Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.876
Filtrar
1.
J Nutr Sci Vitaminol (Tokyo) ; 67(4): 243-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470999

RESUMO

Daily fat and sugar intake has increased in Japan, while total energy intake has decreased. However, the number of type 2 diabetes mellitus patients has increased, and this often causes renal injury characterized by autophagic vacuoles. Although many studies with comparisons of high fat or sugar versus a normal macronutrient balanced diet have been reported, there are few studies that equalized calorie intake and body weights. In the current study, AIN93M diets (CONT group) with matching energy content with lard derived high saturated fat (LARD group), soybean oil derived unsaturated fat (SOY OIL group) and sucrose (SUCROSE group) were provided to compare their effects on renal morphology in streptozotocin-injected CD-1 mice without causing obesity. The number of renal tubular vacuoles was higher in SUCROSE and slightly higher in LARD compared with CONT mice, and was higher in LARD and SUCROSE compared with SOY OIL mice. Most of those vacuoles were LAMP1-positive, a marker of lysosomal autophagy. These results suggest that despite identical energy contents, diets with high sucrose or saturated fat compared to unsaturated fat may aggravate lysosomal renal injury in a non-obese, streptozotocin-induced model of diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Sacarose , Animais , Dieta , Gorduras na Dieta , Humanos , Rim , Lisossomos , Camundongos , Estreptozocina , Sacarose/efeitos adversos
2.
Braz J Med Biol Res ; 54(11): e11352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495249

RESUMO

Diabetes mellitus is associated with neural and micro- and macrovascular complications. Therapeutic options for these complications are limited and the delivery of mesenchymal stem cells into lesions have been reported to improve the healing process. In this work, the effects of the administration of a lineage of human bone marrow mesenchymal stem cells immortalized by the expression of telomerase (hBMSC-TERT) as a potential therapeutic tool for wound healing in diabetic rats were investigated. This is the first description of the use of these cells in diabetic wounds. Dorsal cutaneous lesions were made in streptozotocin-induced diabetic rats and hBMSC-TERT were subcutaneously administered around the lesions. The healing process was evaluated macroscopically, histologically, and by birefringence analysis. Diabetic wounded rats infused with hBMSC-TERT (DM-TERT group) and the non-diabetic wounded rats not infused with hBMSC-TERT (CW group) had very similar patterns of fibroblastic response and collagen proliferation indicating improvement of wound healing. The result obtained by birefringence analysis was in accordance with that obtained by the histological analysis. The results indicated that local administration of hBMSC-TERT in diabetic wounds improved the wound healing process and may become a therapeutic option for wounds in individuals with diabetes.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Telomerase , Animais , Humanos , Ratos , Estreptozocina , Cicatrização
3.
Food Res Int ; 147: 110550, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399527

RESUMO

Type 2 diabetes mellitus (T2DM) is considered a rapidly growing chronic disease that threatens human health worldwide. Extracts of various seaweeds have been shown to have anti-diabetic activity. Sargarsum fusiforme, an edible brown seaweed, has been shown to possess anti-inflammatory, anti-diabetic and anti-obesity activities. In this study, we investigated the beneficial effect of an ethanol extract of S. fusiforme (EE) on type 2 diabetes in mice induced with high-fat diet (HFD) and streptozotocin (STZ). Administering EE to the diabetic mice significantly reduced food intake, water intake and fasting blood glucose (FBG), while improving glucose tolerance, lipid profile and ameliorating hepatic oxidative stress. Furthermore, these animals also exhibited significantly diminished epididymal fat deposition, as well as less pathological changes in the heart and liver tissues, while displaying some highly enriched benign gut bacteria (e.g., Intestinimonas, Oscillibacter, Lachnoclostridium, unidentified_Lachnospiraceae, Roseburia and Anaerotruncus) and a lower abundance of bacteria associated with diabetes or other metabolic diseases (e.g., Enterorhabdus and Romboutsia). Metabolomic analysis revealed reduced levels of branched-chain amino acids (BCAA), such as l-valine and l-isoleucine, aromatic amino acids (AAA), such as l-tyrosine and l-phenylalanine, and increased levels of 4-hydroxyphenylacetic acid (4-HPA) in the gut content, suggesting that EE may impact T2DM through modulation of these compounds in the gut of the animals. Taken together, the results implied that S. fusiforme may contain valuable active components other than polysaccharides that have potential benefit in alleviating T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Etanol , Hiperglicemia/tratamento farmacológico , Camundongos , Extratos Vegetais/farmacologia , Estreptozocina
4.
Life Sci ; 283: 119857, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34339715

RESUMO

AIM: Diabetic cardiomyopathy (DCM) accomodates a spectrum of cardiac abnormalities. This study aims to investigate whether DCM is associated with changes in cyclic adenosine 3'-5' monophosphate (cAMP) signaling, particularly cyclic nucleotide phosphodiesterases (PDEs). MAIN METHODS: Type 1 diabetes (T1D) was induced in rats by streptozotocin (STZ, 65 mg/kg) injection. Myocardial remodeling, structure and function were evaluated by histology and echocardiography, respectively. We delineated the sequential changes affecting cAMP signaling and characterized the expression pattern of the predominant cardiac PDE isoforms (PDE 1-5) and ß-adrenergic (ß-AR) receptors at 4, 8 and 12 weeks following diabetes induction, by real-time quantitative PCR and Western blot. cAMP levels were measured by immunoassays. KEY FINDINGS: T1D-induced DCM was associated with cardiac remodeling, steatosis and fibrosis. Upregulation of ß1-AR receptor transcripts was noted in diabetic hearts at 4 weeks along with an increase in cAMP levels and an upregulation in the ejection fraction and fraction shortening. However, ß2-AR receptors expression remained unchanged regardless of the disease stage. Moreover, we noted an early and specific upregulation of cardiac PDE1A, PDE2A, PDE4B, PDE4D and PDE5A expression at week 4, followed by increases in PDE3A levels in diabetic hearts at week 8. However, DCM was not associated with changes in PDE4A gene expression irrespective of the disease stage. SIGNIFICANCE: We show for the first time differential and time-specific regulations in cardiac PDEs, data that may prove useful in proposing new therapeutic approaches in T1D-induced DCM.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Diester Fosfórico Hidrolases/metabolismo , Animais , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Masculino , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases/fisiologia , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Estreptozocina/farmacologia
5.
Acta Cir Bras ; 36(7): e360702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34431921

RESUMO

PURPOSE: To develop a model of induction of type-2 diabetes (DM2) by combining low doses of streptozotocin (STZ) and a cafeteria diet. METHODS: Forty male Wistar rats (200 g) were allocated into four groups: control (non-diabetic, n = 10); STZ 30 mg/kg (diabetic, n = 10); STZ 35 mg/kg (diabetic,n = 10); and STZ 40 mg/kg (diabetic, n = 10). DM2 was induced with a single intraperitoneal injection of STZ after four weeks of cafeteria diet in the three diabetic groups. All animals were evaluated as for anthropometric, and biochemical analyses, as well as liver, kidney and pancreas histological analyses. RESULTS: Lower weight gain, higher water intake, higher Lee index, hyperglycemia and modified total protein, urea, alpha-amylase, as well as insulin resistance, hepatic steatosis, pancreas, and kidney injury were observed in animals treated with 35 and 40 mg/kg of STZ. CONCLUSIONS: The results show that the experimental model using cafeteria diet associated with 35 mg/kg of STZ is a low-cost model and efficient in order to develop DM2, confirmed by the presence of polydipsia, hyperglycemia, altered biochemical tests, insulin resistance and damages to the liver, pancreas and kidney, which is similar to the disease found in humans.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/etiologia , Dieta , Masculino , Ratos , Ratos Wistar , Estreptozocina
6.
Nutrients ; 13(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445047

RESUMO

Sargassum fusiforme alginate (SF-Alg) possess many pharmacological activities, including hypoglycemic and hypolipidemic. However, the hypoglycemic mechanisms of SF-Alg remain unclear due to its low bioavailability. In this study, we evaluated the therapeutic effect of SF-Alg on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. SF-Alg intervention was found to significantly reduce fasting blood glucose (FBG), triglycerides (TG), and total cholesterol (TC), while increasing high-density lipoprotein cholesterol (HDL-c) and improving glucose tolerance. In addition, administrating SF-Alg to diabetic mice moderately attenuated pathological changes in adipose, hepatic, and heart tissues as well as skeletal muscle, and diminished oxidative stress. To probe the underlying mechanisms, we further analyzed the gut microbiota using 16S rRNA amplicon sequencing, as well as metabolites by non-targeted metabolomics. Here, SF-Alg significantly increased some benign bacteria (Lactobacillus, Bacteroides, Akkermansia Alloprevotella, Weissella and Enterorhabdus), and significantly decreased harmful bacteria (Turicibacter and Helicobacter). Meanwhile, SF-Alg dramatically decreased branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in the colon of T2D mice, suggesting a positive benefit of SF-Alg as an adjvant agent for T2D.


Assuntos
Alginatos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Sargassum/química , Animais , Glicemia/efeitos dos fármacos , Colesterol/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hiperglicemia/etiologia , Camundongos , Estreptozocina , Triglicerídeos/sangue
7.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445384

RESUMO

Diabetes is a predictor of nonalcoholic fatty liver disease (NAFLD). There are data suggesting that Tribulus terrestris (TT) saponins act as antidiabetic agents and protect against NAFLD. The effect of saponins may be increased by fermentable fibers such as inulin. The aim of the present study was to investigate the influence of TT saponins and TT saponins plus inulin on the plasma lipid profile and liver fatty acids of rats with induced diabetes mellitus type 2 (T2DM). The study was performed on 36 male Sprague-Dawley rats divided into two main groups: control and diabetic. Animals of the diabetic (DM) group were fed a high-fat diet and injected with streptozotocin (low doses). Animals of the control group (nDM) were on a regular diet and were injected with buffer. After the injections, the animals were split into subgroups: three non-diabetic (nDM): (i) control (c-C); (ii) saponin-treated rats (C-Sap); (iii) rats treated with saponins + inulin (C-Sap + IN), and three diabetic subgroups (DM): (iv) control (c-DM); (v) saponin-treated rats (DM-Sap); (vi) rats treated with saponins + inulin (DM-Sap + IN). Liver fatty acids were extracted and analyzed by gas chromatography, and plasma glucose and lipids were measured. The study showed significant changes in liver morphology, liver fatty acids, plasma lipid profile, and plasma glucose. In summary, supplementation with TT saponins or saponins with inulin for one month decreased the level of steatosis in rats with induced type 2 diabetes. Moreover, there were favorable effects on the plasma lipid profile in the rats. However, additional supplementation with inulin had a negative effect on liver morphology (with a microvesicular type of steatosis) in the non-diabetes group. Moreover, supplementation with inulin had a negative effect on plasma glucose in both diabetic and non-diabetic rats. These data show that a diet enriched with fermentable fibers reveals different effects in different organisms, and not all sources and forms of fiber are beneficial to health.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Inulina/administração & dosagem , Saponinas/administração & dosagem , Tribulus/química , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/análise , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Inulina/farmacologia , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia , Estreptozocina , Resultado do Tratamento
8.
J Vet Med Sci ; 83(9): 1425-1434, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34334512

RESUMO

Diabetes mellitus (DM) is characterized by metabolic disorders and psychological deficits, including cognitive decline. Here, we investigated the effect of cordycepin on oxidative stress and protein expression in the brains of diabetic mice. Twenty-four mice were divided into four groups, one comprising untreated healthy mice (N); one comprising healthy mice treated with cordycepin (24 mg/kg body weight) (N+Cor); one comprising untreated DM mice; and one comprising DM mice treated with cordycepin (24 mg/kg body weight) (DM+Cor). After 14 days of treatment, cognitive behavior was assessed using the novel object recognition (NOR) test. The brain levels of oxidative stress markers (glutathione, catalase, and superoxide dismutase) were examined using the respective detection kits. Protein expression in brain tissues was assessed by liquid chromatography with tandem mass spectrometry (LC-MS/MS); the functions of the identified proteins were annotated by PANTHER, while major protein-protein interactions were assessed using STITCH. We found that cordycepin treatment significantly decreased body weight and food and water intake in the DM+Cor group compared with that in the DM group; however, no differences in blood glucose levels were found between the two groups. Cordycepin treatment significantly reversed cognitive decline in diabetic mice in the NOR test and ameliorated antioxidant defenses. Additionally, we identified ULK1 isoform 2, a protein associated with cognitive function via the activated AMPK and autophagic pathways, as being uniquely expressed in the DM+Cor group. Our findings provide novel insights into the cellular mechanisms underlying how cordycepin improves cognitive decline in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Doenças dos Roedores , Animais , Antioxidantes , Encéfalo , Cromatografia Líquida/veterinária , Desoxiadenosinas , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos , Estresse Oxidativo , Estreptozocina , Superóxido Dismutase , Espectrometria de Massas em Tandem/veterinária
9.
Chem Biol Interact ; 347: 109603, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34352274

RESUMO

AIMS: Major depressive disorder (MDD) affects approximately 322 million people worldwide and is a common comorbidity in patients with diabetes mellitus (DM). A possible pathophysiological mechanism correlating both diseases is the increased oxidative stress in brain regions due to hyperglycemia. Myrsine coriacea (Primulaceae) is popularly known as "capororoca" and studies have been shown that this plant exhibits several pharmacological properties attributed to myrsinoic acid A (MAA) and B (MAB). Indeed, previous results have been shown its effects on the central nervous system, leading us to explore possible psychotropic effects. MAIN METHODS: The effects of treatment with hydroalcoholic extract of the barks from Myrsine coriacea (HEBMC, 150 mg/kg, o.g.), MAA (5 mg/kg, o.g.), and MAB (3 mg/kg, o.g.) were evaluated in streptozotocin (75 mg/kg, i.p.)-induced diabetic female rats. After 28 days of treatments, rats were submitted to the forced swim test (FST) and open field test (OFT). Also, superoxide dismutase (SOD) and catalase (CAT) activities, reduced glutathione (GSH) and lipid hydroperoxides (LOOH) levels were evaluated in the hippocampus (HIP) and prefrontal cortex (PFC) of these rats. KEY FINDINGS: The treatment with MAA or MAB increased the latency of first immobility in diabetic rats, and the HEBMC administration decreased the immobility time, and increase the climbing in FST. However, only MAB treatment reduces the immobility time, increases the climbing, and swimming in FST, and increases the crossing of diabetic animals in the OFT. Besides, this behavioral improvement promoted by MAB administration was accompanied by reducing in oxidative stress in the HIP and PFC, but not reducing hyperglycemia in diabetic rats. SIGNIFICANCE: The results suggest that MAB's antioxidant effect in the HIP of diabetic animals may be essential to its antidepressant-like effect.


Assuntos
Alcenos/uso terapêutico , Antidepressivos/uso terapêutico , Benzofuranos/uso terapêutico , Depressão/prevenção & controle , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Catalase/metabolismo , Depressão/etiologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Feminino , Myrsine/química , Teste de Campo Aberto/efeitos dos fármacos , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Caules de Planta/química , Ratos Wistar , Estreptozocina
10.
Chem Biol Interact ; 347: 109617, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34391751

RESUMO

PURPOSE: This study was designed to investigate the mechanism of Dapagliflozin (Dapa) cardioprotection against diabetic cardiomyopathy (DCM). Structural and functional changes in the heart as well as decrease of erythropoietin (EPO) levels were reported in DCM. EPO simultaneously activates three pathways: the Janus-activated kinase-signal transducer and activator of transcription (JAK2/STAT5), phosphatidylinositol-3-kinase-Akt (PI3K/Akt), and extracellular signal-related kinase (ERK/MAPK) cascades, that result in proliferation and differentiation of cardiac cells. METHODS AND RESULTS: DCM was induced by a high fat diet for 10 weeks followed by administration of streptozotocin. After confirmation of diabetes, rats were divided randomly to 5 groups: Group 1; normal control group, Group 2; untreated diabetic group and Groups (3-5); diabetic groups received Dapa daily (0.75 mg, 1.5 or 3 mg/Kg, p.o) respectively for a month. At the end of the experiment, full anaesthesia was induced in all rats using ether inhalation and ECG was recorded. Blood samples were collected then rats were sacrificed and their heart were dissected out and processed for biochemical and histopathological studies. Untreated diabetic rats showed abnormal ECG pattern, elevation of serum cardiac enzymes, decrease EPO levels, downregulation of P-Akt, P-JAK2 and pMAPK pathways, abnormal histological structure of the heart and increase immunostaining intensity of P53 and TNF α in the cardiomyocytes. Dapa in a dose dependent manner attenuated the alterations in the previously mentioned parameters. CONCLUSION: The cardioprotective effect of Dapa could be mediated by increasing EPO levels and activation of P-Akt, P-JAK2 and pMAPK signalling cascades which in turn decrease apoptosis.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Cardiotônicos/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Glucosídeos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Eletrocardiografia/efeitos dos fármacos , Eritropoetina/sangue , Eritropoetina/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Wistar , Estreptozocina
11.
Nutrients ; 13(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371877

RESUMO

Pathological mechanisms underlining diabetic bone defects include oxidative damage and insulin/IGF-1 imbalance. Morin is a bioflavonoid with antioxidant and anti-diabetic effects. This study evaluates morin's protective effects against altered bone histomorphometry in diabetic rats through assessing insulin/IGF-1 pathway as a potential mechanism. Diabetic animals were administered two morin doses (15 and 30 mg/kg) for 5 weeks. Different serum hepatic and renal functions tests were assessed. Bone density and histomorphometry in cortical and trabecular tissues were evaluated histologically. The expressions of insulin, c-peptide and IGF-1 were estimated. In addition, the enzymatic activities of the major antioxidant enzymes were determined. Diabetic-associated alterations in serum glucose, aminotransferases, urea and creatinine were attenuated by morin. Diabetic bone cortical and trabecular histomorphometry were impaired with increased fibrosis, osteoclastic functions, osteoid formation and reduced mineralization, which was reversed by morin; particularly the 30 mg/kg dose. Insulin/IGF-1 levels were diminished in diabetic animals, while morin treatment enhanced their levels significantly. Diabetes also triggered systemic oxidative stress noticeably. The higher dose (30 mg/kg) of morin corrected the endogenous antioxidant enzymatic activities in diabetic rats. Findings indicate the potential value of morin supplementation against hyperglycemia-induced skeletal impairments. Activation of insulin/IGF-1 signaling could be the underlining mechanism behind these effects.


Assuntos
Antioxidantes/farmacologia , Glicemia/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fêmur/efeitos dos fármacos , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/sangue , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/patologia , Fêmur/metabolismo , Fêmur/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais , Estreptozocina
12.
J Wound Care ; 30(8): 618-625, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34382850

RESUMO

OBJECTIVE: Quercus infectoria galls have commonly been used for different therapeutic purposes. This study was conducted to investigate the effects of topical application of an ointment prepared from Quercus infectoria gall hydroethanolic extract on open wound healing in a streptozocin-induced diabetic BALB/c mouse model. METHOD: After induction of diabetes, two circular wounds (5mm) were created on the dorsum of the mice which were then divided into three groups. The mice were treated with soft yellow paraffin (control-sham group) and therapeutic doses of 5% and 10% of an ointment prepared from Quercus infectoria, respectively. To evaluate the effects of the therapeutic ointment on the wound healing process, wound area, histological parameters, mRNA levels of vascular endothelial growth factor (VEGF), Bcl-2 and p53, plasma levels of interleukin-6 (IL-6) and tumour necrosis factor (TNF)-α, and tissue antioxidant capacity were investigated. RESULTS: The mice (n=54) were divided into three equal groups. Wound area and concentrations of IL-6 and TNF-α were significantly decreased in both ointment-treated groups compared to the control group (p<0.05). Moreover, angiogenesis, fibroblast distribution per mm2 of wound tissue, collagen deposition, rapid re-epithelialisation, and the expression of VEGF, Bcl-2 and p53 mRNA, were significantly increased (p<0.05). The administration of the ointment reduced malondialdehyde concentration and increased total antioxidant capacity compared with the control group (p<0.05). CONCLUSION: Our study suggests that an ointment prepared from Quercus infectoria gall hydroethanolic extract accelerated open wound healing in a diabetic animal model by shortening the inflammatory phase, inducing apoptosis, up-regulating the expression of Bcl-2 and p53 mRNA, antioxidant properties and cellular proliferation.


Assuntos
Diabetes Mellitus , Quercus , Animais , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estreptozocina , Fator A de Crescimento do Endotélio Vascular , Cicatrização
13.
Int J Pharm ; 605: 120842, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216766

RESUMO

MicroRNAs (miRNA) is vital for gene expression regulation and normal kidney function. Mainly, miRNA-30a is responsible for the homeostasis of podocytes. In the diabetic nephropathic condition, miRNA-30a is directly and primarily suppressed by hyperglycemic kidney induced Notch signaling pathway leads to podocyte damage and apoptosis. Thus, transferring the exogenous miRNA-30a to podocytes might improve albuminuria as well as podocytes injury. The deprived stability, poor targetability, and low specificity in vivo are critical limitations to attain this objective. This investigation reports the specific and efficient delivery of miRNA-30a mimic via cyclo(RGDfC)-gated polymeric-nanoplexes with dendrimer templates to alleviate podocyte conditions. The nanoplexes able to protect RNase enzyme and to exhibit greater cellular uptake viaαvß3 receptor selective binding in HG treated podocytes. The nanoplexes up-regulated the expression level of miRNA-30a and repress the elevated Notch-1 signaling in HG exposed podocytes. The critical results of in vivo experimentation attribute marked suppression of Notch-1 in streptozotocin (STZ) induced diabetic C57BL/6 mice and reduced glomerular expansion and fibrosis in the glomerular area. Developed nanoplexes represents an efficient platform for the targeted delivery of exogenous miRNA to podocytes. The approach developed herein could be extrapolated to other gene therapeutics and other kidney-related diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Podócitos , Animais , Apoptose , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/terapia , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina
14.
Biomolecules ; 11(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208360

RESUMO

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus (T2D). Metformin exerts its glucose-lowering effect primarily through decreasing hepatic glucose production (HGP). However, the precise molecular mechanisms of metformin remain unclear due to supra-pharmacological concentration of metformin used in the study. Here, we investigated the role of Foxo1 in metformin action in control of glucose homeostasis and its mechanism via the transcription factor Foxo1 in mice, as well as the clinical relevance with co-treatment of aspirin. We showed that metformin inhibits HGP and blood glucose in a Foxo1-dependent manner. Furthermore, we identified that metformin suppresses glucagon-induced HGP through inhibiting the PKA→Foxo1 signaling pathway. In both cells and mice, Foxo1-S273D or A mutation abolished the suppressive effect of metformin on glucagon or fasting-induced HGP. We further showed that metformin attenuates PKA activity, decreases Foxo1-S273 phosphorylation, and improves glucose homeostasis in diet-induced obese mice. We also provided evidence that salicylate suppresses HGP and blood glucose through the PKA→Foxo1 signaling pathway, but it has no further additive improvement with metformin in control of glucose homeostasis. Our study demonstrates that metformin inhibits HGP through PKA-regulated transcription factor Foxo1 and its S273 phosphorylation.


Assuntos
Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Metformina/farmacologia , Animais , Aspirina/metabolismo , Aspirina/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteína Forkhead Box O1/farmacologia , Gluconeogênese/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Metformina/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fosforilação , Transdução de Sinais , Estreptozocina/farmacologia
15.
Mol Med Rep ; 24(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34328201

RESUMO

Diabetes­associated neuronal dysfunction (DAND) is one of the serious complications of diabetes, but there is currently no remedy for it. Streptozotocin [2­deoxy­2­(3­methy1­3­nitrosoureido) D­glucopyranose; STZ] is one of the most well­established diabetes inducers and has been used in vivo and in vitro DAND models. The aim of the present study was to demonstrate that C8­B4 microglia transformed by the stimulus of repetitive low­dose lipopolysaccharide (LPSx3­microglia) prevent STZ­induced Neuro­2a neuronal cell death in vitro. The ELISA results showed that neurotrophin­4/5 (NT­4/5) secretion was promoted in LPSx3­microglia and the cell viability assay with trypan blue staining revealed that the culture supernatant of LPSx3­microglia prevented STZ­induced neuronal cell death. In addition, reverse transcription­quantitative PCR showed that neurons treated with the culture supernatant of LPSx3­microglia promoted the gene expression of B­cell lymphoma­extra large and glucose­dependent insulinotropic polypeptide receptor. Furthermore, the inhibition of tyrosine kinase receptor B, a receptor of NT­4/5, suppressed the neuroprotective effect of LPSx3­microglia. Taken together, the present study demonstrated that LPSx3­microglia prevent STZ­induced neuronal death and that NT­4/5 may be involved in the neuroprotective mechanism of LPSx3­microglia.


Assuntos
Morte Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores dos Hormônios Gastrointestinais/genética , Estreptozocina/farmacologia , Proteína bcl-X/genética
16.
Molecules ; 26(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208534

RESUMO

Endothelial cell dysfunction is considered to be one of the major causes of vascular complications in diabetes. Polyphenols are known as potent antioxidants that can contribute to the prevention of diabetes. Corn silk has been reported to contain polyphenols and has been used in folk medicine in China for the treatment of diabetes. The present study aims to investigate the potential protective role of the phenolic-rich fraction of corn silk (PRF) against injuries to vascular endothelial cells under high glucose conditions in vitro and in vivo. The protective effect of PRF from high glucose toxicity was investigated using human umbilical vein endothelial cells (HUVECs). The protective effect of PRF was subsequently evaluated by using in vivo methods in streptozotocin (STZ)-induced diabetic rats. Results showed that the PRF significantly reduced the cytotoxicity of glucose by restoring cell viability in a dose-dependent manner. PRF was also able to prevent the histological changes in the aorta of STZ-induced diabetic rats. Results suggested that PRF might have a beneficial effect on diabetic patients and may help to prevent the development and progression of diabetic complications such as diabetic nephropathy and atherosclerosis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Polifenóis/farmacologia , Zea mays/metabolismo , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , China , Citoproteção/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Células Endoteliais/metabolismo , Glucose/efeitos adversos , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Extratos Vegetais/farmacologia , Polifenóis/química , Ratos , Ratos Sprague-Dawley , Estreptozocina/farmacologia
17.
Biomed Pharmacother ; 138: 111094, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311521

RESUMO

Currently, several studies propose that the dominant intestinal bacteria are core flora. Besides keeping the homeostasis of the intestinal environment, the intestinal microflora also plays a role in body metabolism, production of some vitamins, and control of barrier function. The study aimed to investigate the jejunum microbiota in diabetic rats as well as it's the relationship with Ceftriaxone sodium-mediated gut dysbiosis, diabetic parameters, and intestinal permeability. Thirty-two Wistar rats (Male) were enrolled and divided into four groups (A, B, C, and D; N = 8). Subsequently, T2DM was induced in C and D groups by HFD/STZ model and then gut dysbiosis in B and D groups via intragastric administration of Ceftriaxone sodium for two weeks. The food-water intake, body weight, fasting blood glucose, plasma insulin, HOMA-IR, intestinal permeability, and jejunum microbiota and it's histology were investigated. In this study, T2DM was associated with a significant decrease in the richness and diversity of jejunum microbiota, elevation in the intestinal permeability, and higher abundance of some opportunistic pathogens. Ceftriaxone sodium-induced gut dysbiosis declined food-water intake, damagedthe villi of jejunum tissue, increased intestinal permeability, and affected the diversity of jejunum microbiota. In diabetic rats, Ceftriaxone sodium-mediated gut dysbiosis also declined the abundance of someSCFAs bacteria and raised the abundant of some opportunistic bacteria such as Staphylococcus_sciuri. Interestingly, we found that several bacteria were negatively correlated with HOMA-IR, fasting blood glucose, body weight, and intestinal permeability. Overall, the study highlighted the jejunum microflora alterations in HFD/STZ diabetic rats and assessed the effect of Ceftriaxone sodium-induced gut dysbiosis on diabetic parameters, jejunum microbiota and histology, and intestinal permeability, which are of potential for further studies.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Jejuno/microbiologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Ceftriaxona/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Disbiose , Microbioma Gastrointestinal/efeitos dos fármacos , Absorção Intestinal , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Masculino , Permeabilidade , Ratos Wistar , Estreptozocina
18.
Biomed Pharmacother ; 138: 111486, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311523

RESUMO

Erectile dysfunction (ED) is a common diabetic complication. Recent evidence has illuminated the role of hydrogen sulfide (H2S) as a dynamic mediator of the erection process. H2S is a potent endogenous relaxant gas. It has been shown to relax human and animal penile tissue in vitro and induce erection in animals in vivo. The reported penile expression of H2S-synthesizing enzymes also supports the potential role of the endogenous L-cysteine/H2S pathway in penile homeostasis. Several pathological changes take place in the diabetic penile tissue, including inflammation, oxidative stress, neuropathy and fibrosis of the corpus cavernosum (CC), the major erectile structure of the penis. The present study is experimental and has been performed in the diabetic rat model. The study will investigate the role of H2S as a potential protective mediator against diabetes-induced structural and functional alterations in the CC by examining if it: (1) reduces corporal contraction and/or enhances corporal relaxation following pharmacological stimulation, (2) attenuates fibromuscular changes in diabetic CC, and (3) whether there is a link with H2S plasma/urine level and CC tissue generation, as well as studying the expression of some proteins in the transforming growth factor (TGF)-ß1-associated pathway. The major findings of the study reveal that- compared to the nondiabetic controls - the diabetic animals CC showed: (1) augmented contraction and attenuated relaxation in response to phenylephrine and carbachol, respectively, (2) marked fibromuscular degeneration with a significantly lower smooth muscle/collagen ratio and upregulation of TGF-ß-1/Smad/CTGF fibrosis signaling pathway, (3) reduced H2S plasma and urinary levels and cavernosal tissue generation. Chronic GYY4137 treatment prevented most of these pathological changes in diabetic CC, thus may be considered a potential new strategy for the prevention and/or treatment of diabetes-induced ED.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Erétil/prevenção & controle , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Ereção Peniana/efeitos dos fármacos , Pênis/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Fibrose , Sulfeto de Hidrogênio/metabolismo , Masculino , Pênis/metabolismo , Pênis/patologia , Pênis/fisiopatologia , Ratos Sprague-Dawley , Transdução de Sinais , Estreptozocina
19.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198937

RESUMO

Diabetic nephropathy is reported to occur as a result of the interactions between several pathophysiological disturbances, as well as renal oxidative stress and inflammation. We examined the effect of Malaysian propolis (MP), which has anti-hyperglycemic, antioxidant and anti-inflammatory properties, on diabetes-induced nephropathy. Diabetic rats were either treated with distilled water (diabetic control (DC) group), MP (300 mg/kg b.w./day), metformin (300 mg/kg b.w./day) or MP + metformin for four weeks. We found significant increases in serum creatinine, urea and uric acid levels, decreases in serum sodium and chloride levels, and increase in kidney lactate dehydrogenase activity in DC group. Furthermore, malondialdehyde level increased significantly, while kidney antioxidant enzymes activities, glutathione level and total antioxidant capacity decreased significantly in DC group. Similarly, kidney immunoexpression of nuclear factor kappa B, tumor necrosis factor-α, interleukin (IL)-1ß and caspase-3 increased significantly, while IL-10 immunoexpression decreased significantly in DC group relative to normal control group. Histopathological observations for DC group corroborated the biochemical data. Intervention with MP, metformin or both significantly mitigated these effects and improved renal function, with the best outcome following the combined therapy. MP attenuates diabetic nephropathy and exhibits combined beneficial effect with metformin.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Metformina/administração & dosagem , Própole/administração & dosagem , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Creatinina/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Sinergismo Farmacológico , L-Lactato Desidrogenase/metabolismo , Masculino , Metformina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Própole/farmacologia , Ratos , Estreptozocina , Regulação para Cima , Ureia/sangue , Ácido Úrico/sangue
20.
Biomed Pharmacother ; 139: 111683, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243631

RESUMO

Diabetes mellitus causes changes in metabolism of extracellular nucleotides acting through P2 receptors (P2Rs). This affects renal function and may lead to glomerular and tubular disturbances. We measured urinary excretion of nucleotides (ATP, ADP, AMP, UTP, UDP, UMP) in streptozotocin-induced diabetic rats (65 mg/kg, i.p., day 0) and the effects of P2Rs' blockade by suramin (10 mg/kg, i.p., days +7, +14) on glomerular P2×7R expression and urinary excretion of glomerular (albumin, nephrin) and tubular (KIM-1, NGAL) injury markers, electrolytes, and oxidative stress markers (TBARS, 8-OHdG). Concentrations of nucleotides, specific proteins, electrolytes, and oxidative stress markers in 24-h urine samples collected in metabolic cages at days -1, +6 and +20 were measured using ion-paired reversed-phase HPLC, immunoenzymatic and fluorometric methods, and flame photometry, respectively. Expression of KIM-1 and P2×7R was examined by immunohistochemistry or immunoblotting. Diabetes was associated with increased urinary excretion of ATP, ADP, UTP, UDP and glomerular P2×7R expression. Suramin attenuated P2×7R expression but did not affect urinary excretion of nucleotides. Urinary excretion of albumin, nephrin, NGAL, and 8-OHdG were increased in diabetic rats and were not affected by suramin. TBARS was higher in diabetic rats and suramin attenuated the excretion dynamics in this group. KIM-1 excretion was higher in diabetic rats and suramin further increased excretion of KIM-1 in both diabetic and non-diabetic rats. Furthermore, suramin attenuated the diabetes-induced natriuresis and kaliuresis. It is possible that suramin affects both glomerular and tubular functions in diabetic rats.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/urina , Glomérulos Renais/efeitos dos fármacos , Suramina/farmacologia , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Glomérulos Renais/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...