Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.783
Filtrar
1.
PLoS One ; 15(8): e0236186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866164

RESUMO

AIM: To establish a gene co-expression network for identifying principal modules and hub genes that are associated with drought resistance mechanisms, analyzing their mechanisms, and exploring candidate genes. METHODS AND FINDINGS: 42 data sets including PRJNA380841 and PRJNA369686 were used to construct the co-expression network through weighted gene co-expression network analysis (WGCNA). A total of 1,896,897,901 (284.30 Gb) clean reads and 35,021 differentially expressed genes (DEGs) were obtained from 42 samples. Functional enrichment analysis indicated that photosynthesis, DNA replication, glycolysis/gluconeogenesis, starch and sucrose metabolism, arginine and proline metabolism, and cell cycle were significantly influenced by drought stress. Furthermore, the DEGs with similar expression patterns, detected by K-means clustering, were grouped into 29 clusters. Genes involved in the modules, such as dark turquoise, yellow, and brown, were found to be appreciably linked with drought resistance. Twelve central, greatly correlated genes in stage-specific modules were subsequently confirmed and validated at the transcription levels, including TraesCS7D01G417600.1 (PP2C), TraesCS5B01G565300.1 (ERF), TraesCS4A01G068200.1 (HSP), TraesCS2D01G033200.1 (HSP90), TraesCS6B01G425300.1 (RBD), TraesCS7A01G499200.1 (P450), TraesCS4A01G118400.1 (MYB), TraesCS2B01G415500.1 (STK), TraesCS1A01G129300.1 (MYB), TraesCS2D01G326900.1 (ALDH), TraesCS3D01G227400.1 (WRKY), and TraesCS3B01G144800.1 (GT). CONCLUSIONS: Analyzing the response of wheat to drought stress during different growth stages, we have detected three modules and 12 hub genes that are associated with drought resistance mechanisms, and five of those genes are newly identified for drought resistance. The references provided by these modules will promote the understanding of the drought-resistance mechanism. In addition, the candidate genes can be used as a basis of transgenic or molecular marker-assisted selection for improving the drought resistance and increasing the yields of wheat.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estresse Fisiológico/genética , Triticum/genética , China , Análise por Conglomerados , Conjuntos de Dados como Assunto , Secas , Perfilação da Expressão Gênica , Genes de Plantas , Melhoramento Vegetal/métodos , RNA-Seq , Seleção Genética
2.
Ecotoxicol Environ Saf ; 203: 111007, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888586

RESUMO

Soil acidification is one of the crucial global environmental problems, affecting sustainable land use, crop yield, and ecosystem stability. Previous research reported the tolerance of crops to acid soil stress. However, the molecular response of woody plant to acid conditions remains largely unclear. Rhododendron L. is a widely distributed woody plant genus and prefers to grow in acidic soils. Herein, weighted gene coexpression network analysis was performed on R. protistum var. giganteum seedlings subjected to five pH treatments (3.5, 4.5, 5.5, 6.0, 7.0), and their ecophysiological characteristics were determined for the identification of their molecular responses to acidic environments. Through pairwise comparison, 855 differentially expressed genes (DEGs) associated with photosynthesis, cell wall, and phenylpropanoid metabolism were identified. Most of the DEGs related to photosynthesis and cell wall were up-regulated after pH 4.5 treatment. Results implied that the species improves its photosynthetic abilities and changes its cell wall characteristics to adapt to acidic conditions. Weighted gene co-expression network analyses showed that most of the hub genes were annotated to the biosynthetic pathways of ribosomal proteins and photosynthesis. Expression pattern analysis showed that genes encoding subunit ribosomal proteins decreased at pH 7.0 treatment, suggesting that pH 7.0 treatment led to cell injury in the seedlings. The species regulates protein synthesis in response to high pH stress (pH 7.0). The present study revealed the molecular response mechanism of woody plant R. protistum var. giganteum to acid environments. These findings can be useful in enriching current knowledge of how woody species adapt to soil acidification under global environmental changes.


Assuntos
Ácidos/farmacologia , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Madeira/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotossíntese/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Madeira/genética , Madeira/metabolismo
3.
Ecotoxicol Environ Saf ; 205: 111298, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950806

RESUMO

Mulberry (Morus atropurpurea) is an economically important woody tree and has great potential for the remediation of heavy metals. To investigate how cadmium accumulates and its detoxification in mulberry, we assessed the physiological and transcriptomic effects of cadmium contamination and as well as its chemical forms and subcellular distribution. Cadmium significantly inhibited mulberry plant growth and primarily accumulated in mulberry roots. Antioxidant enzymes were induced by cadmium in all tissues of mulberry. Subcellular fractionation analyses of cadmium indicated that the majority was compartmentalized in soluble fraction in roots while it mainly located in cell wall in leaves and stems. The greatest amount of the cadmium was integrated with proteins and pectates in all mulberry tissues. RNA-seq transcriptomic analyses of mulberry roots revealed that various metabolic pathways involved in cadmium stress response such as RNA regulation, hormone metabolism, and response to stress, secondary metabolism, as well as signaling, protein metabolism, transport, and cell-wall metabolism. These results will increase our understanding of the molecular mechanisms of cadmium detoxification in mulberry and provide new insights into engineering woody plants for phytoremediation.


Assuntos
Bioacumulação , Cádmio/toxicidade , Morus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , Perfilação da Expressão Gênica , Morus/crescimento & desenvolvimento , Morus/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico/genética
4.
Gene ; 761: 145043, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32777530

RESUMO

Tonoplast Intrinsic Proteins (TIPs) constitute a significant class of the aquaporins. The TIPs control water trade among cytosolic and vacuolar compartments and can also transport glycerol, ammonia, urea, hydrogen peroxide, metals/metalloids, and so forth. Additionally, TIPs are engaged with different abiotic stress responses and developmental processes like leaf expansion, root elongation and seed germination. In this study, ten TIP genes in the rice genome were identified from Oryza sativa ssp indica. Among these, representative groups of TIP genes were cloned and sequenced whilst some TIP sequences showed stop codons in the coding region. The secondary structure analysis represented six conserved transmembrane helices along with the inter-helical regions having conserved motifs. The representative three-dimensional tetrameric design of protein sequence of TIP1;1 displayed key features like NPA motifs, aromatic/arginine (ar/R) selectivity filters, and Froger's residues. The vacuolar localization, transmembrane topological properties, and conserved motif analysis of the cloned genes altogether supported their identity as TIPs. An unrooted phylogenetic tree delineated the relatedness of TIPs from Oryza with different species and bunched them into five clades. The promoter analysis uncovered key regulons associated with administering abiotic stress responses. Gene expression studies showed thatTIPsare differentially regulated under salt and drought stress at various time points in shoots and roots of rice. Also, the pattern of expression was found to be significantly variable in five different rice tissues. The heat-map based tissue and stress- specific expression analysis supported the experimental findings. In conclusion, the identification and transcript-level expression studies of TIPs significantly contribute towards the comprehension of their utilitarian significance in the abiotic stress response.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Clonagem Molecular/métodos , Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Oryza/metabolismo , Filogenia , Folhas de Planta/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Vacúolos/genética , Água/metabolismo
5.
Mol Cell ; 79(6): 991-1007.e4, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32780990

RESUMO

Stress granules (SGs) are condensates of mRNPs that form in response to stress. SGs arise by multivalent protein-protein, protein-RNA, and RNA-RNA interactions. However, the role of RNA-RNA interactions in SG assembly remains understudied. Here, we describe a yeast SG reconstitution system that faithfully recapitulates SG assembly in response to trigger RNAs. SGs assembled by stem-loop RNA triggers are ATP-sensitive, regulated by helicase/chaperone activity, and exhibit the hallmarks of maturation observed for SG proteins that phase-separate in vitro. Additionally, the fraction of total RNA that phase-separates in vitro is sufficient to trigger SG formation. However, condensation of NFT1 mRNA, an enriched transcript in this population, can only assemble an incomplete SG. These results suggest that networks of distinct transcripts are required to form a canonical SG and provide a platform for dissecting the interplay between the transcriptome and ATP-dependent remodeling in SG formation.


Assuntos
Grânulos Citoplasmáticos/genética , Ribonucleoproteínas/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Trifosfato de Adenosina/genética , Linhagem Celular , Regulação Fúngica da Expressão Gênica/genética , Humanos , RNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
6.
Mol Cell ; 79(6): 978-990.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32857953

RESUMO

Processing bodies (PBs) and stress granules (SGs) are prominent examples of subcellular, membraneless compartments that are observed under physiological and stress conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within ∼10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over ∼100 s) with minimal effect on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS sequesters pre-mRNA cleavage factor components from actively transcribing genomic loci, providing a mechanism for hyperosmolarity-induced global impairment of transcription termination. Our data suggest that the multimeric proteome rapidly responds to changes in hydration and molecular crowding, revealing an unexpected mode of globally programmed phase separation and sequestration.


Assuntos
Endorribonucleases/genética , Precursores de RNA/genética , Estresse Fisiológico/genética , Transativadores/genética , Terminação da Transcrição Genética , Animais , Tamanho Celular , Sobrevivência Celular/genética , Humanos , Pressão Osmótica/fisiologia , Proteoma/genética
7.
PLoS One ; 15(8): e0236674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756600

RESUMO

In Sub-Saharan Africa cassava (Manihot esculenta Crantz) is one of the most important food crops where more than 40% of the population relies on it as their staple carbohydrate source. Biotic constraints such as viral diseases, mainly Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD), and arthropod pests, particularly Cassava Green Mite (CGM), are major constraints to the realization of cassava's full production potential in Africa. To address these problems, we aimed to map the quantitative trait loci (QTL) associated with resistance to CBSD foliar and root necrosis symptoms, foliar CMD and CGM symptoms in a full-sib mapping population derived from the genotypes AR40-6 and Albert. A high-density linkage map was constructed with 2,125 SNP markers using a genotyping-by-sequencing approach. For phenotyping, clonal evaluation trials were conducted with 120 F1 individuals for two consecutive field seasons using an alpha-lattice design at Chambezi and Naliendele, Tanzania. Previously identified QTL for resistance to CBSD foliar symptoms were corroborated, and a new putative QTL for CBSD root necrosis identified (qCBSDRNc14AR) from AR40-6. Two QTL were identified within the region of the previously recognized CMD2 locus from this population in which both parents are thought to possess the CMD2 locus. Interestingly, a minor but consistent QTL, qCGM18AR, for CGM resistance at 3 months after planting stage was also detected and co-localized with a previously identified SSR marker, NS346, linked with CGM resistance. Markers underlying these QTL may be used to increase efficiencies in cassava breeding programs.


Assuntos
Resistência à Doença/genética , Manihot/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Cruzamento , Testes Genéticos , Genótipo , Manihot/fisiologia , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/genética , Potyviridae/patogenicidade , Estresse Fisiológico/genética , Tanzânia
8.
PLoS One ; 15(8): e0236651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804948

RESUMO

WRKY transcription factors regulate diverse biological processes in plants, including abiotic and biotic stress responses, and constitute one of the largest transcription factor families in higher plants. Although the past decade has seen significant progress towards identifying and functionally characterizing WRKY genes in diverse species, little is known about the WRKY family in sorghum (Sorghum bicolor (L.) moench). Here we report the comprehensive identification of 94 putative WRKY transcription factors (SbWRKYs). The SbWRKYs were divided into three groups (I, II, and III), with those in group II further classified into five subgroups (IIa-IIe), based on their conserved domains and zinc finger motif types. WRKYs from the model plant Arabidopsis (Arabidopsis thaliana) were used for the phylogenetic analysis of all SbWRKY genes. Motif analysis showed that all SbWRKYs contained either one or two WRKY domains and that SbWRKYs within the same group had similar motif compositions. SbWRKY genes were located on all 10 sorghum chromosomes, and some gene clusters and two tandem duplications were detected. SbWRKY gene structure analysis showed that they contained 0-7 introns, with most SbWRKY genes consisting of two introns and three exons. Gene ontology (GO) annotation functionally categorized SbWRKYs under cellular components, molecular functions and biological processes. A cis-element analysis showed that all SbWRKYs contain at least one stress response-related cis-element. We exploited publicly available microarray datasets to analyze the expression profiles of 78 SbWRKY genes at different growth stages and in different tissues. The induction of SbWRKYs by different abiotic stresses hinted at their potential involvement in stress responses. qRT-PCR analysis revealed different expression patterns for SbWRKYs during drought stress. Functionally characterized WRKY genes in Arabidopsis and other species will provide clues for the functional characterization of putative orthologs in sorghum. Thus, the present study delivers a solid foundation for future functional studies of SbWRKY genes and their roles in the response to critical stresses such as drought.


Assuntos
Proteínas de Plantas/genética , Sorghum/genética , Fatores de Transcrição/genética , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Estresse Fisiológico/genética
9.
Sheng Wu Gong Cheng Xue Bao ; 36(7): 1365-1377, 2020 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-32748594

RESUMO

With the expanded application of heavy metal cadmium, soil cadmium pollution is more and more serious. In this study, using Salix matsudana as a phytoremediation candidate, we observed changes of gene expression and metabolic pathway after 1, 7 and 30 days under 2.5 mg/L and 50 mg/L cadmium stress. The result of transcriptome sequencing showed that we obtained 102 595 Unigenes; 26 623 and 32 154 differentially expressed genes (DEG) in the same concentration and different stress time; 8 550, 3 444 and 11 428 DEG with different concentrations at the same time; 25 genes closely related to cadmium stress response were screened. The changes of genes expression (such as metallothionein, ABC transporter, zinc and manganese transporter) depended on both concentration of cadmium and exposure time. The expression of several genes was obviously up-regulated after cadmium stress, for example 3,6-deoxyinosinone ketolase (ROT3) in brassinolide synthesis pathway and flavonoid synthase (FLS), flavanone-3-hydroxylase (F3H) in the synthesis pathway of brassinolide. In addition, GO analysis shows that GO entries were mainly enriched in metabolic processes including cellular processes, membranes, membrane fractions, cells, cellular fractions, catalytic activation and binding proteins in response to cadmium stress, whose number would increase along with cadmium concentration and exposure time. The reliability of transcriptome information was verified by qPCR and physiological experimental data. Response mechanisms of S. matsudana after cadmium stress were analyzed by transcriptome sequencing, which provided theoretical guidance for remediation of cadmium pollution in soil by S. matsudana.


Assuntos
Cádmio , Salix , Estresse Fisiológico , Transcriptoma , Biodegradação Ambiental , Cádmio/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Reprodutibilidade dos Testes , Salix/efeitos dos fármacos , Salix/genética , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
10.
PLoS One ; 15(7): e0236943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735612

RESUMO

Halophyte Lobularia maritima LmSAP encodes an A20AN1 zinc-finger stress-associated protein which expression is up-regulated by abiotic stresses and heavy metals in transgenic tobacco. To deepen our understanding of LmSAP function, we isolated a 1,147 bp genomic fragment upstream of LmSAP coding sequence designated as PrLmSAP. In silico analyses of PrLmSAP revealed the presence of consensus CAAT and TATA boxes and cis-regulatory elements required for abiotic stress, phytohormones, pathogen, and wound responses, and also for tissue-specific expression. The PrLmSAP sequence was fused to the ß-glucuronidase (gusA) reporter gene and transferred to rice. Histochemical GUS staining showed a pattern of tissue-specific expression in transgenic rice, with staining observed in roots, coleoptiles, leaves, stems and floral organs but not in seeds or in the root elongation zone. Wounding strongly stimulated GUS accumulation in leaves and stems. Interestingly, we observed a high stimulation of the promoter activity when rice seedlings were exposed to NaCl, PEG, ABA, MeJA, GA, cold, and heavy metals (Al3+, Cd2+, Cu2+ and Zn2+). These results suggest that the LmSAP promoter can be a convenient tool for stress-inducible gene expression and is a potential candidate for crop genetic engineering.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas , Plantas Tolerantes a Sal/genética , Estresse Fisiológico/genética , Dedos de Zinco/genética , Produtos Agrícolas/genética , Engenharia Genética , Glucuronidase/metabolismo , Metais Pesados/metabolismo , Especificidade de Órgãos , Oryza/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tabaco/genética
11.
Gene ; 760: 144990, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721476

RESUMO

The MYB transcription factors are involved in the regulation of plant secondary metabolism, cell development and morphogenesis, and stress response. Here, a full-length, 816-bp NtMYB4a cDNA, which encodes a protein comprising 271 amino acids, was isolated from tobacco leaves. Phylogenetic analysis revealed that NtMYB4a is most similar to Nicotiana. attenuata MYB4, followed by Eriobotrya japonica MYB4, and NtMYB4a clustered with transcriptional activators rather than repressors. Subcellular localization assays showed that NtMYB4 localized in the nucleus, membrane, and cytoplasm. Expression analyses revealed differential expression of NtMYB4a among different tissues and organs and between different developmental stages, with most expression occurring in the stems and leaves during the full-bloom stage. Moreover, NtMYB4a expression was induced by cold, NaCl, PEG, abscisic acid, methyl jasmonate, and dark stressors, and the expression patterns and maximum expression levels varied with the type of stress. Overexpression of NtMYB4a upregulated NtPAL, Nt4CL, NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, which resulted in increased anthocyanin content in the tobacco corolla and darker colors. However, CRISPR/Cas9-mediated knockout of NtMYB4a downregulated NtPAL, NtC4H, Nt4CL, NtCHS, NtCHI, NtF3H, NtANS, and NtUFGT, which resulted in reduced anthocyanin content, and lighter corolla colors. These results indicated that NtMYB4a positively regulates anthocyanin biosynthesis and is involved in abiotic stress responses in tobacco plants.


Assuntos
Tabaco/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Sequência de Aminoácidos , Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Tabaco/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética
12.
Plant Mol Biol ; 104(1-2): 97-112, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32643113

RESUMO

KEY MESSAGE: By integrating genetics and genomics data, reproductive tissues-specific and heat stress responsive 35 meta-QTLs and 45 candidate genes were identified, which could be exploited through marker-assisted breeding for fast-track development of heat-tolerant rice cultivars. Rice holds the key to future food security. In rice-growing areas, temperature has already reached an optimum level for growth, hence, any further increase due to global climate change could significantly reduce rice yield. Several mapping studies have identified a plethora of reproductive tissue-specific and heat stress associated inconsistent quantitative trait loci (QTL), which could be exploited for improvement of heat tolerance. In this study, we performed a meta-analysis on previously reported QTLs and identified 35 most consistent meta-QTLs (MQTLs) across diverse genetic backgrounds and environments. Genetic and physical intervals of nearly 66% MQTLs were narrower than 5 cM and 2 Mb respectively, indicating hotspot genomic regions for heat tolerance. Comparative analyses of MQTLs underlying genes with microarray and RNA-seq based transcriptomic data sets revealed a core set of 45 heat-responsive genes, among which 24 were reproductive tissue-specific and have not been studied in detail before. Remarkably, all these genes corresponded to various stress associated functions, ranging from abiotic stress sensing to regulating plant stress responses, and included heat-shock genes (OsBiP2, OsMed37_1), transcription factors (OsNAS3, OsTEF1, OsWRKY10, OsWRKY21), transmembrane transporters (OsAAP7A, OsAMT2;1), sugar metabolizing (OsSUS4, α-Gal III) and abiotic stress (OsRCI2-7, SRWD1) genes. Functional data evidences from Arabidopsis heat-shock genes also suggest that OsBIP2 may be associated with thermotolerance of pollen tubes under heat stress conditions. Furthermore, promoters of identified genes were enriched with heat, dehydration, pollen and sugar responsive cis-acting regulatory elements, proposing a common regulatory mechanism might exist in rice for mitigating reproductive stage heat stress. These findings strongly support our results and provide new candidate genes for fast-track development of heat-tolerant rice cultivars.


Assuntos
Resposta ao Choque Térmico/genética , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/fisiologia , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genômica , Temperatura Alta , Oryza/crescimento & desenvolvimento , Fenótipo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Reprodução , Estresse Fisiológico/genética , Termotolerância
13.
Proc Natl Acad Sci U S A ; 117(29): 17031-17040, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632008

RESUMO

Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the "environmental stress response" (ESR) and the "common aneuploidy gene-expression" (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.


Assuntos
Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Aneuploidia , Meio Ambiente , Regulação Fúngica da Expressão Gênica , RNA Fúngico/genética , RNA Fúngico/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
14.
Arch Biochem Biophys ; 690: 108471, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622788

RESUMO

Stilbenes, an active substances closely related to resistance and quality of grapes, are rarely found in natural resources. However its cumulative amount is affected by ultraviolet radiation (UV). The purpose of this study is to screen key genes in biosynthesis of stilbenes Trans-scripusin A and explore its synthetic pathway. We tested content of stilbenes with UHPLC-QQQ-MS2, results revealed that stilbenes accumulation is positively correlated with UV-B exposure time. Then, we performed transcriptome high-throughput sequencing of grapes under treatments. Results shown that 13,906 differentially expressed genes were obtained, which were mainly enriched in three major regions (ribosome, plant-pathogen interaction and biosynthesis of flavonoid). Three genes of trans-scripusin A synthesis pathway key got by combining KEGG annotation and reference gene HsCYP1B1. Phylogenetic analysis showed that SAH genes had high homology with other hydroxylase genes, and distributed in two subgroups. Gene structure analysis showed that SAH genes contained four exons, indicating that gene has low genetic diversity. Chromosome localization revealed that SAH genes were distributed on different chromosomes, in addition, the number of gene pairs between Vitis vinifera and other species was not related to genome size of other species. The expression profiles of SAH genes in different parts of Vitis vinifera L. were analyzed using qRT-PCR analysis, results indicated that expression of SAH genes be specific to fruit part. These paper provide theoretical basis for further study of polyphenols biosynthesis pathway in grape fruits. The study provides novel insights for further understanding quality of grapes response to UV radiation.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , RNA Mensageiro/efeitos da radiação , Vitis/genética , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Frutas/metabolismo , Frutas/efeitos da radiação , Ensaios de Triagem em Larga Escala , Conformação de Ácido Nucleico , Filogenia , Polifenóis/metabolismo , RNA-Seq , Ribossomos/metabolismo , Estilbenos/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Espectrometria de Massas em Tandem , Transcriptoma/efeitos da radiação , Raios Ultravioleta , Vitis/metabolismo , Vitis/efeitos da radiação
15.
PLoS One ; 15(7): e0234550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32663226

RESUMO

Chickpea has a profound nutritional and economic value in vegetarian society. Continuous decline in chickpea productivity is attributed to insufficient genetic variability and different environmental stresses. Chickpea like several other legumes is highly susceptible to terminal drought stress. Multiple genes control drought tolerance and ASR gene plays a key role in regulating different plant stresses. The present study describes the molecular characterization and functional role of Abscissic acid and stress ripening (ASR) gene from chickpea (Cicer arietinum) and the gene sequence identified was submitted to NCBI Genbank (MK937569). Molecular analysis using MUSCLE software proved that the ASR nucleotide sequences in different legumes show variations at various positions though ASR genes are conserved in chickpea with only few variations. Sequence similarity of ASR gene to chickpea putative ABA/WDS induced protein mRNA clearly indicated its potential involvement in drought tolerance. Physiological screening and qRT-PCR results demonstrated increased ASR gene expression under drought stress possibly enabled genotypes to perform better under stress. Conserved domain search, protein structure analysis, prediction and validation, network analysis using Phyre2, Swiss-PDB viewer, ProSA and STRING analysis established the role of hypothetical ASR protein NP_001351739.1 in mediating drought responses. NP_001351739.1 might have enhanced the ASR gene activity as a transcription factor regulating drought stress tolerance in chickpea. This study could be useful in identification of new ASR genes that play a major role in drought tolerance and also develop functional markers for chickpea improvement.


Assuntos
Cicer/genética , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/genética , Sequência de Bases/genética , Cicer/crescimento & desenvolvimento , Secas , Perfilação da Expressão Gênica/métodos , Genótipo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
16.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32692974

RESUMO

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Assuntos
Grânulos Citoplasmáticos/genética , DNA Helicases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Biossíntese de Proteínas , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Estresse Fisiológico/genética , Regiões 5' não Traduzidas , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Feminino , Células HCT116 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Espermatogônias/citologia , Espermatogônias/patologia , Testículo/citologia , Testículo/metabolismo
17.
PLoS One ; 15(7): e0236349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701993

RESUMO

Peptide signalling is an integral part of cell-to-cell communication which helps to relay the information responsible for coordinating cell proliferation and differentiation. Phytosulfokine Receptor (PSKR) is a transmembrane LRR-RLK family protein with a binding site for small signalling peptide, phytosulfokine (PSK). PSK signalling through PSKR promotes normal growth and development and also plays a role in defense responses. Like other RLKs, these PSKRs might have a role in signal transduction pathways related to abiotic stress responses. Genome-wide analysis of phytosulfokine receptor gene family has led to the identification of fifteen putative members in the Oryza sativa genome. The expression analysis of OsPSKR genes done using RNA-seq data, showed that these genes were differentially expressed in different tissues and responded specifically to heat, salt, drought and cold stress. Furthermore, the real-time quantitative PCR for fifteen OsPSKR genes revealed temporally and spatially regulated gene expression corresponding to salinity and drought stress. Our results provide useful information for a better understanding of OsPSKR genes and provide the foundation for additional functional exploration of the rice PSKR gene family in development and stress response.


Assuntos
Genoma de Planta/genética , Oryza/genética , Hormônios Peptídicos/genética , Peptídeos/genética , Proteínas de Plantas/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Peptídeos/classificação , Filogenia , Salinidade , Transdução de Sinais/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética
18.
Proc Natl Acad Sci U S A ; 117(29): 17122-17129, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632014

RESUMO

Symbioses of bacteria with fungi have only recently been described and are poorly understood. In the symbiosis of Mycetohabitans (formerly Burkholderia) rhizoxinica with the fungus Rhizopus microsporus, bacterial type III (T3) secretion is known to be essential. Proteins resembling T3-secreted transcription activator-like (TAL) effectors of plant pathogenic bacteria are encoded in the three sequenced Mycetohabitans spp. genomes. TAL effectors nuclear-localize in plants, where they bind and activate genes important in disease. The Burkholderia TAL-like (Btl) proteins bind DNA but lack the N- and C-terminal regions, in which TAL effectors harbor their T3 and nuclear localization signals, and activation domain. We characterized a Btl protein, Btl19-13, and found that, despite the structural differences, it can be T3-secreted and can nuclear-localize. A btl19 -13 gene knockout did not prevent the bacterium from infecting the fungus, but the fungus became less tolerant to cell membrane stress. Btl19-13 did not alter transcription in a plant-based reporter assay, but 15 R. microsporus genes were differentially expressed in comparisons both of the fungus infected with the wild-type bacterium vs. the mutant and with the mutant vs. a complemented strain. Southern blotting revealed btl genes in 14 diverse Mycetohabitans isolates. However, banding patterns and available sequences suggest variation, and the btl19-13 phenotype could not be rescued by a btl gene from a different strain. Our findings support the conclusion that Btl proteins are effectors that act on host DNA and play important but varied or possibly host genotype-specific roles in the M. rhizoxinica-R. microsporus symbiosis.


Assuntos
Burkholderia , Rhizopus , Simbiose/genética , Efetores Semelhantes a Ativadores de Transcrição , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Rhizopus/genética , Rhizopus/metabolismo , Estresse Fisiológico/genética , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transcriptoma/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
19.
PLoS One ; 15(6): e0225044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603335

RESUMO

Cellular stress response mechanisms normally function to enhance survival and allow for cells to return to homeostasis following an adverse event. Cancer cells often co-opt these same mechanisms as a means to evade apoptosis and mitigate a state of constant cellular stress. Activating transcription factor 5 (ATF5) is upregulated under diverse stress conditions and is overexpressed in a variety of cancers. It was demonstrated ATF5 is a survival factor in transformed, but not normal cells. However, the regulation of ATF5 is not fully understood. The purpose of the present study was to investigate miRNA regulation at the 3' untranslated region (UTR) of ATF5, with the goal of demonstrating a reversal of the upregulation of ATF5 induced under diverse cellular stress in cancer cells. A multifactorial approach using in silico analysis was employed to identify miRNAs 433-3p, 520b-3p, and 129-5p as potential regulators of ATF5, based on their predicted binding sites over the span of the ATF5 3' UTR. Luciferase reporter assay data validated all three miRNA candidates by demonstrating direct binding to the target ATF5 3'. However, functional studies revealed miR-520b-3p as the sole candidate able to reverse the upregulation of ATF5 protein under diverse cellular stress. Additionally, miR-520b-3p levels were inversely related to ATF5 mRNA under endoplasmic reticulum stress and amino acid deprivation. This is the first evidence that regulation at the 3' UTR is involved in modulating ATF5 levels under cellular stress and suggests an important role for miRNA-520b-3p in the regulation of ATF5.


Assuntos
Fatores Ativadores da Transcrição/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Células HeLa , Humanos , Células MCF-7 , Estresse Fisiológico/genética
20.
Plant Mol Biol ; 104(1-2): 67-79, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621165

RESUMO

Acetylation and deacetylation of histones are important for regulating a series of biological processes in plants. Histone deacetylases (HDACs) control the histone deacetylation that plays an important role in plant response to abiotic stress. In our study, we show the evidence that GhHDT4D (a member of the HD2 subfamily of HDACs) is involved in cotton (Gossypium hirsutum) response to drought stress. Overexpression of GhHDT4D in Arabidopsis increased plant tolerance to drought, whereas silencing GhHDT4D in cotton resulted in plant sensitivity to drought. Simultaneously, the H3K9 acetylation level was altered in the GhHDT4D silenced cotton, compared with the controls. Further study revealed that GhHDT4D suppressed the transcription of GhWRKY33, which plays a negative role in cotton defense to drought, by reducing its H3K9 acetylation level. The expressions of the stress-related genes, such as GhDREB2A, GhDREB2C, GhSOS2, GhRD20-1, GhRD20-2 and GhRD29A, were significantly decreased in the GhHDT4D silenced cotton, but increased in the GhWRKY33 silenced cotton. Given these data together, our findings suggested that GhHDT4D may enhance drought tolerance by suppressing the expression of GhWRKY33, thereby activating the downstream drought response genes in cotton.


Assuntos
Secas , Gossypium/metabolismo , Histona Desacetilases/metabolismo , Estresse Fisiológico/fisiologia , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/genética , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA