Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.397
Filtrar
1.
J Agric Food Chem ; 67(38): 10595-10603, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31475817

RESUMO

While ß-cryptoxanthin is hypothesized to have a preventive effect on lifestyle-related diseases, its underlying mechanisms are unknown. We investigated the effect of ß-cryptoxanthin on energy metabolism in adipose tissues and its underlying mechanism. C57BL/6J mice were fed a high-fat diet (60% kcal fat) containing 0 or 0.05% ß-cryptoxanthin for 12 weeks. ß-cryptoxanthin treatment was found to reduce body fat gain and plasma glucose level, while increasing energy expenditure. The expression of uncoupling protein (UCP) 1 was elevated in adipose tissues in the treatment group. Furthermore, the in vivo assays showed that the Ucp1 mRNA expression was higher in the ß-cryptoxanthin treatment group, an effect that disappeared upon cotreatment with a retinoic acid receptor (RAR) antagonist. In conclusion, we report that ß-cryptoxanthin reduces body fat and body weight gain and that ß-cryptoxanthin increases the expression of UCP1 via the RAR pathway.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , beta-Criptoxantina/administração & dosagem , Obesidade/tratamento farmacológico , Receptores do Ácido Retinoico/metabolismo , Proteína Desacopladora 1/genética , Animais , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Receptores do Ácido Retinoico/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
2.
BMC Plant Biol ; 19(1): 342, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387526

RESUMO

BACKGROUND: GRAS are plant-specific transcription factors that play important roles in plant growth and development. Although the GRAS gene family has been studied in many plants, there has been little research on the GRAS genes of Tartary buckwheat (Fagopyrum tataricum), which is an important crop rich in rutin. The recently published whole genome sequence of Tartary buckwheat allows us to study the characteristics and expression patterns of the GRAS gene family in Tartary buckwheat at the genome-wide level. RESULTS: In this study, 47 GRAS genes of Tartary buckwheat were identified and divided into 10 subfamilies: LISCL, HAM, DELLA, SCR, PAT1, SCL4/7, LAS, SHR, SCL3, and DLT. FtGRAS genes were unevenly distributed on 8 chromosomes, and members of the same subfamily contained similar gene structures and motif compositions. Some FtGRAS genes may have been produced by gene duplications; tandem duplication contributed more to the expansion of the GRAS gene family in Tartary buckwheat. Real-time PCR showed that the transcription levels of FtGRAS were significantly different in different tissues and fruit development stages, implying that FtGRAS might have different functions. Furthermore, an increase in fruit weight was induced by exogenous paclobutrazol, and the transcription level of the DELLA subfamily member FtGRAS22 was significantly upregulated during the whole fruit development stage. Therefore, FtGRAS22 may be a potential target for molecular breeding or genetic editing. CONCLUSIONS: Collectively, this systematic analysis lays a foundation for further study of the functional characteristics of GRAS genes and for the improvement of Tartary buckwheat crops.


Assuntos
Fagopyrum/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
3.
Medicine (Baltimore) ; 98(26): e15872, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31261495

RESUMO

Human epidermal growth factor receptor 2-positive (HER2+) breast cancer accounts for ∼20% of invasive breast cancers and is associated with poor prognostics. The recent outcome of HER2+ breast cancer treatment has been vastly improved owing to the application of antibody-targeted therapies. Trastuzumab (Herceptin) is a monoclonal antibody designed to target HER2+ breast cancer cells. In addition to improved survival in the adjuvant treatment of HER2+ breast cancer, trastuzumab treatment has also been associated with cardiotoxicity side effect. However, the molecular mechanisms of trastuzumab action and trastuzumab-mediated cardiotoxicity are still not fully understood. Previous research utilized bulk transcriptomics analysis to study the underlining mechanisms, which relied on averaging molecular signals from bulk tumor samples and might have overlooked key expression features within breast cancer tumor. In contrast to previous research, we compared the single cancer cell level transcriptome profile between trastuzumab-treated and nontreated patients to reveal a more in-depth transcriptome profile. A total of 461 significantly differential expressed genes were identified, including previously defined and novel gene expression signatures. In addition, we found that trastuzumab-enhanced MGP gene expression could be used as prognostics marker for longer patient survival in breast invasive carcinoma patients, and validated our finding using TCGA (The Cancer Genome Atlas) breast cancer dataset. Moreover, our study revealed a 48-gene expression signature that is associated with cell death of cardiomyocytes, which could be used as early biomarkers for trastuzumab-mediated cardiotoxicity. This work is the first study to look at single cell level transcriptome profile of trastuzumab-treated patients, providing a new understanding of the molecular mechanism(s) of trastuzumab action and trastuzumab-induced cardiotoxicity side effects.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Transcriptoma/efeitos dos fármacos , Trastuzumab/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/epidemiologia , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/epidemiologia , Carcinoma Ductal de Mama/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Projetos Piloto , Prognóstico , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Análise de Sobrevida
4.
Life Sci ; 232: 116624, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276689

RESUMO

AIMS: Monocyte-endothelial adhesion is considered to be the primary initiator of inflammatory vascular diseases, such as atherosclerosis. Connexin 43 (Cx43) has been reported to play an important part in this process, however, the underlying mechanisms are not fully understood. Intravenous anesthetics, propofol is commonly used in the perioperative period and in the intensive care unit, and considered to have good anti-inflammatory and antioxidant effects. Thus, we speculate that propofol could influence monocyte-endothelial adhesion, and explore whether its possible mechanism is relative with Cx43 expression in U937 monocytes influencing cell adhesion of U937 monocytes to human umbilical vein endothelial cells (HUVEC). MAIN METHODS: Cx43-siRNAs or pc-DNA-Cx43 were used to alter Cx43 expression in U937 monocytes. Propofol was given as pretreatments to U937 monocytes. Then, cell adhesion, ZO-1, LFA-1, VLA-4, COX and MCP-1 were determined. PI3K/AKT/NF-κB signaling pathway was explored to clarify the possible mechanism. KEY FINDINGS: Alternation of Cx43 expression affects cell adhesion and adhesion molecules significantly, such as ZO-1, LFA-1, VLA-4, COX-2 and MCP-1, the mechanism of which is relative with Cx43 influencing the activation of PI3K/AKT/NF-κB signaling pathway. Preconditioning with propofol at its clinically relevant anesthesia concentration attenuates cell adhesion. Propofol not only decreases Cx43 expression in U937 monocytes, but also depresses the activation of PI3K/AKT/NF-κB signaling pathway. SIGNIFICANCE: Modulation Cx43 expression in U937 monocytes could affect cell adhesion via regulating the activation of PI3K/AKT/NF-κB signaling pathway. Propofol attenuates cell adhesion via inhibiting Cx43 and its downstream signaling pathway of PI3K/AKT/NF-κB.


Assuntos
Adesão Celular/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Propofol/farmacologia , Aterosclerose/metabolismo , Moléculas de Adesão Celular/metabolismo , Conexina 43/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Endotélio Vascular/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/fisiologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Propofol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células U937/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Acta Cir Bras ; 34(5): e201900502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166463

RESUMO

PURPOSE: To investigate inhibitory effect of Astragalus polysaccharide (APS) on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt2 signaling pathway. METHODS: Postmenopausal osteoporosis (PMOP) animal model was developed by excising the bilateral ovaries of rats. The model rats were administered with APS (200 mg/kg, 400 mg/kg, 800 mg/kg) by intragastric administration once daily for 12 weeks. Bone density, bone metabolism index and oxidative stress index were measured in all groups. Furthermore, the regulation of APS of FoxO3a / Wnt2 signaling pathway was observed. RESULTS: APS has an estrogen-like effect, which can increase bone mass, lower serum ALP and BGP values, increase blood calcium content, and increase bone density of the femur and vertebrae in rats. At the same time, APS can increase the bone mineral content of the femur, increase the maximum stress, maximum load and elastic modulus of the ovariectomized rats, improve oxidative stress in rats by increasing the gene expression of ß-catenin and Wnt2 mRNA and inhibiting the gene expression of FoxO3a mRNA. CONCLUSION: Astragalus polysaccharide can effectively alleviate oxidative stress-mediated osteoporosis in ovariectomized rats, which may be related to its regulation of FoxO3a/Wnt2/ß-catenin pathway.


Assuntos
Astrágalo (Planta)/química , Proteína Forkhead Box O3/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Polissacarídeos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Proteína Forkhead Box O3/análise , Expressão Gênica/efeitos dos fármacos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/análise , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/efeitos dos fármacos , Osteoporose/metabolismo , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Reprodutibilidade dos Testes , Resultado do Tratamento , Via de Sinalização Wnt/fisiologia , Proteína Wnt2/análise , Proteína Wnt2/efeitos dos fármacos , beta Catenina/análise , beta Catenina/efeitos dos fármacos
6.
Chem Biol Interact ; 308: 317-322, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170385

RESUMO

Acetylcholinesterase (AChE) hydrolyzes acetylcholine at cholinergic synapses, and which has various isoforms of AChE, i.e. AChER, AChEH and AChET, deriving from single gene. AChEH exists as a glycophosphatidylinositol (GPI)-linked dimer (G2), presents mainly in plasma membrane of mammalian erythrocyte. Transgenic mice with ACHE gene depletion were employed here to investigate the possible role of AChE in blood cell formation. ACHE knock-out mice were found to suffer normocytic anemia. In erythrocyte of ACHE-/- mice, the amount of hemoglobin, especially α-globin, was found to be markedly reduced. In addition, the number of erythrocyte and hematocrit of ACHE-/- mice were significantly lowered. To probe the role of AChE isoforms in erythroid differentiation, erythroblast-like cells (TF-1) over-expressed with different AChE isoforms were induced to differentiate by erythropoietin (EPO): this differentiation induced the expression of each AChE isoform. Only in the TF-1 cells over-expressed with AChEH, the EPO-induced transcriptions and protein expressions of α- and ß-globins could be significantly enhanced, which therefore suggested that AChEH might regulate the responsiveness of TF-1 cells to EPO. The alternation of EPO-induced downstream signaling might be accounted by association of AChE with EPO receptor in cell surface. The findings indicated the significance of AChE in erythroblast maturation, which provided an insight in elucidating possible mechanisms in regulating erythropoiesis.


Assuntos
Acetilcolinesterase/metabolismo , Receptores da Eritropoetina/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/imunologia , Animais , Anticorpos/imunologia , Diferenciação Celular , Linhagem Celular , Dimerização , Eritroblastos/citologia , Eritroblastos/metabolismo , Eritropoetina/farmacologia , Expressão Gênica/efeitos dos fármacos , Hemoglobinas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Receptores da Eritropoetina/imunologia
7.
Environ Pollut ; 251: 901-909, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31234256

RESUMO

There has been an increasing incidence rate of rice false smut in global rice cultivation areas. However, there is a dearth of studies on the environmental concentrations and hazards of ustiloxin A (UA), which is the major mycotoxin produced by a pathogenic fungus of the rice false smut. Here, the concentrations of UA in the surface waters of two paddy fields located in Enshi city, Hubei province, China, were measured, and its toxicity in T. Thermophila was evaluated. This is the first study to detect UA in the surface waters of the two paddy fields, and the measured mean concentrations were 2.82 and 0.26 µg/L, respectively. Exposure to 2.19, 19.01 or 187.13 µg/L UA for 5 days significantly reduced the theoretical population and cell size of T. thermophila. Furthermore, treatment with 187.13 µg/L UA changed the percentages of T. thermophila cells in different cell-cycle stages, and with an increased malformation rate compared with the control, suggesting the disruption of the cell cycle. The expressions of 30 genes involved in the enriched proteasome pathway, 7 cyclin genes (cyc9, cyc10, cyc16, cyc22, cyc23, cyc26, cyc33) and 2 histone genes (mlh1 and hho1) were significantly down-regulated, which might be the modes of action responsible for the disruption of cell cycling due to UA exposure.


Assuntos
Divisão Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Micotoxinas/toxicidade , Peptídeos Cíclicos/toxicidade , Tetrahymena thermophila/efeitos dos fármacos , China , Fungos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Tetrahymena thermophila/crescimento & desenvolvimento
8.
Chem Biol Interact ; 309: 108686, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31152735

RESUMO

Acetylcholinesterase (EC3.1.1.7; AChE) is a key enzyme in the cholinergic system. Emerging evidence has shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a typical persistent organic pollutant, suppressed neuronal AChE activity via dysregulation of different biosynthesis processes in human and rat neuronal cells. In the nervous system, astrocytes protect neurons from environmental pollutants. As a known target cell of TCDD, the astrocyte might be involved in TCDD effects on neuronal AChE. Therefore, in the present study, we found astrocyte-derived conditioned medium (ACM) could induce AChE activity preferentially in mature neurons in the absence of TCDD. The enzymatic activity of AChE was generally decreased in cultured cortical neurons upon direct treatment with TCDD (0.003-0.01 nM). This trend of changes in AChE activity was not significantly altered in immature neurons exposed to ACM produced in the presence of TCDD (TACM group), but reversed in mature neurons. Compared with effects of treatment with ACM plus TCDD (ACMT), a significant differential effect on AChE activity was found in the TACM group in response to TCDD treatment specifically in immature neurons, suggesting the presence of a TCDD-specific active component derived from the astrocyte. Inconsistent alterations in expression and enzymatic activities of the AChE T subunit (AChET) and the proline-rich membrane anchor (PRiMA) were found, suggesting that a mechanism of action beyond the transcriptional level might be involved. These data indicate that the astrocyte might play a protective role in TCDD-induced alterations of neuronal AChE in certain stages of differentiation.


Assuntos
Acetilcolinesterase/metabolismo , Meios de Cultivo Condicionados/química , Expressão Gênica/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Acetilcolinesterase/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dibenzodioxinas Policloradas/química , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Food Chem Toxicol ; 131: 110543, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154084

RESUMO

A dual role of hydrogen sulfide (H2S) in inflammation is well-reported and recent studies demonstrated adipogenic effects of H2S in 3T3-L1 cells. Here, we aimed to investigate the effects of H2S on adipocyte differentiation and inflammation. H2S concentration in 3T3-L1 culture media was increased during adipocyte differentiation in parallel to adipogenic and Cth gene expression, and its inhibition using DL-Propargyl Glycine (PPG) impaired 3T3-L1 differentiation. GYY4137 and Na2S administration only in the first or in the last stage of adipocyte differentiation resulted in a significant increased expression of adipogenic genes. However, when GYY4137 or Na2S were administrated during all process no significant effects on adipogenic gene expression were found, suggesting that excessive H2S administration might exert negative effects on adipogenesis. In fact, continuous addition of Na2S, which resulted in Na2S excess, inhibited adipogenesis, whereas time-expired Na2S had no effect. In inflammatory conditions, GYY4137, but not Na2S, administration attenuated the negative effects of inflammation on adipogenesis and insulin signaling-related gene expression during adipocyte differentiation. In inflamed adipocytes, Na2S administration enhanced the negative effects of inflammatory process. Altogether these data showed that slow-releasing H2S improved adipocyte differentiation in inflammatory conditions, and that H2S proadipogenic effects depend on dose, donor and exposure time.


Assuntos
Adipócitos/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Sulfetos/farmacologia , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Alquinos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Inflamação/fisiopatologia , Camundongos
10.
Food Chem Toxicol ; 131: 110545, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31163222

RESUMO

This investigation explored a dietary therapy of pectic polysaccharide (CCPS) (2 mg/ Kg BW) against female repro-toxicity and infertility triggered by sodium arsenite (As3+) (10 mg/ Kg BW) in Wistar rats. The isolated CCPS consists of D-galactose and D-methyl galacturonate with a molar ratio of 1: 4. FTIR spectral analysis of CCPS and CCPS- sodium arsenite (As3+) complex indicated a possible chelating property of CCPS in presence of binding sites (OH-/COOH) for As3+. Series of negatively charged galacturonate residues in CCPS provide better potential for cation chelation. CCPS significantly mitigated As3+ induced ovarian, uterine lipid peroxidation, and reactive oxygen species (ROS) generation by the restoration of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities. CCPS post-treatment enhanced ovarian steroidogenesis along with a restoration of normal tissue histoarchitecture in As3+ fed rats by regulating the estradiol receptor alpha (ER-α). CCPS suppressed anti-inflammatory properties effectively found since a down-regulation of NF-kappa B (NF-қB), pro-inflammatory tumor necrosis-α (TNF-α) and interleukin-6 (IL-6) were observed in arsenicated rats with CCPS. This study confirmed the up-regulation of uterine pro-apoptotic/ apoptotic proteins caspase-3, poly ADP ribose polymerase (PARP), proliferating cell nuclear antigen (PCNA), phospho p53 and Bax, followed by down-regulation of Bcl-2 and protein Kinase B (AKT) signaling pathway along with uterine tissue regeneration in As3+ exposed rats. Oral CCPS attenuated the above apoptotic expressional changes significantly and dietary CCPS ensured successful fertility with the birth of healthy pups in lieu of infertile condition in As3+ fed rats. Moreover, this study also supports that CCPS treatment attenuated the As3+ toxicity by modulating the S-adenosine methionine (SAM) pool components, B12, folate and homocysteine.


Assuntos
Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Infertilidade Feminina/tratamento farmacológico , Momordica charantia/química , Pectinas/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Arsenitos , Catalase/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Infertilidade Feminina/induzido quimicamente , Masculino , Ovário/patologia , Estresse Oxidativo/efeitos dos fármacos , Pectinas/isolamento & purificação , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Compostos de Sódio , Superóxido Dismutase/metabolismo , Útero/patologia
11.
Food Chem Toxicol ; 131: 110540, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31173816

RESUMO

The effect of menaquinone-7 isolated from cheonggukjang was comparatively investigated with vitamin K1 and menaquinone-4 on cell differentiation and mineralization of the osteoblastic cell line MC3T3-E1. Results indicated that all vitamin K species significantly increased MC3T3-E1 cell proliferation, cellular alkaline phosphatase activity, osteocalcin synthesis, and calcium deposition in a dose-dependent manner. Menaquinone-4 and menaquinone-7 had more potent effects on calcium deposition than vitamin K1, and their effects were only partly reduced by warfarin (γ-carboxylation inhibitor) treatment, while warfarin abolished the induction activity of vitamin K1 on calcification. This suggests that vitamin K1 and K2 (menaquinone-4 & menaquinone-7) may have different mechanisms in stimulating osteoblast mineralization. In addition, the mRNA expression ratio of osteoprotegerin and the receptor activator of nuclear factor-kB ligand was also dramatically increased by treatment with vitamin K1 (62%), menaquinone-4 (247%), and menaquinone-7 (329%), suggesting that vitamin K may suppress the formation of osteoclast by up-regulating the ratio of osteoprotegerin/receptor activator of nuclear factor-kB ligand in osteoblasts. These results provide compelling evidence that vitamin K1, menaquinone-4, and menaquinone-7 all can promote bone health, which might be associated with elevations in the osteoprotegerin/receptor activator of nuclear factor-kB ligand ratio.


Assuntos
Biomineralização/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Alimentos de Soja , Vitamina K 1/farmacologia , Vitamina K 2/análogos & derivados , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Camundongos , Osteoblastos , Osteocalcina/metabolismo , Osteoprotegerina/genética , Ligante RANK/genética , Vitamina K 2/isolamento & purificação , Vitamina K 2/farmacologia
12.
Chem Biol Interact ; 309: 108700, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31176714

RESUMO

Aryl hydrocarbon receptor (AhR) is a highly conserved ligand-activated transcription factor with high affinity to aromatic planar compounds, such as ß-naphthoflavone (BNF), benzo[a]pyrene (BaP) or dioxin (TCDD). After binding the ligand, AhR triggers induction of the expression of phase I and phase II drug-metabolizing genes, together with numerous other genes that are not directly involved in the metabolism of xenobiotics. Several studies have shown that AhR plays a role in tumor initiation, promotion and progression, but the molecular mechanisms involved in these processes are not fully understood. A previous study from our laboratory indicated that the SERPINB2 gene is presumably regulated by AhR. To prove that such induction is really AhR-dependent, in the present study we knocked down the expression of AhR by stable transfection of a laryngeal squamous cell carcinoma cell line (UT-SCC-34) with shRNA, resulting in 92% reduction of BNF-induced expression of SERPINB2. However, in silico analysis did not reveal AhR-dependent responsive elements in the promoter of the SERPINB2 gene. Therefore, to address this problem, we have used cycloheximide, an inhibitor of translation, and our results clearly indicate that an additional, newly synthesized protein is involved in AhR-dependent induction of SERPINB2 expression by BNF. So, to exclude that AhR binds to the putative xenobiotic-responsive elements (XREs) localized upstream of the SERPINB2 gene, we performed chromatin immunoprecipitation assays. As expected, we found no direct binding of AhR to its responsive elements in the vicinity of the SERPINB2 gene, further demonstrating the indirect SERPINB2 induction by AhR. However, the further analysis demonstrated that the expression of the enhancer RNA encoded by the region of DNA 20 kbp upstream from the SERPINB2 gene was AhR-dependent. Although AhR-mediated SERPINB2 induction clearly requires the synthesis of an additional protein, the kinetics of SERPINB2 induction is as fast as the kinetics of CYP1A1 and CYP1B1 induction (both genes directly regulated by AhR). Therefore, given previous studies regarding the induction of SERPINB2 expression by bacterial lipopolysaccharides (LPS), we think that, similarly, the interaction with pause-release proteins may be responsible for AhR-dependent regulation of SERPINB2 expression.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Serpinas/metabolismo , Benzo(a)pireno/farmacologia , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Serpinas/genética , beta-Naftoflavona/farmacologia
13.
Chem Biol Interact ; 309: 108710, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31199930

RESUMO

Formic acid is a common organic acid used in many industrial processes. There is a paucity of research on the direct toxicity of formic acid and how it might affect the cardiovascular system. This study aimed to understand the effect of formic acid on vascular tension in an animal model and the underlying mechanism. Results found that the vasodilation induced by formic acid was related to the endothelium. When the dosage of formic acid was 1 mM or 5 mM, the vasodilation of endothelium-intact rings was partially suppressed by l-NAME, NS-2028 and nifedipine, and vasoconstriction caused by CaCl2 was inhibited, and the mRNA levels of eNOS, the activity of NOS (tNOS, iNOS and cNOS) and the level of NO and cGMP were significantly increased. Results also found that eNOS protein expression was significantly enhanced by 5 mM of formic acid. These results suggest formic acid can relax the aortic vessels of rats in a dose-dependent pattern. Further, the mechanism of the formic acid-induced vasodilatation likely involved the NO/cGMP pathway. Finally, the current study has revealed that vasodilation induced by high concentrations of formaldehyde may be the effect of the metabolite formic acid. This study will help further inform the etiologies of formic acid-related angiocardiopathies.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Formiatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/metabolismo , Cloreto de Cálcio/farmacologia , GMP Cíclico/metabolismo , Endotélio Vascular/fisiologia , Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Wistar , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
14.
Chem Biol Interact ; 309: 108713, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31226288

RESUMO

Liver cancer is one of the most frequently occurring types of cancer with high mortality rate. Hepatocellular carcinoma (HCC) frequently metastasizes to lung, portal vein, and portal lymph nodes and most HCCs show strong resistance to conventional anticancer drugs. Cancer stem cells (CSCs) are considered to be responsible for resistance to therapies. Hence, recent advancements in the use of liver cancer stem cells (LCSCs) are rapidly gaining recognition as an efficient and organized means for developing antitumor agents. We aimed to use a non-target-based high-throughput screening (HTS) approach to specifically target α-fetoprotein (AFP)+/cluster of differentiation (CD)133+ HCC present in mixed populations of HCC cells and hepatocytes. Herein, we identified actinomycin D (ActD) as a potential antitumor agent that significantly inhibits activity of LCSCs without affecting the co-cultured hepatocytes. To determine the mechanism of ActD-induced tumor-specificity in LCSC, we applied various cell-based assay models in vitro. In fact, ActD significantly increased reactive oxygen species (ROS) accumulation and DNA damage in Huh7 HCC cells, but not in Fa2N-4 cells, immortalized hepatocytes. Treatment of spheroid-forming LCSCs with ActD effectively decreased spheroid formation and the CD133+ HCC cell population. Importantly, these ActD-mediated effects are a result of inhibition of cystine/glutamate transporter xCT expression, via attenuation of CD133 synthesis. These results indicate that ActD suppresses stemness and malignant properties in HCC cells through destabilization of xCT, by inhibition of CD133 expression in LCSCs. The effects of ActD on LCSCs provide novel therapeutic strategies for targeting cancer stem-like cells in liver cancer.


Assuntos
Antígeno AC133/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Dactinomicina/farmacologia , Expressão Gênica/efeitos dos fármacos , Antígeno AC133/antagonistas & inibidores , Antígeno AC133/genética , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares/efeitos dos fármacos
15.
Food Chem Toxicol ; 131: 110558, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31175915

RESUMO

Effects of Spirulina platensis 55% ethanol extract (SPL55) on lipid metabolism in high-fat diet-induced hyperlipidaemic rats were investigated. Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry indicated that SPL55 was enriched with polyunsaturated fatty acids. Meanwhile, serum and liver lipid levels, including total triglyceride, total cholesterol, and low-density-lipoprotein cholesterol, were significantly decreased in hyperlipidaemic rats of SPL55. Analysis of tissue sections showed that SPL55 treatment could markedly inhibit hepatic lipid accumulation and steatosis. Moreover, SPL55 regulated the mRNA and protein expression levels of SREBP-1c, HMG-CoA, PEPCK, ACC, and AMPK genes involved in lipid metabolism. Furthermore, SPL55 led to decrease the abundances of Turicibacter, Clostridium_XlVa, and Romboutsia, which were positive correlation with lipid metabolism indicators, and has also enriched Alloprevotella, Prevotella, Porphyromonadaceae, and Barnesiella. These results provided evidence that SPL55 might be developed as a functional food to ameliorate lipid metabolic disorders and hyperlipidaemia.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Fígado Gorduroso/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Spirulina/química , Animais , Peso Corporal/efeitos dos fármacos , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Dieta Hiperlipídica , Ácidos Graxos Insaturados/metabolismo , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/patologia , Microalgas/química , Ratos , Ratos Wistar , Triglicerídeos/sangue , Triglicerídeos/metabolismo
16.
Food Chem Toxicol ; 131: 110576, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31199990

RESUMO

Ivermectin, a member of the avermectins, is one of the most used anti-parasitic agents, and acts by binding to glutamate-gated chloride channels in invertebrate nerve cells. There is limited information, however, on the effects of ivermectin in non-neural cell, such as adipocytes. The present work aimed to investigate the role of ivermectin in adipogenesis using 3T3-L1 preadipocytes. Ivermectin inhibited the differentiation of preadipocytes and triglyceride (TG) accumulation. In particular, the treatment of ivermectin at the middle to late adipogenic differentiation period (day 2-8) was correlated with the inhibition of fat accumulation. Ivermectin treatment also significantly modulated the mRNA expression of key markers in adipogenesis, fatty acid synthesis, uptake, and oxidation, and enhanced the gene expression of two subunits of the glycine receptor (GlyR). Specifically, the protein levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and acetyl-CoA carboxylase (ACC) were reduced. Interestingly, the suppression of TG accumulation by ivermectin was partially abolished by rosiglitazone, a specific PPARγ agonist, but Z-guggulsterone, a selective FXR antagonist, failed to rescue the ivermectin-induced effect on adipogenesis. Lastly, ivermectin prevented adipogenesis induced by permethrin and fipronil. In conclusion, ivermectin inhibits adipogenesis of 3T3-L1 preadipocytes partially via PPARγ & GlyR-dependent, but not FXR-dependent, pathway.


Assuntos
Adipogenia/efeitos dos fármacos , Antiparasitários/farmacologia , Ivermectina/farmacologia , Triglicerídeos/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Camundongos , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores da Glicina/metabolismo
17.
Food Chem Toxicol ; 131: 110581, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202941

RESUMO

Current global efforts are aiming to increase use of mechanistic information in regulatory testing. In tiered testing paradigms, in vitro, in silico, and in vivo studies are employed progressively to identify and classify health hazards, which are then compared against human equivalent doses. We used data from three companion papers on the brominated flame retardant hexabromocyclododecane (HBCD) to conduct a case study on tiered testing. We included ToxCast™ and in vitro-in vivo extrapolation (Tier 1), rat liver transcriptomic (Tier 2), and conventional rat (Tier 3) data. Bioactivity-exposure ratios (BERs) were derived by comparing human administered dose equivalents of the measured effects to Canadian exposure levels. Biological perturbations were highly aligned between Tiers 1/2, and consistent with apical effects in Tier 3. Tier 1 had the smallest BERs, and Tiers 2/3 were similar. The study demonstrates the promise of using physiologically-based pharmacokinetic modeling and mechanistic analyses in a tiered framework to identify pathways through which chemicals exert toxicological effects; however, they also point to some shortcomings associated with in vitro and in silico approaches. Additional case studies of chemicals from multiple classes are required to define optimal tiered screening procedures to reduce future in vivo requirements in health hazard assessments.


Assuntos
Retardadores de Chama/toxicidade , Hidrocarbonetos Bromados/toxicidade , Animais , Apoptose/efeitos dos fármacos , Feminino , Retardadores de Chama/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrocarbonetos Bromados/administração & dosagem , Masculino , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ratos Wistar , Medição de Risco , Testes de Toxicidade/métodos
18.
Ecotoxicol Environ Saf ; 181: 164-171, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185430

RESUMO

Short-chain chlorinated paraffins (SCCPs) are frequently detected in environmental matrices and human tissues. It was hypothesized that SCCPs might interact with the peroxisome proliferator-activated receptor α (PPARα). In the present study, an in vitro, dual-luciferase reporter gene assay and in silico molecular docking analysis were employed together to study the interactions between SCCPs congeners and PPARα. Expressions of genes downstream in pathways activated by PPARα in liver of rats exposed to 1, 10, or 100 mg/kg bm/d of C10-13-CPs (56.5% Cl) for 28 days were examined to confirm activation potencies of SCCPs toward PPARα signaling. Effects of exposure to C10-13-CPs (56.5% Cl) on fatty acid metabolism in rat liver were also explored via a pseudo-targeted metabolomics strategy. Our results showed that C10-13-CPs (56.5% Cl) caused a dose-dependent greater expression of luciferase activity of rat PPARα. Molecular docking modeling revealed that SCCPs had a strong capacity to bind with PPARα only through hydrophobic interactions and the binding affinity was dependent on the degree of chlorination in SCCPs congeners. In livers of male rats, exposure to 100 mg/kg bm/d of C10-13-CPs (56.5% Cl) resulted in up-regulated expressions of 11 genes that are downstream in the PPARα-activated pathway and regulate catabolism of fatty acid. Consistently, accelerated fatty acid oxidation was observed mainly characterized by lesser concentrations of ∑fatty acids in livers of rats. Overall, these results demonstrated, for the first time, that SCCPs could activate rat PPARα signaling and thereby disrupt metabolism of fatty acid in livers of male rats.


Assuntos
Ácidos Graxos/metabolismo , Fígado/efeitos dos fármacos , PPAR alfa/metabolismo , Parafina/toxicidade , Animais , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Halogenação , Fígado/metabolismo , Luciferases/genética , Masculino , Simulação de Acoplamento Molecular , PPAR alfa/química , Parafina/química , Ratos , Transdução de Sinais , Regulação para Cima
19.
Eur J Med Chem ; 177: 457-466, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181405

RESUMO

Histone deacetylases (HDACs) play an important role in cancer, degenerative diseases and inflammation. The currently applied HDAC inhibitors in the clinic lack selectivity among HDAC isoforms, which limits their application for novel indications such as inflammatory diseases. Recent, literature indicates that HDAC 3 plays an important role among class I HDACs in gene expression in inflammation. In this perspective, the development and understanding of inhibitory selectivity among HDACs 1, 2 and 3 and their respective influence on gene expression need to be characterized to facilitate drug discovery. Towards this aim, we synthesized nine structural analogues of the class I HDAC inhibitor Entinostat and investigated their selectivity profile among HDACs 1, 2 and 3. We found that we can explain the observed structure activity relationships by small structural and conformational differences between HDAC 1 and HDAC 3 in the 'lid' interacting region. Cell-based studies indicated, however, that application of inhibitors with improved HDAC 3 selectivity did not provide an anti-inflammatory response in contrast to expectations from biochemical evidence in literature. Altogether, in this study, we identified structure activity relationships among class I HDACs and we connected isoform selectivity among class I HDACs with pro- and anti-inflammatory gene transcription in macrophages.


Assuntos
Anilidas/farmacologia , Benzamidas/farmacologia , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Macrófagos/efeitos dos fármacos , Anilidas/síntese química , Anilidas/química , Anilidas/metabolismo , Animais , Benzamidas/síntese química , Benzamidas/química , Benzamidas/metabolismo , Domínio Catalítico , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Inflamação/genética , Interleucina-10/genética , Interleucina-6/genética , Camundongos , Simulação de Acoplamento Molecular , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Ligação Proteica , Células RAW 264.7 , Estereoisomerismo , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/genética
20.
J Agric Food Chem ; 67(27): 7660-7673, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31250646

RESUMO

Mushrooms are customary influential sources of pharmaceutically active metabolites. Usually lanostane-type triterpenoids from mushrooms had prospective for cancer disease treatments. Recently, a triterpenoid, astrakurkurol obtained from the fresh basidiocarps of the edible mushroom Astraeus hygrometricus, drew attention as a new cytotoxic therapeutic. The structural stability of this triterpenoid had been established with the amalgamation of density functional theory (DFT) calculations and study of single-crystal X-ray diffraction. To successfully manifest astrakurkurol as a potent cytotoxic therapeutics, a wide apprehension on the molecular and cellular mechanisms underlying their action is prerequisite. On this account, our study was directed to scrutinize the influence of this triterpenoid on human hepatocellular cancer cell model Hep3B. Encapsulating all experimental facts revealed that astrakurkurol had significantly decreased cell viability in a concentration-dependent manner. This effect was unveiled to be apoptosis, documented by DNA fragmentation, chromatin condensation, nuclear shrinkage, membrane blebing, and imbalance of cell cycle distribution. Astrakurkurol persuaded the expression of death receptor associated proteins (Fas), which triggered caspase-8 activation following tBid cleavage. Moreover, tBid mediated ROS generation, which triggered mitochondrial dysfunction and activated the mitochondrial apoptotic events. Astrakurkurol cytotoxicity was based on caspase-8-mediated intrinsic apoptotic pathway and was associated with inhibition at Akt and NF-κB pathway. Astrakurkurol had also inhibited the migration of Hep3B cells, indicating its antimigratory potential. These findings led us to introduce astrakurkurol as a feasible and natural source for a safer cytotoxic drug against hepatocellular carcinoma.


Assuntos
Antineoplásicos/farmacologia , Basidiomycota/química , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Difração de Raios X , Receptor fas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA