and virulence regulation by demonstrating the dichotomous functions of MoMkk1 and MoAtg1 in the regulation of fungal autophagy and pathogenicity.


Assuntos
Ascomicetos , Proteínas Fúngicas , Magnaporthe , Fosforilação , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Autofagia , Fosfolipídeos/metabolismo , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
19.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542408

RESUMO

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Citoesqueleto/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica
20.
Int J Food Microbiol ; 413: 110607, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308877

RESUMO

Fungal spores are specialized dormant cells that act as primary reproductive biological particles and exhibit strong viability under extremely harsh conditions. They contaminate a variety of crops and foods, causing severe health hazards to humans and animals. Previous studies demonstrated that a spore-specific transcription factor SscA plays pivotal roles in the conidiogenesis of the model organism Aspergillus nidulans. In this study, we investigated the biological and genetic functions of SscA in the aflatoxin-producing fungus A. flavus. Deletion of sscA showed reduced conidia formation, lost long-term viability, and exhibited more sensitivity to thermal, oxidative, and radiative stresses. The sscA-deficient strain showed increased aflatoxin B1 production in conidia as well as mycelia. Importantly, the absence of sscA affected fungal pathogenicity on crops. Further transcriptomic and phenotypic studies suggested that SscA coordinates conidial wall structures. Overall, SscA is important for conidial formation, maturation and dormancy, mycotoxin production, and pathogenicity in A. flavus.


Assuntos
Aflatoxinas , Animais , Humanos , Aspergillus flavus , Virulência/genética , Proteínas Fúngicas/genética , Aflatoxina B1 , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...