Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54.549
Filtrar
1.
Biochemistry (Mosc) ; 85(7): 833-837, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33040727

RESUMO

Nrf2 is a key transcription factor responsible for antioxidant defense in many tissues and cells, including alveolar epithelium, endothelium, and macrophages. Furthermore, Nrf2 functions as a transcriptional repressor that inhibits expression of the inflammatory cytokines in macrophages. Critically ill patients with COVID-19 infection often present signs of high oxidative stress and systemic inflammation - the leading causes of mortality. This article suggests rationale for the use of Nrf2 inducers to prevent development of an excessive inflammatory response in COVID-19 patients.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Terapia de Alvo Molecular/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Infecções por Coronavirus/virologia , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Feminino , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Inflamação/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório do Adulto/tratamento farmacológico , Síndrome do Desconforto Respiratório do Adulto/metabolismo , Síndrome do Desconforto Respiratório do Adulto/virologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tiossulfatos/farmacologia , Tiossulfatos/uso terapêutico
2.
Anticancer Res ; 40(10): 5399-5404, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988859

RESUMO

BACKGROUND/AIM: The aim of the present study was to investigate whether idarubicin (IDR) induces oxidative DNA damage in the presence of copper (II). MATERIALS AND METHODS: DNA damage was evaluated by pBR322 plasmid DNA cleavage. The formation of oxidative stress markers [O2 •- and 8-hydroxy-2'-deoxyguanosine (8-OHdG)] was analysed. RESULTS: IDR induced DNA damage and O2 •- and 8-OHdG generation in the presence of copper (II). CONCLUSION: IDR induced oxidative DNA damage in the presence of copper (II). Since it has been reported that the concentration of copper in the serum of cancer patients is higher than that in healthy groups, IDR-induced oxidative DNA damage in the presence of copper (II) may play an important role in anticancer therapeutic strategies.


Assuntos
Antraciclinas/farmacologia , Idarubicina/farmacologia , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Antraciclinas/química , Cobre/química , Dano ao DNA/efeitos dos fármacos , Humanos , Idarubicina/química , Neoplasias/genética , Neoplasias/patologia , Espécies Reativas de Oxigênio/química , Superóxido Dismutase/genética
3.
Ecotoxicol Environ Saf ; 203: 111016, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888590

RESUMO

Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.


Assuntos
Antioxidantes/metabolismo , Coffea/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Coffea/genética , Coffea/metabolismo , Coffea/fisiologia , Genótipo , Oxirredução , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Selênio/análise , Selênio/metabolismo , Especificidade da Espécie
4.
Ecotoxicol Environ Saf ; 203: 110974, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888622

RESUMO

Ammonia (NH3), an environmental pollutant, poses a serious threat to human and avian health. Although previous studies have showed that NH3 caused kidney injury, the molecular mechanisms of nephrotoxicity induced by NH3 remain unclear. To explore the mechanisms of NH3 nephrotoxicity, a total of 36 broiler chicks at one day of age were exposed to NH3. After 42 days of exposure, blood samples were collected to determine creatinine and uric acid; and kidney samples were weighted and then collected to detect ultrastructural changes, oxidative stress parameters, ATPases, necroptosis- and mitochondrial dynamics-related genes. The results showed that chickens exposed to NH3 showed lower relative kidney weight and an increase concentration in serum creatinine and uric acid. NH3 exposure caused nephrocyte necrosis and increased the expression of necroptosis-related genes (TNF-α, RIPK1, RIPK3, MLKL, and JNK). Besides, the activities of antioxidant systems (SOD, CAT, GSH-Px, and T-AOC) were reduced, whereas the concentrations of H2O2 and MDA were elevated. Lower activities of ATPases were obtained in NH3 treatment groups. Furthermore, the mitochondrial fission-related genes drp1 and mff were activated, and mitochondrial fusion-related genes opa1, mfn1 and mfn2 were suppressed after NH3 exposure. Based on the above results, we conclude that NH3 caused-oxidative stress and mitochondrial dysfunction mediated nephrocyte necroptosis in chickens. This study may provide new insight into NH3 nephrotoxicity.


Assuntos
Amônia/toxicidade , Poluentes Ambientais/toxicidade , Rim/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Galinhas , Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Rim/ultraestrutura , Testes de Função Renal , Dinâmica Mitocondrial/genética , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
5.
Ann Agric Environ Med ; 27(3): 368-373, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32955216

RESUMO

INTRODUCTION: Chlorpyrifos (CPF) is a organophosphate insecticide widely used in agriculture with attendant adverse health outcomes. Chronic exposure to CPF induces oxidative stress and elicits harmful effects, including hepatic dysfunction. Molecular hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. OBJECTIVE: The aim of this study was to determine whether the intake of hydrogen-rich water (HRW) could protect rats from hepatotoxicity caused by sub-chronic exposure to CPF. MATERIAL AND METHODS: Rats were treated with hydrogen-rich water by oral intake for 8 weeks. Biochemical indicators of liver function, SOD and CAT activity, GSH and MDA levels were determined by the spectrophotometric method. Liver cell damage induced by CPF was evaluated by histopathological and electron microscopy analysis. PCR array analysis was performed to investigated the effects of molecular hydrogen on the regulation of oxidative stress related genes. RESULTS: Both the hepatic function tests and histopathological analysis showed that the liver damage induced by CPF could be ameliorated by HRW intake. HRW intake also attenuated CPF induced oxidative stress, as evidenced by restored SOD activities and MDA levels. The results of PCR Array identified 12 oxidative stress-related genes differentially expressed after CPF exposure, 8 of chich, including the mitochondrial Sod2 gene, were significantly attenuated by HRW intake. The electron microscopy results indicated that the mitochondrial damage caused by CPF was alleviated after HRW treatment. CONCLUSIONS: The results obtained suggest that HRW intake can protect rats from CPF induced hepatotoxicity, and the oxidative stress signaling and the mitochondrial pathway may be involved in the protection of molecular hydrogen.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Clorpirifos/toxicidade , Hidrogênio/farmacologia , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Masculino , Estresse Oxidativo/genética , Ratos , Ratos Wistar
6.
Chemosphere ; 254: 126909, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957299

RESUMO

Soil contamination by heavy metals (HMs) is an environmental problem, and nanoremediation by using zero-valent iron nanoparticles (nZVI) has attracted increasing interest. We used ecotoxicological test and global transcriptome analysis with DNA microarrays to assess the suitability of C. elegans as a useful bioindicator to evaluate such strategy of nanoremediation in a highly polluted soil with Pb, Cd and Zn. The HMs produced devastating effect on C. elegans. nZVI treatment reversed this deleterious effect up to day 30 after application, but the reduction in the relative toxicity of HMs was lower at day 120. We stablished gene expression profile in C. elegans exposed to the polluted soil, treated and untreated with nZVI. The percentage of differentially expressed genes after treatment decreases with exposure time. After application of nZVI we found decreased toxicity, but increased biosynthesis of defensive enzymes responsive to oxidative stress. At day 14, when a decrease in toxicity has occurred, genes related to specific heavy metal detoxification mechanisms or to response to metal stress, were down regulated: gst-genes, encoding for glutathione-S-transferase, htm-1 (heavy metal tolerance factor), and pgp-5 and pgp-7, related to stress response to metals. At day 120, we found increased HMs toxicity compared to day 14, whereas the transcriptional oxidative and metal-induced responses were attenuated. These findings indicate that the profiled gene expression in C. elegans may be considered as an indicator of stress response that allows a reliable evaluation of the nanoremediation strategy.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ferro/química , Metais Pesados/toxicidade , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Transcrição Genética/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ecotoxicologia , Nanopartículas Metálicas , Metais Pesados/análise , Estresse Oxidativo/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Toxicogenética
7.
Ecotoxicol Environ Saf ; 203: 110999, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888604

RESUMO

Aluminium (Al) is a key element that plays a major role in inhibiting plant growth and productivity under acidic soils. While lipids may be involved in plant tolerance/sensitivity to Al, the role of monogalactosyldiacylglycerol (MGDG) in Al response remains unknown. In this study, Arabidopsis MGDG synthase (AtMGD) mutants (mgd1, mgd2 and mgd3) and wild-type (Col-0) plants were treated with AlCl3; the effect of aluminium on root growth, aluminium distribution, plasma membrane integrity, lipid peroxidation, hydrogen peroxide content and membrane lipid compositions were analysed. Under Al stress, mgd mutants exhibited a more severe root growth inhibition, plasma membrane integrity damage and lipid peroxidation compared to Col-0. Al accumulation in root tips showed no difference between Col-0 and mutants under Al stress. Lipid analysis demonstrated that under Al treatment the MGDG content in all plants and MGDG/DGDG (digalactosyldiacylglycerol) remarkably reduced, especially in mutants impairing the stability and permeability of the plasma membrane. These results indicate that the Arabidopsis mgd mutants are hypersensitive to Al stress due to the reduction in MGDG content, and this is of great significance in the discovery of effective measures for plants to inhibit aluminium toxicity.


Assuntos
Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Galactolipídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
8.
Chemosphere ; 258: 127411, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947668

RESUMO

Non-steroidal anti-inflammatory drugs as an important group of emerging environmental contaminants in irrigation water and soils can influence biochemical and physiological processes essential for growth and development in plants as non-target organisms. Plants are able to take up, transport, transform, and accumulate drugs in the roots. Root biomass in ten-days old pea plants was lowered by 6% already under 0.1 mg/L naproxen (NPX) due to a lowered number of lateral roots, although 0.5 mg/L NPX stimulated the total root length by 30% as against control. Higher section area (by 40%) in root tip, area of xylem (by 150%) or stele-to-section ratio (by 10%) in zone of maturation, and lower section area in zone of lateral roots (by 18%) prove the changes in primary root anatomy and its earlier differentiation at 10 mg/L NPX. Accumulated NPX (up to 10 µg/g DW at 10 mg/L) and products of its metabolization in roots increased the amounts of hydrogen peroxide (by 33%), and superoxide (by 62%), which was reflected in elevated lipid peroxidation (by 32%), disruption of membrane integrity (by 89%) and lowering both oxidoreductase and dehydrogenase activities (by up to 40%). Elevated antioxidant capacity (SOD, APX, and other molecules) under low treatments decreased at 10 mg/L NPX (both by approx. 30%). Naproxen was proved to cause changes at both cellular and tissue levels in roots, which was also reflected in their anatomy and morphology. Higher environmental loading through drugs thus can influence even the root function.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Naproxeno/toxicidade , Ervilhas/fisiologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Ervilhas/efeitos dos fármacos , Raízes de Plantas
9.
Ecotoxicol Environ Saf ; 203: 111054, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888616

RESUMO

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid, QNC) is a highly selective auxin herbicide that is typically applied to paddy rice fields. Its residue is a serious problem in crop rotations. In this study, Oryza sativa L. seedlings was used as a model plant to explore its biochemical response to abiotic stress caused by QNC and nZVI coexposure, as well as the interactions between QNC and nZVI treatments. Exposure to 5 and 10 mg/L QNC reduced the fresh biomass by 26.6% and 33.9%, respectively, compared to the control. The presence of 50 and 250 mg/L nZVI alleviated the QNC toxicity, but the nZVI toxicity was aggravated by the coexist of QNC. Root length was enhanced upon exposure to low or medium doses of both QNC and nZVI, whereas root length was inhibited under high-dose coexposure. Both nZVI and QNC, either alone or in combination, significantly inhibited the biosynthesis of chlorophyll, and the inhibition rate increased with elevated nZVI and QNC concentration. It was indicated that nZVI or QNC can affect the plant photosynthesis, and there was a significant interaction between the two treatments. Effects of QNC on the antioxidant response of Oryza sativa L. differed in the shoots and roots; generally, the introduction of 50 and 250 mg/L nZVI alleviated the oxidative stress (POD in shoots, SOD and MDA in roots) induced by QNC. However, 750 mg/kg nZVI seriously damaged Oryza sativa L. seedlings, which likely resulted from active iron deficiency. QNC could be removed from the culture solution by nZVI; as a result, nZVI suppressed QNC uptake by 20%-30%.


Assuntos
Antioxidantes/metabolismo , Ferro/toxicidade , Nanopartículas/toxicidade , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/toxicidade , Poluentes do Solo/toxicidade , Transporte Biológico , Biomassa , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
10.
Oxid Med Cell Longev ; 2020: 8384742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963703

RESUMO

H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.


Assuntos
Hidrogênio/administração & dosagem , Hidrogênio/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Betacoronavirus , Infecções por Coronavirus/terapia , Metabolismo Energético/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/terapia , Substâncias Protetoras/farmacologia
11.
Acta Cir Bras ; 35(8): e202000802, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32901679

RESUMO

PURPOSE: To investigate the effects of grape seed proanthocyanidin B2 (GSPB2) preconditioning on oxidative stress and apoptosis of renal tubular epithelial cells in mice after renal ischemia-reperfusion (RIR). METHODS: Forty male ICR mice were randomly divided into 4 groups: Group A: mice were treated with right nephrectomy. Group B: right kidney was resected and the left renal vessel was clamped for 45 minutes. Group C: mice were intraperitoneally injected with GSPB2 before RIR established. Group D: mice were intraperitoneally injected with GSPB2 plus brusatol before RIR established. Creatinine and urea nitrogen of mice were determined. Pathological and morphological changes of kidney were checked. Expressions of Nrf-2, HO-1, cleaved-caspase3 were detected by Western-blot. RESULTS: Compared to Group B, morphology and pathological damages of renal tissue were less serious in Group C. Western-blot showed that expressions of Nrf-2 and HO-1 in Group C were obviously higher than those in Group B. The expression of cleaved-caspase3 in Group C was significantly lower than that in Group B. CONCLUSION: GSPB2 preconditioning could attenuate renal oxidative stress injury and renal tubular epithelial cell apoptosis by up-regulating expressions of Nrf-2 and HO-1 and down-regulating the expression of cleaved-caspase-3, but the protective effect could be reversed by brusatol.


Assuntos
Apoptose , Extrato de Sementes de Uva , Estresse Oxidativo , Proantocianidinas , Traumatismo por Reperfusão , Animais , Apoptose/efeitos dos fármacos , Células Epiteliais , Extrato de Sementes de Uva/farmacologia , Extrato de Sementes de Uva/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico
12.
Chemosphere ; 258: 127385, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947675

RESUMO

2,2,4,4-tetrabromodiphenyl ether (BDE-47) has received considerable attention because of its high detection level in biological samples and potential developmental toxicity. Here, using zebrafish (Danio rerio) as the experimental animal, we investigated developmental effects of BDE-47 and explored the potential mechanism. Zebrafish embryos at 4 h post-fertilization (hpf) were exposed to 0.312, 0.625 and 1.25 mg/L BDE-47 to 74-120 hpf. We found that BDE-47 instigated a dose-related developmental toxicity, evidenced by reduced embryonic survival and hatching rate, shortened body length and increased aberration rate. Meanwhile, higher doses of BDE-47 reduced mitochondrial membrane potential and ATP production but increased apoptosis in zebrafish embryos. Expression of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) (ndufb8, sdha, uqcrc1, cox5ab and atp5fal) were negatively related to BDE-47 doses in zebrafish embryos. Moreover, exposure to BDE-47 at 0.625 or 1.25 mg/L impaired mitochondrial biogenesis and mitochondrial dynamics. Our data further showed that BDE- 47 exposure induced excessive reactive oxygen species (ROS) and oxidative stress, which was accompanied by the activation of c-Jun N-terminal Kinase (JNK). Antioxidant NAC and JNK inhibition could mitigate apoptosis in embryos and improve embryonic development in BDE-47-treated zebrafish, suggesting the involvement of ROS/JNK pathway in embryonic developmental changes induced by BDE-47. Altogether, our data suggest here that developmental toxicity of BDE-47 may be associated with mitochondrial ROS-mediated JNK signaling in zebrafish embryo.


Assuntos
Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
13.
Chemosphere ; 254: 126608, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957262

RESUMO

Al2O3 Nanoparticles (Al2O3-NPs) have been widely used because of their unique physical and chemical properties, and Al2O3-NPs can be released into the environment directly or indirectly. Our previous research found that 13 nm Al2O3-NPs can induce neural cell death and autophagy in primarily cultured neural cells in vitro. The aim of this study was to determine where Al2O3-NPs at 13 nm particle size can cause neural cells in vivo and assess related behavioural changes and involved potential mechanisms. Zebrafish from embryo to adult were selected as animal models. Learning and memory as functional indicators of neural cells in zebrafish were measured during the development from embryo to adult. Our results indicate that Al2O3-NPs treatment in zebrafish embryos stages can cause the accumulation of aluminium content in zebrafish brain tissue, leading to progressive impaired neurodevelopmental behaviours and latent learning and memory performance. Additionally, oxidative stress and disruption of dopaminergic transmission in zebrafish brain tissues are correlated with the dose-dependent and age-dependent accumulation of aluminium content. Moreover, the number of neural cells in the telencephalon tissue treated with Al2O3-NPs significantly declined, and the ultramicroscopic morphology indicated profound autophagy alternations. The results suggest that Al2O3-NPs has dose-dependent and time-dependent progressive damage on learning and memory performance in adult zebrafish when treated in embryos. This is the first study of the effects of Al2O3-NPs on learning and memory during the development of zebrafish from embryo to adult.


Assuntos
Óxido de Alumínio/toxicidade , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Nanopartículas/toxicidade , Alumínio/farmacologia , Óxido de Alumínio/química , Animais , Embrião não Mamífero , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Peixe-Zebra/embriologia
14.
Eur Rev Med Pharmacol Sci ; 24(16): 8585-8591, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32894566

RESUMO

Some surface proteins of the newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can bind to the hemoglobin molecule of an erythrocyte, which leads to the destruction of the structure of the heme and the release of harmful iron ions to the bloodstream. The degradation of hemoglobin results in the impairment of oxygen-carrying capacity of the blood, and the accumulation of free iron enhances the production of reactive oxygen species. Both events can lead to the development of oxidative stress. In this case, oxidative damage to the lungs leads then to the injuries of all other tissues and organs. The use of uridine, which preserves the structure of pulmonary alveoli and the air-blood barrier of the lungs in the course of experimental severe hypoxia, and dihydroquercetin, an effective free radical scavenger, is promising for the treatment of COVID-19. These drugs can also be used for the recovery of the body after the severe disease.


Assuntos
Infecções por Coronavirus/patologia , Estresse Oxidativo , Pneumonia Viral/patologia , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritrócitos/virologia , Depuradores de Radicais Livres/farmacologia , Depuradores de Radicais Livres/uso terapêutico , Hemoglobinas/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/fisiologia , Quercetina/análogos & derivados , Quercetina/farmacologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Uridina/farmacologia , Uridina/uso terapêutico
15.
Anticancer Res ; 40(9): 5071-5079, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878795

RESUMO

BACKGROUND/AIM: Liver cancer has extremely poor prognosis. The cancerous tissues contain hypoxic regions, and the available drugs are poorly effective in hypoxic environments. NADPH oxidase 4 (NOX4), producing reactive oxygen species (ROS), may contribute to cancer malignancy under hypoxic conditions. However, its role in liver cancer has not been examined in detail. Our aim was to explore the effects of setanaxib, a recently developed selective NOX4 inhibitor, in liver cancer cells under hypoxic conditions. MATERIALS AND METHODS: Liver cancer cell lines (HepG2, HLE and Alexander) were treated with hypoxia-mimetic agent cobalt chloride. Cytotoxicity assays, immunoblot analysis and ROS detection assay were performed to detect the effect of setanaxib under hypoxic conditions. RESULTS: Setanaxib exhibited hypoxia-selective cytotoxicity and triggered apoptosis in cancer cells. Moreover, setanaxib caused mitochondrial ROS accumulation under hypoxic conditions. Treatment with antioxidants markedly attenuated setanaxib-induced cytotoxicity and apoptosis under hypoxic conditions. CONCLUSION: Setanaxib caused mitochondrial ROS accumulation in a hypoxia-selective manner and evoked cancer cell cytotoxicity by inducing apoptosis. Thus, setanaxib has a great potential as a novel anticancer compound under hypoxic conditions.


Assuntos
Antineoplásicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , NADPH Oxidase 4/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Anticancer Res ; 40(9): 5201-5210, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878808

RESUMO

BACKGROUND/AIM: Persimmon (Diospyros kaki L.) leaves are popular as a tea infusion in Asia and their main active ingredients are flavonoids. The present study aimed to explore the anticancer properties of flavonoids isolated from persimmon leaves (PLF). MATERIALS AND METHODS: We investigated the in vitro anti-proliferative activity of PLF against several human cancer cell lines. Apoptosis and intracellular reactive oxygen species (ROS) induced by PLF were accessed using high-content analysis with florescent staining. The ability of PLF to scavenge free radicals was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. RESULTS: PLF demonstrated significant inhibition of proliferation of liver, breast, and colorectal cancer cells in vitro. PLF induced apoptosis and increased intracellular ROS levels in HCT116 (colorectal cancer) and HepG2 (liver cancer) cells. In addition, PLF showed strong free radical scavenging ability. CONCLUSION: The anti-proliferation activity of PLF against cancer cells was related to the induction of apoptosis and oxidative stress.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diospyros/química , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo
17.
Ecotoxicol Environ Saf ; 205: 111337, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979804

RESUMO

Iron overload in water is a problem in many areas of the world, which could exert toxic effects on fish. To achieve maximum growth and overall fitness, iron induced toxicity must be alleviated. Therefore, this research was undertaken to investigate the potential mitigation of iron toxicity by dietary vitamin C supplementation in channel catfish (Ictalurus punctatus). Two doses of vitamin C (143 and 573 mg/kg diet) were tested against high environmental iron (HEI, 9.5 mg/L representing 25% of 96 h LC50). Fish were randomly divided into six groups with four replicated tanks. The groups were Control (vitamin C deficient feed), LVc (143 mg vitamin C supplemented per kg diet), HVc (573 mg vitamin C supplemented per kg diet), Con + Fe (control exposed to HEI), LVc + Fe (LVc exposed to HEI) and HVc + Fe (HVc exposed to HEI). Following an 8 week trial, there was a significant reduction in weight gain (WG%) in Con + Fe compared to the control, indicating a toxic effect of HEI on fish growth performance. Interestingly, WG% in both LVc + Fe and HVc + Fe groups were significantly higher than Cont + Fe, signifying that HEI inhibited growth, but this was alleviated by vitamin C. Both hemoglobin content and hematocrit were higher in LVc + Fe compared to the control and Con + Fe. In addition, exposure to HEI (Con + Fe) incited hepatic oxidative stress based on an over-accumulation of malondialdehyde (MDA) along with a significant inhibition in superoxide dismutase (SOD) and catalase (CAT) activities; whereas in LVc + Fe and HVc + Fe, the MDA content restored to basal level. A series of histopathological alterations were observed in the liver and gills, with the most severe lesions in Con + Fe, which was also complemented with a remarkable increase in hepatic iron accumulation. Vitamin C supplementations reduced the augmented concentrations of iron accumulation to that of the control. No effect, regardless of the treatments, was noted for fatty acid composition of muscle. Overall, our findings suggest that the vitamin C supplementation can be an effective therapeutic approach for boosting growth as well as alleviating iron toxicity in catfish.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Ictaluridae/metabolismo , Ferro/toxicidade , Poluentes Químicos da Água/toxicidade , Ração Animal , Animais , Antioxidantes/metabolismo , Dieta , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Poluentes Químicos da Água/metabolismo
18.
Ecotoxicol Environ Saf ; 203: 111025, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888593

RESUMO

We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 µg l-1), enrofloxacin (ENR; 2 µg l-1), and oxytetracycline (OXY; 1 µg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.


Assuntos
Amoxicilina/toxicidade , Araceae/efeitos dos fármacos , Enrofloxacina/toxicidade , Oxitetraciclina/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Amoxicilina/análise , Amoxicilina/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Enrofloxacina/análise , Enrofloxacina/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxitetraciclina/análise , Oxitetraciclina/metabolismo , Poluentes Químicos da Água/análise
19.
Ecotoxicol Environ Saf ; 203: 111019, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888606

RESUMO

Sulfur dioxide (SO2) is one of the most common and harmful air pollutants. High concentrations of SO2 can induce a series of defensive responses in Arabidopsis plants. However, the role of photosynthesis in the plant response to SO2 stress is not clear. Here, we report the photosynthetic responses of Arabidopsis plants to SO2 stress. Exposure to 30 mg/m3 SO2 decreased stomatal conductance (Gs) and transpiration rate (Tr) but increased photosynthetic pigments and net photosynthetic rate (Pn). The contents of carbohydrates and sucrose were not altered. The transcript levels of most genes related to photosystem II (PSII), cytochrome b6/f (Cytb6f), photosystem I (PSI) and carbon fixation were upregulated, revealing one important regulatory circuit for the maintenance of chloroplast homeostasis under SO2 stress. Exposure to SO2 triggered reactive oxygen species (ROS) generation, accompanied by increases in superoxide dismutase (SOD) activity and the contents of cysteine (Cys), glutathione (GSH) and non-protein thiol (NPT), which maintained cellular redox homeostasis. Together, our results indicated that chloroplast photosynthesis was involved in the plant response to SO2 stress. The photosynthetic responses were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.


Assuntos
Poluentes Atmosféricos/toxicidade , Arabidopsis/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Dióxido de Enxofre/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação para Baixo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação para Cima
20.
Am J Chin Med ; 48(6): 1331-1351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907361

RESUMO

Panax notoginseng is the most widely used Chinese medicinal herb for the prevention and treatment of ischemic diseases. Its main active ingredients are saponins, including ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1, among others. This review provides an up-to-date overview on the pharmacological roles of P. notoginseng constituents in cerebral ischemia. The saponins of P. notoginseng induce a variety of pharmacological effects in the multiscale mechanisms of cerebral ischemic pathophysiology, including anti-inflammatory activity, reduction of oxidative stress, anti-apoptosis, inhibition of amino acid excitotoxicity, reduction of intracellular calcium overload, protection of mitochondria, repairing the blood-brain barrier, and facilitation of cell regeneration. Regarding cell regeneration, P. notoginseng not only promotes the proliferation and differentiation of neural stem cells, but also protects neurons, endothelial cells and astrocytes in cerebral ischemia. In conclusion, P. notoginseng may treat cerebrovascular diseases through multiple pharmacological effects, and the most critical ones need further investigation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Panax notoginseng/química , Fitoterapia , Saponinas/farmacologia , Saponinas/uso terapêutico , Aminoácidos/toxicidade , Animais , Anti-Inflamatórios , Antioxidantes , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Cálcio/metabolismo , Autorrenovação Celular/efeitos dos fármacos , Depuradores de Radicais Livres , Ginsenosídeos/isolamento & purificação , Humanos , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , Saponinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA