Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.385
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 325(4): H790-H805, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539447

RESUMO

Fetal growth throughout pregnancy relies on delivery of an increasing volume of maternal blood to the placenta. To facilitate this, the uterine vascular network adapts structurally and functionally, resulting in wider blood vessels with decreased flow-mediated reactivity. Impaired remodeling of the rate-limiting uterine radial arteries has been associated with fetal growth restriction. However, the mechanisms underlying normal or pathological radial artery remodeling are poorly understood. Here, we used pressure myography to determine the roles of hemodynamic (resistance, flow rate, shear stress) and paracrine [ß-estradiol, progesterone, placental growth factor (PlGF), vascular endothelial growth factor] factors on rat radial artery reactivity. We show that ß-estradiol, progesterone, and PlGF attenuate flow-mediated constriction of radial arteries from nonpregnant rats, allowing them to withstand higher flow rates in a similar manner to pregnant vessels. This effect was partly mediated by nitric oxide (NO) production. To better understand how the combination of paracrine factors and shear stress may impact human radial artery remodeling in the first half of gestation, computational models of uterine hemodynamics, incorporating physiological parameters for trophoblast plugging and spiral artery remodeling, were used to predict shear stress in the upstream radial arteries across the first half of pregnancy. Human microvascular endothelial cells subjected to these predicted shear stresses demonstrated higher NO production when paracrine factors were added. This suggests that synergistic effects of paracrine and hemodynamic factors induce uterine vascular remodeling and that alterations in this balance could impair radial artery adaptation, limiting blood flow to the placenta and negatively impacting fetal growth.NEW & NOTEWORTHY Placenta-specific paracrine factors ß-estradiol, progesterone, and placental growth factor attenuate flow-mediated constriction of the rate-limiting uterine radial arteries, enabling higher flow rates in pregnancy. These paracrine factors induce their actions in part via nitric oxide mediated mechanisms. A synergistic combination of paracrine factors and shear stress is likely necessary to produce sufficient levels of nitric oxide during early human pregnancy to trigger adequate uterine vascular adaptation.


Assuntos
Artéria Radial , Fator A de Crescimento do Endotélio Vascular , Gravidez , Humanos , Ratos , Feminino , Animais , Fator de Crescimento Placentário/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Progesterona/farmacologia , Células Endoteliais , Óxido Nítrico/metabolismo , Hemodinâmica , Artéria Uterina/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo
2.
Theriogenology ; 210: 244-250, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544046

RESUMO

To investigate the relationship between polyamine metabolism and reproductive hormones in ovarian follicles of Sichuan white geese, follicle polyamine content and reproductive hormone levels and gene expressions related to polyamine metabolism, steroidogenesis and steroid hormone receptors were detected by HPLC, ELISA and RT-qPCR. The results showed that the overall trend of spermidine and spermine levels increased first and then decreased as increasing follicle size, with the highest level in F3 and F5 follicles (P < 0.05). Putrescine and 17ß-estradiol (E2) levels in hierarchical follicles were significantly lower than those in prehierarchical follicles (P < 0.05). Progesterone (P4) first increased and then decreased, with the highest level in the F5 follicle (P < 0.05). The expression levels of estrogen receptor 1 (ER1) showed an overall increase as increasing follicle size (except in F3 follicles), while estrogen receptor 2 (ER2) in hierarchical follicles was significantly lower than that in the prehierarchical follicles (P < 0.05). In addition, the overall expression level of progesterone receptor (PR) decreased, with no significant differences among F1, F2 and F3 follicles (P > 0.05). Yolk putrescine contents were positively correlated with yolk E2 concentrations and PR expression levels (P < 0.05), A significant positive correlation of spermidine levels with yolk P4 concentrations and PR expressions was also observed, as well as the spermine levels with yolk P4 concentrations (P < 0.05). In summary, polyamines were involved in the regulation of follicular development in geese, and this regulation played a role in affecting steroidogenesis and the expression of genes related to hormone receptors.


Assuntos
Gansos , Putrescina , Feminino , Animais , Gansos/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Folículo Ovariano/fisiologia , Progesterona/metabolismo , Estradiol/metabolismo
3.
Nat Commun ; 14(1): 4605, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528140

RESUMO

Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Gravidez , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/metabolismo , Útero/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Epitélio/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
4.
J Environ Manage ; 345: 118666, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506444

RESUMO

The conjugated steroid estrogens (CSEs), including estrone sulfate sodium (E1-3 S) and 17ß-estradiol-3-O-sulfate sodium (E2-3 S), exhibit distinct metabolic behaviors in the aqueous and soil environments. However, their assimilation behaviors and metabolite formations in plant bodies (shoots and roots) remain poorly understood. Therefore, this study used a modified plant hydroponic system to explore the efficiency with which wheat (Triticum acstivnm L.) assimilated the two estrogen conjugates, E1-3 S and E2-3 S. Results indicated the potential of wheat to absorb E1-3 S and E2-3 S, with their assimilation in the root being significantly higher (104-105 ng/g dw) than in the shoot (103-104 ng/g dw). E1-3 S de-sulfated and transformed to estrone (E1) at a rate of 4%-45% in the root's oxidative environment, whereas E2-3 S converted to E1-3 S at 210%-570%. However, the root-to-shoot transfer was impeded by a less potent metabolic activity within the shoot system. The co-exposure treatment revealed that E1 or 17ß-estradiol (E2) affects the assimilation of E1-3 S and E2-3 S by wheat, with E1 inhibiting E1-3 S assimilation and E2 promoting E2-3 S assimilation in wheat bodies. Nonetheless, free-form steroid estrogens (FSEs), which typically have a significant hormone action, can oxidative-damage the wheat tissues, producing a progressive wilting of wheat leaf and so limiting the transpiration process. Co-exposure initially increased the assimilation amounts of E1-3 S (particularly in shoots) and E2-3 S (in both roots and shoots), but these values rapidly declined as exposure duration increased. The combined effects of E1-3 S and E2-3 S exposure also increased their assimilation. These findings suggest the need for further investigation into the cumulative impact of environmental estrogen contaminants. The findings of present study can potentially guide the development of strategies to prevent and manage steroid estrogen contamination in agricultural contexts.


Assuntos
Estrona , Triticum , Estrona/metabolismo , Triticum/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo
5.
Hematology ; 28(1): 2240140, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493411

RESUMO

OBJECTIVES: Cyclic thrombocytopenia (CTP) is a rare blood disorder characterized by periodic fluctuations in platelet counts. CTP usually appears in pre-menopausal women, and these fluctuations of platelets are in phase with the menstrual cycle. CTP is a heterogeneous disease, and the pathogenic mechanism is still unclear. Therefore, it harbors great significance for exploring the association of fluctuations in platelet counts with hormonal-cycle. MATERIALS: Firstly, we washed human platelets from healthy volunteers following the Declaration of Helsinki. Flow cytometer was employed to measure the mitochondrial inner transmembrane potential (ΔΨm) depolarization, PS exposure, P-selectin expression, and GPIIb/IIIa activation in platelets. In addition, western blot detected the related protein expression. The corresponding assay kit measured the caspase-3 and PDE3A activity. Finally, flow cytometry determined mouse platelets labeled with calcein. RESULTS: We find a reverse relationship between the platelet count and serum estradiol (E2) level in a CTP patient. We demonstrated that E2 induces platelet apoptosis in vitro and platelet clearance in vivo. We further discovered that E2 activates phosphodiesterase 3A, which inhibits protein kinase A (PKA), leading to PKA-mediated platelet apoptosis. Activation of PKA protected platelets from E2-induced thrombocytopenia and elevated the number of mice circulatory platelets. CONCLUSIONS: We find that E2 induces platelet apoptosis and clearance through PDE3A-mediated PKA inhibition. Activation of PKA rescues E2-induced thrombocytopenia in mice. Thus, our study reveals a pathogenesis of E2-related CTP and suggests promising therapeutic strategies for the disease.


Assuntos
Estradiol , Trombocitopenia , Humanos , Feminino , Animais , Camundongos , Estradiol/metabolismo , Plaquetas/metabolismo , Contagem de Plaquetas , Apoptose
6.
Brain Res ; 1818: 148499, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499732

RESUMO

Astroglia play a crucial role in various aspects of neurodevelopment including building, maintaining, and modulating neuronal circuits that underly complex behaviours in the neocortex. Telencephalic regions exhibit sex differences in neuronal networks that arise early in development. Astroglia express receptors for gonadal hormones responsible for the organization of sex differences, such as estrogen, placing them in a key position to modulate sex differences in the development of neuronal networks. Astroglial cells express specific proteins related to their morphology, function, and maturation. We have previously shown that P7-P14 is a key transition period for neocortical astroglial maturation and that males reach a mature phenotype earlier than females, at P7. In this study, we investigated whether administration of perinatal estradiol to female mice is sufficient to masculinize astroglial protein and gene expression related to maturation that we previously observed at P7. We found that canonical astroglial markers like glial fibrillary acidic protein and glutamine synthetase are not affected by perinatal estrogen, but markers of astroglial maturation, Vimentin, Aldh1a1, Dio2, and the number of actively dividing astroglia are masculinized by perinatal estradiol administration. These findings suggest that sex differences in neocortical astroglial maturation are at least in-part due to the role of perinatal estrogen. Given the higher prevalence of neurodevelopmental disorders in males compared to females and the involvement of astroglia in virtually all neurodevelopmental disorders, further research is needed to determine other contributions to sex differences in neocortical astroglial cells.


Assuntos
Astrócitos , Neocórtex , Gravidez , Camundongos , Feminino , Animais , Masculino , Astrócitos/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Neurônios/fisiologia , Estradiol/farmacologia , Estradiol/metabolismo
7.
Horm Behav ; 154: 105406, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478677

RESUMO

Previous studies have demonstrated menstrual cycle dependent changes in the recognition of facial emotional expressions, specifically the expression of fear, anger, sadness or disgust. While some studies demonstrate an improvement of emotion recognition performance during the peri-ovulatory phase, when estradiol levels peak, other studies demonstrate a deterioration of emotion recognition performance during the mid-luteal phase, when progesterone levels peak. It has been hypothesized, that these changes in emotion recognition performance mirror mood changes along the menstrual cycle. In the present study, we investigate, whether changes in emotion recognition performance along the menstrual cycle are mediated by mood changes along the menstrual cycle. In a combined cross-sectional and longitudinal study design, two large samples of women completed an emotion recognition task, as well as several mood questionnaires during their menses, peri-ovulatory or mid-luteal cycle phase. 65 women completed the task thrice, once during each cycle phase, order counterbalanced. In order to control for potential learning effects, a sample of 153 women completed the task only once in one of the three cycle phases. In both samples, results demonstrated no significant changes in emotion recognition performance along the menstrual cycle, irrespective of the performance measure investigated (accuracy, reaction time, frequency of emotion classifications) and irrespective of the emotion displayed. Bayesian statistics provided very strong evidence for the null hypothesis, that emotion recognition does not change along the menstrual cycle. There was also no moderation of emotion recognition changes along the menstrual cycle by mood changes along the menstrual cycle. Mood changes along the menstrual cycle followed the expected pattern with highest positive affect and least premenstrual symptoms around ovulation and lowest positive affect, but strongest premenstrual symptoms during menses. Interestingly, premenstrual symptoms were negatively related to estradiol, suggesting a protective effect of estrogen during the luteal cycle phase against mood worsening during the premenstrual phase.


Assuntos
Ciclo Menstrual , Progesterona , Feminino , Humanos , Teorema de Bayes , Estudos Transversais , Estudos Longitudinais , Progesterona/metabolismo , Ciclo Menstrual/psicologia , Emoções , Estradiol/metabolismo
8.
EMBO J ; 42(17): e113415, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37485728

RESUMO

The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones ß-estradiol 17-(ß-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Estradiol , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Estradiol/farmacologia , Estradiol/metabolismo , Mutagênese Sítio-Dirigida
9.
Biol Reprod ; 109(3): 309-318, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37418162

RESUMO

Progesterone (P4), estradiol (E2), and expression of their receptors (PGR and ESR1, respectively) by cells of the uterus regulate reproductive performance of mammals through effects on secretion and transport of nutrients into the uterine lumen. This study investigated the effect of changes in P4, E2, PGR, and ESR1 on expression of enzymes for the synthesis and secretion of polyamines. Suffolk ewes (n = 13) were synchronized to estrus (Day 0) and then, on either Day 1 (early metestrus), Day 9 (early diestrus), or Day 14 (late diestrus) of the estrous cycle, maternal blood samples were collected, and ewes were euthanized before obtaining uterine samples and uterine flushings. Endometrial expression of MAT2B and SMS mRNAs increased in late diestrus (P < 0.05). Expression of ODC1 and SMOX mRNAs decreased from early metestrus to early diestrus, and expression of ASL mRNA was lower in late diestrus than in early metestrus (P < 0.05). Immunoreactive PAOX, SAT1, and SMS proteins were localized to uterine luminal, superficial glandular, and glandular epithelia, stromal cells, myometrium, and blood vessels. Concentrations of spermidine and spermine in maternal plasma decreased from early metestrus to early diestrus and decreased further in late diestrus (P < 0.05). The abundances of spermidine and spermine in uterine flushings were less in late diestrus than early metestrus (P < 0.05). These results indicate that synthesis and secretion of polyamines are affected by P4 and E2, as well as the expression of PGR and ESR1 in the endometria of cyclic ewes.


Assuntos
Estradiol , Progesterona , Feminino , Animais , Ovinos , Estradiol/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Rubor/metabolismo , Útero/metabolismo , Receptores de Progesterona/metabolismo , Mamíferos/metabolismo
10.
Eur J Cardiothorac Surg ; 64(3)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410160

RESUMO

OBJECTIVES: Ischaemia and reperfusion-induced microvascular dysfunction is a serious problem encountered during a variety surgical procedures, leading to systemic inflammation and affecting remote organs, specially the lungs. 17ß-Oestradiol reduces pulmonary repercussions from various acute lung injury forms. Here, we focused on the 17ß-oestradiol therapeutic effects after aortic ischaemia and reperfusion (I/R) by evaluating lung inflammation. METHODS: Twenty-four Wistar rats were submitted to I/R by insufflation of a 2-F catheter in thoracic aorta for 20 min. Reperfusion took 4 h and 17ß-oestradiol (280 µg/kg, i.v.) was administered after 1 h of reperfusion. Sham-operated rats were controls. Bronchoalveolar lavage was performed and lung samples were prepared for histopathological analysis and tissue culture (explant). Interleukin (IL)-1ß, IL-10 and tumour necrosis factor-α were quantified. RESULTS: After I/R, higher number of leukocytes in bronchoalveolar lavage were reduced by 17ß-oestradiol. The treatment also decreased leukocytes in lung tissue. I/R increased lung myeloperoxidase expression, with reduction by 17ß-oestradiol. Serum cytokine-induced neutrophil chemoattractant 1 and IL-1ß increased after I/R and 17ß-oestradiol decreased cytokine-induced neutrophil chemoattractant 1. I/R increased IL-1ß and IL-10 in lung explants, reduced by 17ß-oestradiol. CONCLUSIONS: Our results showed that 17ß-oestradiol treatment performed in the period of reperfusion, modulated the systemic response and the lung repercussions of I/R by thoracic aortic occlusion. Thus, we can suggest that 17ß-oestradiol might be a supplementary approach leading the lung deterioration after aortic clamping in surgical procedures.


Assuntos
Lesão Pulmonar , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Estradiol/farmacologia , Estradiol/uso terapêutico , Estradiol/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Ratos Wistar , Interleucina-10/uso terapêutico , Aorta Torácica/patologia , Pulmão/patologia , Isquemia , Citocinas/metabolismo , Fatores Quimiotáticos/metabolismo , Fatores Quimiotáticos/uso terapêutico , Síndrome de Resposta Inflamatória Sistêmica
11.
J Biol Chem ; 299(8): 105068, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468102

RESUMO

Although it was described previously for estrogen (E2) regulation of intestinal epithelial Cl- and HCO3- secretion in sex difference, almost nothing is known about the roles of estrogen receptor (ER) subtypes in regulating E2-modulated epithelial ion transports and epithelial restitution. Here, we aimed to investigate ERα and ERß subtypes in the regulation of E2-modulated colonic epithelial HCO3- and Cl- secretion and epithelial restitution. Through physiological and biochemical studies, in combination of genetic knockdown, we showed that ERα attenuated female colonic Cl- secretion but promoted Ca2+-dependent HCO3- secretion via store-operated calcium entry (SOCE) mechanism in mice. However, ERß attenuated HCO3- secretion by inhibiting Ca2+via the SOCE and inhibiting cAMP via protein kinases. Moreover, ERα but not ERß promoted epithelial cell restitution via SOCE/Ca2+ signaling. ERα also enhanced cyclin D1, proliferating cell nuclear antigen, and ß-catenin expression in normal human colonic epithelial cells. All ERα-mediated biological effects could be attenuated by its selective antagonist and genetic knockdown. Finally, both ERα and ERß were expressed in human colonic epithelial cells and mouse colonic tissues. We therefore conclude that E2 modulates complex colonic epithelial HCO3- and Cl- secretion via ER subtype-dependent mechanisms and that ERα is specifically responsible for colonic epithelial regeneration. This study provides novel insights into the molecular mechanisms of how ERα and ERß subtypes orchestrate functional homeostasis of normal colonic epithelial cells.


Assuntos
Colo , Células Epiteliais , Receptor alfa de Estrogênio , Transporte de Íons , Receptores de Estrogênio , Animais , Feminino , Humanos , Camundongos , Células Epiteliais/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Colo/citologia
12.
Reprod Domest Anim ; 58(9): 1270-1278, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37448136

RESUMO

The present study was conducted to ascertain whether the role of kisspeptin in promoting in vitro development of preantral follicles was through the regulation of P450 aromatase gene expression and steroidogenesis in sheep. Accordingly, the cumulus cells and oocytes were collected from different development stages of preantral follicles grown in vivo and cultured in vitro in TCM199B (Group I), TCM199B + KP (10 µg/mL) (Group II) and Standard medium + KP (10 µg/mL). To measure the steroid (Estradiol-17ß; E2 and Progesterone; P4 ) synthesis through ELISA, spent culture medium was collected separately from the same in vitro groups. E2 synthesis in the spent medium collected from all the three groups showed an increasing trend from PFs' exposed to respective culture media for 3 min to 2-day culture stage but decreased thereafter till 6-day culture stage. This is followed by a sharp increase in E2 concentration in the spent medium collected after in vitro maturation. However, P4 synthesis in group III followed increased pattern as the development progressed from PFs' exposed to culture medium for 3 min to in vitro maturation stage. The steroid production was observed at all stages of in vitro development in altered supplemented conditions. The steroid synthesis in the spent medium was highest in the 6 day cultured PFs' in Standard medium + KP matured in vitro for 24 h. Therefore, supplementation of kisspeptin along with other growth factors promoted steroid production in cultured preantral follicles far better than in other media.


Assuntos
Aromatase , Kisspeptinas , Feminino , Animais , Ovinos , Kisspeptinas/farmacologia , Aromatase/genética , Aromatase/metabolismo , Folículo Ovariano/fisiologia , Oócitos/fisiologia , Estradiol/metabolismo
13.
Steroids ; 198: 109284, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487815

RESUMO

Estradiol and progesterone are key regulators of the menstrual cycle. In the human endometrium, progesterone induces morphological changes required for blastocyst implantation. Dysregulated response to progesterone can lead to endometrial pathologies including uterine bleeding and endometriosis. Besides the canonical nuclear progesterone receptor (encoded by the PGR gene), alternative response pathways include Progesterone Receptor Membrane Component 1 (PGRMC1), suspected to be involved in pathogenesis of endometrial diseases. We previously reported the spatiotemporal profile of PGRMC1 expression in the human endometrium along the menstrual cycle, highlighting progressive increase and decrease during the proliferative and secretory phases, respectively. Here we directly addressed its regulation by estradiol and progesterone, with systematic comparison with regulation of PGR expression. We found a direct correlation between expression of both genes during the proliferative and secretory phases in the cycling endometrium, but not during the menstrual phase. In a xenograft model mimicking the cycle phases, estradiol significantly increased and progesterone significantly decreased PGR expression but changes were not significant for PGRMC1. Finally, we did not find any significant effect of the ovarian steroids on expression of PGR or PGRMC1 in primary culture of endometrial stromal cells, except for a small increase in PGR expression by estradiol. Altogether, our experiments do not allow a major advance in our understanding of the mechanisms of cyclic variation of PGRMC1 expression, in particular regarding potential regulation by the ovarian steroids.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Xenoenxertos , Endométrio/patologia , Esteroides/metabolismo , Técnicas de Cultura de Células , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
14.
Endocrinology ; 164(8)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435939

RESUMO

The adipose-derived hormone leptin critically modulates reproductive function, such that its absence results in hypothalamic hypogonadism. Pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons are potential mediators of leptin's action on the neuroendocrine reproductive axis because they are leptin-sensitive and involved in both feeding behavior and reproductive function. In the complete absence of PACAP, male and female mice exhibit metabolic and reproductive abnormalities, yet there is some sexual dimorphism in the reproductive impairments. We tested whether PACAP neurons play a critical and/or sufficient role in mediating leptin's effects on reproductive function by generating PACAP-specific leptin receptor (LepR) knockout and rescue mice, respectively. We also generated PACAP-specific estrogen receptor alpha knockout mice to determine whether estradiol-dependent regulation of PACAP was critically involved in the control of reproductive function and whether it contributed to the sexually dimorphic effects of PACAP. We showed that LepR signaling in PACAP neurons is critically involved in the timing of female, but not male, puberty onset, but not fertility. Rescuing LepR-PACAP signaling in otherwise LepR-deficient mice was unable to rescue the reproductive deficits observed in LepR null mice but led to a marginal improvement in body weight and adiposity in females. Finally, PACAP-specific estrogen receptor alpha knockout did not lead to any changes in body weight or puberty onset compared with control mice. These data highlight that PACAP is a critical mediator of some of leptin's, but not estradiol's, influence on puberty onset in females, but is not critically involved in relaying leptin's effects in males or in adult females.


Assuntos
Estradiol , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Masculino , Camundongos , Feminino , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Maturidade Sexual , Leptina/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Peso Corporal , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(31): e2300191120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490537

RESUMO

Social memory is essential to the functioning of a social animal within a group. Estrogens can affect social memory too quickly for classical genomic mechanisms. Previously, 17ß-estradiol (E2) rapidly facilitated short-term social memory and increased nascent synapse formation, these synapses being potentiated following neuronal activity. However, what mechanisms underlie and coordinate the rapid facilitation of social memory and synaptogenesis are unclear. Here, the necessity of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) signaling for rapid facilitation of short-term social memory and synaptogenesis was tested. Mice performed a short-term social memory task or were used as task-naïve controls. ERK and PI3K pathway inhibitors were infused intradorsal hippocampally 5 min before E2 infusion. Forty minutes following intrahippocampal E2 or vehicle administration, tissues were collected for quantification of glutamatergic synapse number in the CA1. Dorsal hippocampal E2 rapid facilitation of short-term social memory depended upon ERK and PI3K pathways. E2 increased glutamatergic synapse number (bassoon puncta positive for GluA1) in task-performing mice but decreased synapse number in task-naïve mice. Critically, ERK signaling was required for synapse formation/elimination in task-performing and task-naïve mice, whereas PI3K inhibition blocked synapse formation only in task-performing mice. While ERK and PI3K are both required for E2 facilitation of short-term social memory and synapse formation, only ERK is required for synapse elimination. This demonstrates previously unknown, bidirectional, rapid actions of E2 on brain and behavior and underscores the importance of estrogen signaling in the brain to social behavior.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Fosfatidilinositol 3-Quinases , Camundongos , Feminino , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo
16.
Sci Transl Med ; 15(706): eadd1014, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494470

RESUMO

Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [18F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Ratos , Humanos , Animais , Feminino , Receptor alfa de Estrogênio/metabolismo , Opsinas/metabolismo , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Primatas , Estradiol/metabolismo , Neoplasias da Mama/metabolismo , Mamíferos/metabolismo
17.
eNeuro ; 10(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433683

RESUMO

About one-third of individuals living with epilepsy have treatment-resistant seizures. Alternative therapeutic strategies are thus urgently needed. One potential novel treatment target is miRNA-induced silencing, which is differentially regulated in epilepsy. Inhibitors (antagomirs) of specific microRNAs (miRNAs) have shown therapeutic promise in preclinical epilepsy studies; however, these studies were mainly conducted in male rodent models, and research into miRNA regulation in females and by female hormones in epilepsy is scarce. This is problematic because female sex and the menstrual cycle can affect the disease course of epilepsy and may, therefore, also alter the efficacy of potential miRNA-targeted treatments. Here, we used the proconvulsant miRNA miR-324-5p and its target, the potassium channel Kv4.2, as an example to test how miRNA-induced silencing and the efficacy of antagomirs in epilepsy are altered in female mice. We showed that Kv4.2 protein is reduced after seizures in female mice similar to male mice; however, in contrast to male mice, miRNA-induced silencing of Kv4.2 is unchanged, and miR-324-5p activity, as measured by the association with the RNA-induced silencing complex, is reduced in females after seizure. Moreover, an miR-324-5p antagomir does not consistently reduce seizure frequency or increase Kv4.2 in female mice. As a possible underlying mechanism, we found that miR-324-5p activity and the silencing of Kv4.2 in the brain were differentially correlated with plasma levels of 17ß-estradiol and progesterone. Our results suggest that hormonal fluctuations in sexually mature female mice influence miRNA-induced silencing and could alter the efficacy of potential future miRNA-based treatments for epilepsy in females.


Assuntos
Epilepsia , MicroRNAs , Camundongos , Masculino , Feminino , Animais , MicroRNAs/genética , Antagomirs/farmacologia , Progesterona/metabolismo , Estradiol/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Convulsões/induzido quimicamente , Epilepsia/metabolismo
18.
FASEB J ; 37(8): e23073, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402125

RESUMO

In female mammals, the oviduct and uterus are essential sites for female and male gamete transport, fertilization, implantation, and maintenance of a successful pregnancy. To delineate the reproductive function of Mothers against decapentaplegic homolog 4 (Smad4), we specifically inactivated Smad4 in ovarian granulosa cells and, oviduct and uterine mesenchymal cells using the Amhr2-cre mouse line. Deletion of exon 8 of Smad4 results in the production of an MH2-truncated SMAD4 protein. These mutant mice are infertile due to the development of oviductal diverticula and defects during the implantation process. The ovaries are fully functional as demonstrated in an ovary transfer experiment. The development of oviductal diverticula occurs shortly after puberty and is dependent on estradiol. The diverticula interfere with sperm migration and embryo transit to the uterus, reducing the number of implantation sites. Analysis of the uterus shows that, even if implantation occurs, decidualization and vascularization are defective resulting in embryo resorption as early as the seventh day of pregnancy. Thus, Smad4 plays an important function in female reproduction by controlling the structural and functional integrity of the oviduct and uterus.


Assuntos
Estradiol , Proteína Smad4 , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Implantação do Embrião , Estradiol/metabolismo , Mamíferos/metabolismo , Oviductos/metabolismo , Sêmen/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Útero/metabolismo
20.
Front Immunol ; 14: 1203719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404833

RESUMO

One pivotal aspect of early pregnancy is decidualization. The decidualization process includes two components: the differentiation of endometrial stromal cells to decidual stromal cells (DSCs), as well as the recruitment and education of decidual immune cells (DICs). At the maternal-fetal interface, stromal cells undergo morphological and phenotypic changes and interact with trophoblasts and DICs to provide an appropriate decidual bed and tolerogenic immune environment to maintain the survival of the semi-allogeneic fetus without causing immunological rejection. Despite classic endocrine mechanism by 17 ß-estradiol and progesterone, metabolic regulations do take part in this process according to recent studies. And based on our previous research in maternal-fetal crosstalk, in this review, we elaborate mechanisms of decidualization, with a special focus on DSC profiles from aspects of metabolism and maternal-fetal tolerance to provide some new insights into endometrial decidualization in early pregnancy.


Assuntos
Decídua , Endométrio , Gravidez , Feminino , Humanos , Decídua/metabolismo , Endométrio/metabolismo , Estradiol/metabolismo , Feto/metabolismo , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...