Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.020
Filtrar
1.
PLoS One ; 15(6): e0235341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603354

RESUMO

Hydroxynitrile lyases (HNL's) belonging to the α/ß-hydrolase-fold superfamily evolved from esterases approximately 100 million years ago. Reconstruction of an ancestral hydroxynitrile lyase in the α/ß-hydrolase fold superfamily yielded a catalytically active hydroxynitrile lyase, HNL1. Several properties of HNL1 differ from the modern HNL from rubber tree (HbHNL). HNL1 favors larger substrates as compared to HbHNL, is two-fold more catalytically promiscuous for ester hydrolysis (p-nitrophenyl acetate) as compared to mandelonitrile cleavage, and resists irreversible heat inactivation to 35 °C higher than for HbHNL. We hypothesized that the x-ray crystal structure of HNL1 may reveal the molecular basis for the differences in these properties. The x-ray crystal structure solved to 1.96-Å resolution shows the expected α/ß-hydrolase fold, but a 60% larger active site as compared to HbHNL. This larger active site echoes its evolution from esterases since related esterase SABP2 from tobacco also has a 38% larger active site than HbHNL. The larger active site in HNL1 likely accounts for its ability to accept larger hydroxynitrile substrates. Site-directed mutagenesis of HbHNL to expand the active site increased its promiscuous esterase activity 50-fold, consistent with the larger active site in HNL1 being the primary cause of its promiscuous esterase activity. Urea-induced unfolding of HNL1 indicates that it unfolds less completely than HbHNL (m-value = 0.63 for HNL1 vs 0.93 kcal/mol·M for HbHNL), which may account for the ability of HNL1 to better resist irreversible inactivation upon heating. The structure of HNL1 shows changes in hydrogen bond networks that may stabilize regions of the folded structure.


Assuntos
Aldeído Liases/química , Aldeído Liases/genética , Domínio Catalítico , Cristalografia por Raios X/métodos , Esterases/química , Esterases/genética , Hevea/genética , Hevea/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida/métodos , Proteínas de Plantas/genética , Dobramento de Proteína , Especificidade por Substrato , Tabaco/genética , Tabaco/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(13): 7122-7130, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170022

RESUMO

ß-mannans and xylans are important components of the plant cell wall and they are acetylated to be protected from degradation by glycoside hydrolases. ß-mannans are widely present in human and animal diets as fiber from leguminous plants and as thickeners and stabilizers in processed foods. There are many fully characterized acetylxylan esterases (AcXEs); however, the enzymes deacetylating mannans are less understood. Here we present two carbohydrate esterases, RiCE2 and RiCE17, from the Firmicute Roseburia intestinalis, which together deacetylate complex galactoglucomannan (GGM). The three-dimensional (3D) structure of RiCE17 with a mannopentaose in the active site shows that the CBM35 domain of RiCE17 forms a confined complex, where the axially oriented C2-hydroxyl of a mannose residue points toward the Ser41 of the catalytic triad. Cavities on the RiCE17 surface may accept galactosylations at the C6 positions of mannose adjacent to the mannose residue being deacetylated (subsite -1 and +1). In-depth characterization of the two enzymes using time-resolved NMR, high-performance liquid chromatography (HPLC), and mass spectrometry demonstrates that they work in a complementary manner. RiCE17 exclusively removes the axially oriented 2-O-acetylations on any mannose residue in an oligosaccharide, including double acetylated mannoses, while the RiCE2 is active on 3-O-, 4-O-, and 6-O-acetylations. Activity of RiCE2 is dependent on RiCE17 removing 2-O-acetylations from double acetylated mannose. Furthermore, transacetylation of oligosaccharides with the 2-O-specific RiCE17 provided insight into how temperature and pH affects acetyl migration on manno-oligosaccharides.


Assuntos
Clostridiales/enzimologia , Esterases/metabolismo , Mananas/metabolismo , Esterases/química , Picea , Conformação Proteica , Especificidade por Substrato
3.
Sensors (Basel) ; 20(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131482

RESUMO

Pesticides represent some of the most common man-made chemicals in the world. Despite their unquestionable utility in the agricultural field and in the prevention of pest infestation in public areas of cities, pesticides and their biotransformation products are toxic to the environment and hazardous to human health. Esterase-based biosensors represent a viable alternative to the expensive and time-consuming systems currently used for their detection. In this work, we used the esterase-2 from Alicyclobacillus acidocaldarius as bioreceptor for a biosensing device based on an automated robotic approach. Coupling the robotic system with a fluorescence inhibition assay, in only 30 s of enzymatic assay, we accomplished the detection limit of 10 pmol for 11 chemically oxidized thio-organophosphates in solution. In addition, we observed differences in the shape of the inhibition curves determined measuring the decrease of esterase-2 residual activity over time. These differences could be used for the characterization and identification of thio-organophosphate pesticides, leading to a pseudo fingerprinting for each of these compounds. This research represents a starting point to develop technologies for automated screening of toxic compounds in samples from industrial sectors, such as the food industry, and for environmental monitoring.


Assuntos
Técnicas Biossensoriais/métodos , Organofosfatos/química , Compostos Organofosforados/química , Robótica/métodos , Alicyclobacillus/química , Bioensaio/métodos , Monitoramento Ambiental/métodos , Esterases/química , Fluorescência , Limite de Detecção , Praguicidas/química
4.
Analyst ; 145(4): 1408-1413, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31894760

RESUMO

The discrimination of living and dead cells shows great importance in the development of biology, pathology, medicine, and pharmacology research. Herein, we synthesized a simple benzothiazole-based probe, EP, which was characterized via1H NMR (hydrogen nuclear magnetic resonance) spectroscopy, 13C NMR (carbon nuclear magnetic resonance) spectroscopy and HRMS (high-resolution mass spectroscopy). The fluorescence changes in response to esterase were characterized via fluorescence spectroscopy. EP exhibited a 70-fold fluorescence enhancement in the presence of esterase and possessed a very low limit of detection (4.73 × 10-5 U mL-1). EP also showed high selectivity to esterase compared to other biological species. Bright fluorescence appeared in living cells, which was activated by esterase when incubated with EP. In paraformaldehyde or H2O2 pretreated cells, the fluorescence became very weak since esterase became inactive in these cells. In summary, the EP probe can monitor esterase activity both in vitro and in living cells and can be used to evaluate the health status of cells and discriminate living and dead cells effectively.


Assuntos
Esterases/química , Esterases/metabolismo , Corantes Fluorescentes/química , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Imagem Óptica , Espectrometria de Fluorescência , Fatores de Tempo
5.
Anal Biochem ; 591: 113554, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31863727

RESUMO

Esterases and lipases enduring harsh conditions, including low temperature and extreme tolerance to organic solvents, have attracted great attention in recent times. In the current study, a full open reading frame of 747 bp that encodes a novel, cold-adapted esterase (estHIJ) of 248 amino acids from Bacillus halodurans strain NAH-Egypt was heterologously cloned and expressed in E. coli BL21 (DE3) Rosetta. Amino acid sequence analysis revealed that estHIJ belongs to family XIII of lipolytic enzymes, with a characteristic pentapeptide motif (G-L-S-L-G). The recombinant estHIJ was purified using Ni-affinity chromatography to homogeneity with purification fold, yield, specific activity, and molecular weight (MW) of 3.5, 47.5%, 19.8 U/mg and 29 kDa, respectively. The enzyme showed preferential substrate specificity towards pNP-acetate (C2), with catalytic efficiency of 46,825 min-1 mM-1 estHIJ displayed optimal activity at 30 °C and pH (7.0-8.0). estHIJ demonstrated robust stability in the presence of 50% (v/v) non-polar solvents and 4 M NaCl after 15 h and 6 h of incubation, respectively. The promising features of the recombinant estHIJ underpin its potential in several fields, e.g., the synthesis of pharmaceutical compounds and the food industry.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias , Esterases , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Esterases/química , Esterases/isolamento & purificação , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
6.
J Pineal Res ; 68(2): e12630, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31876313

RESUMO

The hormone melatonin, secreted from the pineal gland, mediates multiple physiological effects including modulation of Wnt/ß-catenin signalling. The Wnt palmitoleate lipid modification is essential for its signalling activity, while the carboxylesterase Notum can remove the lipid from Wnt and inactivate it. Notum enzyme inhibition can therefore upregulate Wnt signalling. While searching for Notum inhibitors by crystallographic fragment screening, a hit compound N-[2-(5-fluoro-1H-indol-3-yl)ethyl]acetamide that is structurally similar to melatonin came to our attention. We then soaked melatonin and its precursor N-acetylserotonin into Notum crystals and obtained high-resolution structures (≤1.5 Å) of their complexes. In each of the structures, two compound molecules bind with Notum: one at the enzyme's catalytic pocket, overlapping the space occupied by the acyl tail of the Wnt palmitoleate lipid, and the other at the edge of the pocket opposite the substrate entrance. Although the inhibitory activity of melatonin shown by in vitro enzyme assays is low (IC50 75 µmol/L), the structural information reported here provides a basis for the design of potent and brain accessible drugs for neurodegenerative diseases such as Alzheimer's disease, in which upregulation of Wnt signalling may be beneficial.


Assuntos
Inibidores Enzimáticos/química , Esterases/antagonistas & inibidores , Esterases/química , Melatonina/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Relação Estrutura-Atividade
7.
Enzyme Microb Technol ; 131: 109331, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31615665

RESUMO

Acinetobacter sp. strain LMB-5 can produce a kind of esterase degrading phthalate esters. However, low activity of Est3563 esterase limited its large-scale application. In this study, computer-aided simulation mutagenesis was used to improve the esterase activity with a tightened screening library and enlarged success rate. Two positive mutants, P218R and A242R, were obtained with 2.5 and 2.1 folds higher than the WT Est3563 esterase, with 11.96 ± 0.45 U·mg-1 and 9.90 ± 0.52 U·mg-1, respectively. With the help of bioinformatics analysis and three-dimensional printing technology, it was found that the mutations could increase the 240-280 residues swing distance and make them deviate from the catalytic pocket. The instability and deviation of these residues on the lid-like structure of the esterase could deteriorate the seal of the binding pocket and expose the active site. Thus, the catalytic efficiency of the mutants became higher. This result demonstrates that the instability and deviation of the lid-like structure could expand the binding pocket of the esterase and enhance the esterase activity.


Assuntos
Acinetobacter/enzimologia , Esterases/metabolismo , Ácidos Ftálicos/metabolismo , Biologia Computacional , Esterases/química , Esterases/genética , Cinética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica
8.
J Med Microbiol ; 68(11): 1629-1640, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31553301

RESUMO

Introduction. ML1899 is conserved in all mycobacterium sp. and is a middle member of mle-ML1898 operon involved in mycolic acid modification.Aim. In the present study attempts were made to characterize ML1899 in detail.Methodology. Bioinformatics tools were used for prediction of active-site residues, antigenic epitopes and a three-dimensional model of protein. The gene was cloned, expressed and purified as His-tagged protein in Escherichia coli for biophysical/biochemical characterization. Recombinant protein was used to treat THP-1 cells to study change in production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and chemokines using flowcytometry/ELISA.Results. In silico analysis predicted ML1899 as a member of α/ß hydrolase family with GXSXG-motif and Ser126, His282, Asp254 as active-site residues that were confirmed by site-directed mutagensis. ML1899 exhibited esterase activity. It hydrolysed pNP-butyrate as optimum substrate at pH 8.0 and 50 °C with 5.56 µM-1 min-1 catalytic efficiency. The enzyme exhibited stability up to 60 °C temperature and between pH 6.0 to 9.0. K m, V max and specific activity of ML1899 were calculated to be 400 µM, 40 µmoles min-1 ml-1 and 27 U mg- 1, respectively. ML1899 also exhibited phospholipase activity. The protein affected the survival of macrophages when treated at higher concentration. ML1899 enhanced ROS/NO production and up-regulated pro-inflammatory cytokines and chemokine including TNF-α, IFN-γ, IL-6 and IL-8 in macrophages. ML1899 was also observed to elicit humoral response in 69 % of leprosy patients.Conclusion. These results suggested that ML1899, an esterase could up-regulate the immune responses in favour of macrophages at a low concentration but kills the THP-1 macrophages cells at a higher concentration.


Assuntos
Proteínas de Bactérias/imunologia , Esterases/imunologia , Hanseníase/microbiologia , Mycobacterium leprae/enzimologia , Sequência de Aminoácidos , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Citocinas/genética , Citocinas/imunologia , Estabilidade Enzimática , Esterases/química , Esterases/genética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Cinética , Hanseníase/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Mycobacterium leprae/química , Mycobacterium leprae/genética , Mycobacterium leprae/imunologia , Óxido Nítrico/imunologia , Espécies Reativas de Oxigênio/imunologia , Alinhamento de Sequência
9.
Biotechnol Lett ; 41(10): 1223-1232, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31456128

RESUMO

OBJECTIVE: To purify an esterase which can selectively hydrolyze (R,S)-ethyl indoline-2-carboxylate to produce (S)-indoline-2-carboxylic acid and characterize its enzymatic properties. RESULTS: An intracellular esterase from Bacillus aryabhattai B8W22 was isolated and the purified protein was identified as a carboxylesterase by MALDI-TOF mass spectrometry. The enzyme (named BaCE) was 59.03-fold purification determined to be of approximately 35 kDa. Its specific activity was 0.574 U/mL with 20% yield. The enzyme showed maximum activity at pH 8.5 and 30 °C and was stable at 20-30 °C using pNPB as the substrate. The Km, Vmax, kcat and kcat/Km of the esterase were 0.52 mM, 6.39 µM/min, 26.87 min-1 and 51.67 mM/min, respectively. The esterase demonstrated high enantioselectivity toward (S)-ethyl indoline-2-carboxylate with 96.55% e.e.p at 44.39% conversion, corresponding to an E value of 133.45. CONCLUSIONS: In this study, a new esterase BaCE with an apparent molecular mass of 35 kDa was purified to homogeneity for the first time. The esterase from Bacillus aryabhattai B8W22 was isolated with a purification more than 59-fold and a yield of 20% by anion exchange chromatography and hydrophobic interaction chromatography. And its biochemical characterization were described in detail with pNPB as substrate. It displayed high enantioselectivity toward (S)-ethyl indoline-2-carboxylate. We next plan to highly express esterase BaCE in Escherichia coli, and apply it to industrial production of (S)-indoline-2-carboxylic acid.


Assuntos
Bacillus/enzimologia , Esterases/isolamento & purificação , Esterases/metabolismo , Indóis/metabolismo , Biotransformação , Estabilidade Enzimática , Esterases/química , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Especificidade por Substrato , Temperatura
11.
Extremophiles ; 23(6): 649-657, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31332517

RESUMO

An ionic interaction that holds an α-helix and a ß-strand on which catalytic Asp and His residues are located, respectively, is conserved in a hyperthermophilic esterase EstE1 (optimum temperature 70 °C) and a mesophilic esterase rPPE (optimum temperature 50 °C). We investigated the role of an ionic interaction between E258 and R275 in EstE1 and that between E263 and R280 in rPPE in active-site stability of serine esterases adapted to different temperatures. Ala substitutions caused a 5-10 °C decrease in the optimum temperature of both EstE1 and rPPE mutants. Surprisingly, disruption of the ionic interaction caused larger effects on the conformational flexibility of EstE1 mutants despite their rigid structures, whereas the disruption had fewer effects on the thermal stability of EstE1 mutants at 60-70 °C, as the structure of EstE1 was adapted to high temperatures. In contrast, mesophilic rPPE mutants showed dramatic decreases in thermal stability at 40-50 °C, but less changes in conformational flexibility because of their inherently flexible structures. The results of this study suggest that the ionic interaction between the α-helix with catalytic Asp and the ß-strand with catalytic His plays an important role in the active-site conformation of EstE1 and rPPE, with larger effects on the conformational flexibility of hyperthermophilic EstE1 and the thermal stability of mesophilic rPPE.


Assuntos
Esterases , Estrutura Secundária de Proteína , Pseudomonas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Esterases/química , Esterases/genética , Pseudomonas/enzimologia , Pseudomonas/genética
12.
Analyst ; 144(15): 4687-4693, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31268078

RESUMO

Dying cell clearance is critical for myriad biological processes such as tissue homeostasis. We herein report an enzyme-activated fluorescence cell labeling approach and its use for multicolor imaging of dying cell clearance. Diacetylated 4-hydroxymandelic acid (DHA)-conjugated dyes give rise to reactive quinone methides upon deacetylation in live cells, which in turn covalently labels cellular proteins. With partner cells tagged with distinct fluorescence, apoptotic cell clearance by Raw 264.7 macrophages and epithelial HeLa cells was captured by confocal microscopy, showing the potential of DHA-based cell labeling for investigating cell-cell interactions.


Assuntos
Apoptose , Corantes Fluorescentes/química , Ácidos Mandélicos/química , Necrose , Animais , Bovinos , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/toxicidade , Esterases/química , Fluoresceínas/síntese química , Fluoresceínas/química , Fluoresceínas/toxicidade , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Ácidos Mandélicos/síntese química , Ácidos Mandélicos/toxicidade , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Estudo de Prova de Conceito , Células RAW 264.7 , Rodaminas/síntese química , Rodaminas/química , Rodaminas/toxicidade , Coloração e Rotulagem/métodos , Suínos
13.
J Agric Food Chem ; 67(31): 8548-8558, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31266305

RESUMO

Herein, we report a double enzyme system to degrade 12 phthalate esters (PAEs), particularly bulky PAEs, such as the widely used bis(2-ethylhexyl) phthalate (DEHP), in a one-pot cascade process. A PAE-degrading bacterium, Gordonia sp. strain 5F, was isolated from soil polluted with plastic waste. From this strain, a novel esterase (GoEst15) and a mono(2-ethylhexyl) phthalate hydrolase (GoEstM1) were identified by homology-based cloning. GoEst15 showed broad substrate specificity, hydrolyzing DEHP and 10 other PAEs to monoalkyl phthalates, which were further degraded by GoEstM1 to phthalic acid. GoEst15 and GoEstM1 were heterologously coexpressed in Escherichia coli BL21 (DE3), which could then completely degrade 12 PAEs (5 mM), within 1 and 24 h for small and bulky substrates, respectively. To our knowledge, GoEst15 is the first DEHP hydrolase with a known protein sequence, which will enable protein engineering to enhance its catalytic performance in the future.


Assuntos
Proteínas de Bactérias/química , Esterases/química , Ésteres/química , Gordonia (Bactéria)/enzimologia , Ácidos Ftálicos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Biodegradação Ambiental , Dietilexilftalato/química , Dietilexilftalato/metabolismo , Esterases/genética , Esterases/metabolismo , Ésteres/metabolismo , Gordonia (Bactéria)/genética , Gordonia (Bactéria)/isolamento & purificação , Gordonia (Bactéria)/metabolismo , Hidrólise , Ácidos Ftálicos/metabolismo , Alinhamento de Sequência , Microbiologia do Solo
14.
Chemosphere ; 237: 124428, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31362133

RESUMO

The present study evaluates the enzyme activities and histopathological changes in the post larvae (PL) of shrimp (Penaeus monodon), green mussel (Perna viridis) and fingerlings of crescent perch (Terapon jarbua) exposed to sublethal gradient concentrations of Nickel (Ni). The median lethal concentration (LC50) values were 2.49, 66.03 and 43.92 mg Ni L-1 derived for the PL of shrimp, green mussel and fish fingerlings respectively. No Observed Effect Concentration (NOEC), Lowest Observed Effect Concentration (LOEC) and chronic values of the PL of shrimp were 46.5, 73.0 and 58.3 µg Ni L-1 derived for the 21-d survival endpoint. The NOEC, LOEC and chronic values for the 30-d survival endpoint of the green mussels and fish fingerlings were 4.6, 6.32, 5.4 and 1.95, 2.6, 2.25 mg Ni L-1 respectively. The isoforms of esterase, superoxide dismutase and malate dehydrogenase activities in the whole body tissues of test organisms were studied by native polyacrylamide gel electrophoresis after exposure to Ni. Histological examination of compound eye sections of shrimp revealed deformation, compression, fusion and detachement in the corneal cells from the corneal facet of the ommatidia indicating cellular anomalies due to Ni toxicity. Gill sections of the green mussel witnessed reduced haemolymph in sinuses of gill filaments, degenerative changes in interfilamentous junction and necrosis of frontal ciliated epithelial cells with vacuoles after exposure to Ni. Nickel affects the vision of shrimp and fish fingerlings, gills and byssus of green mussels.


Assuntos
Bivalves/efeitos dos fármacos , Níquel/toxicidade , Penaeidae/efeitos dos fármacos , Percas/crescimento & desenvolvimento , Perna (Organismo)/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/enzimologia , Bivalves/crescimento & desenvolvimento , Esterases/química , Olho/efeitos dos fármacos , Olho/patologia , Brânquias/efeitos dos fármacos , Brânquias/patologia , Malato Desidrogenase/química , Níquel/farmacologia , Penaeidae/enzimologia , Penaeidae/crescimento & desenvolvimento , Perna (Organismo)/enzimologia , Perna (Organismo)/crescimento & desenvolvimento , Superóxido Dismutase/química
15.
BMC Complement Altern Med ; 19(1): 180, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331314

RESUMO

BACKGROUND: Fruit, bark and leaves of Zanthoxylum armatum DC are popular remedies for gastrointestinal, cardiovascular and respiratory disorders in the subcontinent traditional practices. The aim of the study was to individually probe the profile of methanol extracts from three different parts of Zanthoxylum armatum. METHODS: The ex-vivo muscle relaxant effects of extracts were assessed in the isolated intestine, trachea and thoracic aortic rings and were compared with the positive controls and CRC were constructed. The anti-diarrheal effect of extracts was evaluated in mice by inducing diarrhea with castor oil. The extracts were also studied for acute toxicity and butyrylcholine esterase inhibition. RESULTS: The extracts from fruit, bark and leaves of Z. armatum showed inhibitory effect against the butyrylcholine esterase enzyme with percent inhibition of 50.75 ± 1.23, 82.57 ± 1.33, and 37.52 ± 1.11respectively, compared to standard serine (IC50: 0.04 ± 0.001 µmol/L). The fruit and bark extracts provided 75, and 52% diarrheal protection, compared to verapamil (96%). In isolated rabbit jejunum strips, increasing addition of the extracts inhibited the spontaneous and high K+ precontractions with EC50 values of 0.71 and 3 mg/mL for fruit, EC50 values of 0.61 and 0.5 mg/mL for bark, EC50 0.81 and 3.1 mg/mL for leaves, like verapamil. The extracts induced a concentration-dependent relaxation of the carbachol (1 µM) and high K+ (80 mM) precontractions with EC50 values of 2.4 and 0.9 mg/mL for fruit, EC50 values of 1.2 and 3 for leaves. The bark extract was equipotent against both contractions with EC50 3.1 and 0.7 mg/mL, respectively. In the aortic rings, the fruit extract completely relaxed the phenylephrine (1 µM)-induced contractions with (EC50 value = 0.8 mg/ml) and a partial inhibition of high K+ induced contractions. The leaves extract completely relaxed the aortic contractions with (EC50 values = 1.0 and 8.5 mg/ml). The extracts caused no acute toxicity up to 3 g/kg dose. CONCLUSIONS: The experiments revealed that the extracts of aerial parts of Z. armatum have antidiarrheal properties in vivo and showed spasmolytic effect in intestinal and tracheal preparations with possible mechanism involving the blockage of Ca++ channels. These experiments provide enough justification for use of this plant in ethnomedicine in diarrhea, gut and bronchial spasms.


Assuntos
Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Parassimpatolíticos/química , Extratos Vegetais/farmacologia , Zanthoxylum/química , Animais , Antidiarreicos/química , Antidiarreicos/farmacologia , Aorta Torácica/efeitos dos fármacos , Inibidores Enzimáticos/química , Esterases/química , Frutas/química , Jejuno/efeitos dos fármacos , Masculino , Camundongos , Parassimpatolíticos/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Coelhos , Traqueia/efeitos dos fármacos
16.
J Sci Food Agric ; 99(14): 6644-6648, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31325326

RESUMO

BACKGROUND: Apple juice is rich in polyphenolic compounds, especially in chlorogenic acid. A sour and bitter taste has been attributed to the compound. Chlorogenic acid in coffee powder was quickly hydrolysed by a p-coumaryl esterase of Rhizoctonia solani (RspCAE) at its optimal pH of 6.0. It was unknown, however, if RspCAE would also degrade chlorogenic acid under the strongly acidic conditions (pH 3.3) present in apple juice. RESULTS: Treatment of apple juice with RspCAE led to a chlorogenic acid degradation from 53.38 ± 0.94 mg L-1 to 21.02 ± 1.47 mg L-1 . Simultaneously, the caffeic acid content increased from 6.72 ± 0.69 mg L-1 to 19.33 ± 1.86 mg/L-1 . The aroma profile of the enzymatically treated sample and a control sample differed in only one volatile. Vitispirane had a higher flavour dilution factor in the treated juice. Sensory analysis showed no significant difference in the taste profile ( p < 0.05). CONCLUSION: These results demonstrated a high stability and substrate specificity of RspCAE. An increase in caffeic acid and a concurrent decrease in chlorogenic acid concentration may exert a beneficial effect on human health. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ácido Clorogênico/química , Esterases/química , Sucos de Frutas e Vegetais/análise , Proteínas Fúngicas/química , Malus/química , Rhizoctonia/enzimologia , Aromatizantes/química , Concentração de Íons de Hidrogênio , Hidrólise , Odorantes/análise , Especificidade por Substrato
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1438-1448, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325637

RESUMO

In Neisseria sp., SGNH family esterases are involved in bacterial pathogenesis as well as cell wall peptidoglycan maturation. Here, a novel enantioselective SGNH family esterase (NmSGNH1) from Neisseria meningitidis, which has sequence similarity to carbohydrate esterase (CE3) family, was catalytically characterized and functionally explored. NmSGNH1 exhibited a wide range of substrate specificities including naproxol acetate, tert-butyl acetate, glucose pentaacetate as well as p-nitrophenyl esters. Deletion of C-terminal residues (NmSGNH1Δ11) led to the altered substrate specificity, reduced catalytic activity, and increased thermostability. Furthermore, a hydrophobic residue of Leu92 in the substrate-binding pocket was identified to be critical in catalytic activity, thermostability, kinetics, and enantioselectivity. Interestingly, immobilization of NmSGNH1 by hybrid nanoflowers (hNFs) and crosslinked enzyme aggregates (CLEAs) showed increased level of activity, recycling property, and enhanced stability. Finally, synthesis of butyl acetate, oleic acid esters, and fatty acid methyl esters (FAMEs) were verified. In summary, this work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a novel SGNH family esterase from Neisseria meningitidis.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Neisseria meningitidis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Esterases/química , Esterases/genética , Ésteres/metabolismo , Humanos , Meningite Meningocócica/microbiologia , Modelos Moleculares , Neisseria meningitidis/química , Neisseria meningitidis/genética , Mutação Puntual , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato
18.
Enzyme Microb Technol ; 129: 109353, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31307573

RESUMO

A three catalytic domain multi-enzyme; a CE1 ferulic acid esterase, a GH62 α-l-arabinofuranosidase and a GH10 ß-d-1,4-xylanase was identified in a metagenome obtained from wastewater treatment sludge. The capability of the CE1-GH62-GH10 multi-enzyme to degrade arabinoxylan was investigated to examine the hypothesis that CE1-GH62-GH10 would degrade arabinoxylan more efficiently than the corresponding equimolar mix of the individual enzymes. CE1-GH62-GH10 efficiently catalyzed the production of xylopyranose, xylobiose, xylotriose, arabinofuranose and ferulic acid (FA) when incubated with insoluble wheat arabinoxylan (WAX-I) (kcat = 20.8 ± 2.6 s-1). Surprisingly, in an equimolar mix of the individual enzymes a similar kcat towards WAX-I was observed (kcat = 17.3 ± 3.8 s-1). Similarly, when assayed on complex plant biomass the activity was comparable between CE1-GH62-GH10 and an equimolar mix of the individual enzymes. This suggests that from a hydrolytic point of view a CE1-GH62-GH10 multi-enzyme is not an advantage. Determination of the melting temperatures for CE1-GH62-GH10 (71.0 ± 0.05 °C) and CE1 (69.9 ± 0.02), GH62 (65.7 ± 0.06) and GH10 (71 ± 0.05 °C) indicates that CE1 and GH62 are less stable as single domain enzymes. This conclusion was corroborated by the findings that CE1 lost ˜50% activity within 2 h, while GH62 retained ˜50% activity after 24 h, whereas CE1-GH62-GH10 and GH10 retained ˜50% activity for 72 h. GH62-GH10, when appended to each other, displayed a higher specificity constant (kcat/Km = 0.3 s-1 mg-1 ml) than the individual GH10 (kcat/Km = 0.12 s-1 ± 0.02 mg-1 ml) indicating a synergistic action between the two. Surprisingly, CE1-GH62, displayed a 2-fold lower kcat towards WAX-I than GH62, which might be due to the presence of a putative carbohydrate binding module appended to CE1 at the N-terminal. Both CE1 and CE1-GH62 released insignificant amounts of FA from WAX-I, but FA was released from WAX-I when both CE1 and GH10 were present, which might be due to GH10 releasing soluble oligosaccharides that CE1 can utilize as substrate. CE1 also displayed activity towards solubilized 5-O-trans-feruloyl-α-l-Araf (kcat = 36.35 s-1). This suggests that CE1 preferably acts on soluble oligosaccharides.


Assuntos
Esterases/química , Glicosídeo Hidrolases/química , Xilanos/química , Domínio Catalítico , Endo-1,4-beta-Xilanases/química , Hidrólise , Cinética , Esgotos/análise , Especificidade por Substrato
19.
Chemphyschem ; 20(16): 2082-2092, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31233266

RESUMO

The studied enzyme-based biocatalytic system mimics NXOR Boolean logic gate, which is a logical operator that corresponds to equality in Boolean algebra. It gives the functional value true (1) if both functional arguments (input signals) have the same logical value (0,0 or 1,1), and false (0) if they are different (0,1 or 1,0). The output signal producing reaction is catalyzed by pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH), which is inhibited at acidic and basic pH values. Two other reactions catalyzed by esterase and urease produce acetic acid and ammonium hydroxide, respectively, shifting solution pH from the optimum pH for PQQ-GDH to acidic and basic values (1,0 and 0,1 input combinations, respectively), thus switching the enzyme activity off (output 0). When the input signals are not applied (0,0 combination) or both applied compensating each other (1,1 combination) the optimum pH is preserved, thus keeping PQQ-GDH running at the high rate (output 1). The biocatalytic cascade mimicking the NXOR gate was characterized optically and electrochemically. In the electrochemical experiments the PQQ-GDH enzyme communicated electronically with a conducting electrode support, thus resulting in the electrocatalytic current when signal combinations 0,0 and 1,1 were applied. The logic gate operation, when it was realized electrochemically, was also extended to the biomolecular release controlled by the gate. The release system included two electrodes, one performing the NXOR gate and another one activated for the release upon electrochemically stimulated alginate hydrogel dissolution. The studied system represents a general approach to the biocatalytic realization of the NXOR logic gate, which can be included in different catalytic cascades mimicking operation of concatenated gates in sophisticated logic circuitries.


Assuntos
Computadores Moleculares , Esterases/química , Glucose Desidrogenase/química , Lógica , Urease/química , Acetatos/química , Alginatos/química , Animais , Canavalia/enzimologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Ferro/química , Nanotubos de Carbono/química , Suínos , Ureia/química
20.
Extremophiles ; 23(5): 507-520, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154531

RESUMO

The aim of this study was to isolate a novel esterase from a hypersaline lake by sequence-based metagenomics. The metagenomic DNA was isolated from the enriched hypersaline lake sediment. Degenerate primers targeting the conserved regions of lipolytic enzymes of halophilic microorganisms were used for polymerase chain reaction (PCR) and a whole gene was identified by genome walking. The gene was composed of 783 bp, which corresponds to 260 amino acids with a molecular weight of 28.2 kDa. The deduced amino acid sequence best matched with the esterase from Halomonas gudaonensis with an identity of 91%. Recombinantly expressed enzyme exhibited maximum activity towards pNP-hexanoate with a kcat value of 12.30 s-1. The optimum pH and temperature of the enzyme were found as 9 and 30 °C, respectively. The effects of NaCl, solvents, metal ions, detergents and enzyme inhibitors were also studied. In conclusion, a novel enzyme, named as hypersaline lake "Acigöl" esterase (hAGEst), was identified by sequence-based metagenomics. The high expression level, the ability to maintain activity at cold temperatures and tolerance to DMSO and metal ions are the most outstanding properties of the hAGEst.


Assuntos
Proteínas de Bactérias/genética , Esterases/genética , Metagenoma , Tolerância ao Sal , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Esterases/química , Esterases/metabolismo , Halomonas/enzimologia , Halomonas/genética , Lagos/microbiologia , Microbiota , Salinidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA