Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.477
Filtrar
1.
FASEB J ; 35(9): e21806, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369605

RESUMO

During lactation, adult female mice display aggressive responses toward male intruders, triggered by male-derived chemosensory signals. This aggressive behavior is not shown by pup-sensitized virgin females sharing pup care with dams. The genetic mechanisms underlying the switch from attraction to aggression are unknown. In this work, we investigate the differential gene expression in lactating females expressing maternal aggression compared to pup-sensitized virgin females in the medial amygdala (Me), a key neural structure integrating chemosensory and hormonal information. The results showed 197 genes upregulated in dams, including genes encoding hormones such as prolactin, growth hormone, or follicle-stimulating hormone, neuropeptides such as galanin, oxytocin, and pro-opiomelanocortin, and genes related to catecholaminergic and cholinergic neurotransmission. In contrast, 99 genes were downregulated in dams, among which we find those encoding for inhibins and transcription factors of the Fos and early growth response families. The gene set analysis revealed numerous Gene Ontology functional groups with higher expression in dams than in pup-sensitized virgin females, including those related with the regulation of the Jak/Stat cascade. Of note, a number of olfactory and vomeronasal receptor genes was expressed in the Me, although without differences between dams and virgins. For prolactin and growth hormone, a qPCR experiment comparing dams, pup-sensitized, and pup-naïve virgin females showed that dams expressed higher levels of both hormones than pup-naïve virgins, with pup-sensitized virgins showing intermediate levels. Altogether, the results show important gene expression changes in the Me, which may underlie some of the behavioral responses characterizing maternal behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Animais Recém-Nascidos/genética , Expressão Gênica/genética , Lactação/genética , Comportamento Materno/fisiologia , Animais , Feminino , Hormônios/genética , Camundongos , Modelos Animais , Gravidez , Receptores Odorantes/genética , Órgão Vomeronasal/fisiologia
2.
Gene ; 805: 145908, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411649

RESUMO

Transcriptome profiling of Vrindavani and Tharparkar cattle (n = 5 each) revealed that more numbers of genes were dysregulated in Vrindavani than in Tharparkar. A contrast in gene expression was observed with 18.9 % of upregulated genes in Vrindavani downregulated in Tharparkar and 17.8% upregulated genes in Tharparkar downregulated in Vrindavani. Functional annotation of genes differentially expressed in Tharparkar and Vrindavani revealed that the systems biology in Tharparkar is moving towards counteracting the effects due to heat stress. Unlike Vrindavani, Tharparkar is not only endowed with higher expression of the scavengers (UBE2G1, UBE2S, and UBE2H) of misfolded proteins but also with protectors (VCP, Serp1, and CALR) of naïve unfolded proteins. Further, higher expression of the antioxidants in Tharparkar enables it to cope up with higher levels of free radicals generated as a result of heat stress. In this study, we found relevant genes dysregulated in Tharparkar in the direction that can counter heat stress.


Assuntos
Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Animais , Bovinos/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Índia , Biologia de Sistemas/métodos , Transcriptoma/genética
3.
Gene ; 805: 145904, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34418470

RESUMO

Breast cancer is the second most common cause of cancer-related mortality in women. Breast cancer metastasis which usually is observed at the last stage is the major cause of breast cancer-related death. Long non-coding RNAs (lncRNAs) are member of the non-coding RNA family. It is known that lncRNAs have important functions in the genes regulation of different processes and pathways such as EMT (Epithelial mesenchymal transition), metastasis and apoptosis. Therefore, it is inevitable that lncRNAs have potential contribution for the understanding of cancer pathogenesis. lncRNA-ZEB2NAT is the natural antisense transcript of ZEB2. Herein, we investigated the effects of lncRNA-ZEB2NAT on process of EMT, metastasis and apoptosis in MCF7 and MDA-MB-231 breast cancer cells. The effect of ZEB2NAT on the expression of important genes in EMT, metastasis and apoptosis, and some protein levels was determined by qRT-PCR and western blot analysis, respectively. The effects of ZEB2NAT on cell proliferation, apoptosis, invasion and colony formation were evaluated using XTT, annexin V, invasion and colony assays, respectively. The ZEB2NAT knockdown caused anti-metastatic and apoptotic effects. The ZEB2NAT knockdown resulted in a decrease in ZEB2 and N-cadherin but an increase in E-cadherin protein levels. In addition, it was determined that ZEB2NAT knockdown significantly decreased cell proliferation and stimulated apoptosis in both cells. It was found that ZEB2NAT knockdown significantly decreased invasion and colony formation in both cells. ZEB2NAT knockdown showed anti-metastatic and apoptotic effect by affecting the important genes in both cells. These results have suggested that ZEB2NAT has an important role in EMT, metastasis and apoptosis in breast cancer and ZEB2NAT knockdown caused significant anti-cancer activities.


Assuntos
Neoplasias da Mama/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Apoptose/genética , Neoplasias da Mama/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , RNA Longo não Codificante/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
4.
Gene ; 805: 145910, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34419567

RESUMO

Ethylene is an important regulatory phytohormone for sex differentiation and flower development. As the rate-limiting enzyme encoding genes in ethylene biosynthesis, ACS gene family has been well studied in cucumber; however, little is known in other cucurbit crops, such as melon and watermelon, which show diverse sex types in the field. Here, we identified and characterized eight ACS genes each in the genomes of melon and watermelon. According to the conserved serine residues at C-terminal, all the ACS genes could be characterized into three groups, which were supported by the exon-intron organizations and conserved motif distributions. ACS genes displayed diverse tissue-specific expression patterns among four melon and three watermelon sex types. Furthermore, a comparative expression analysis in the shoot apex identified orthologous pairs with potential functions in sex determination, e.g., ACS1s and ACS6s. All ACS orthologs in melon and watermelon exhibited similar expression patterns in monoecious and gynoecious genotypes, except for ACS11s and ACS12s. As expected, the majority of ACS genes were responsive to exogenous ethephon; however, some orthologs exhibited opposite expression patterns, such as ACS1s, ACS9s, and ACS10s. Collectively, our findings provide valuable ACS candidates related to flower development in various sex types of melon and watermelon.


Assuntos
Cucurbitaceae/genética , Etilenos/metabolismo , Liases/metabolismo , Diferenciação Sexual/genética , Citrullus/genética , Citrullus/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucurbitaceae/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genótipo , Liases/genética , Filogenia , Proteínas de Plantas/genética , Diferenciação Sexual/fisiologia
5.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445123

RESUMO

Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.


Assuntos
Aterosclerose/genética , Sistemas CRISPR-Cas/genética , Animais , DNA/genética , Epigênese Genética/genética , Edição de Genes/métodos , Expressão Gênica/genética , Genoma/genética , Humanos , RNA/genética , RNA Guia/genética
6.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372567

RESUMO

Glioblastoma is the most malignant and most common form of brain tumor, still today associated with a poor 14-months median survival from diagnosis. Protein kinase A, particularly its regulatory subunit R2Alpha, presents a typical intracellular distribution in glioblastoma cells compared to the healthy brain parenchyma and this peculiarity might be exploited in a therapeutic setting. In the present study, a third-generation lentiviral system for delivery of shRNA targeting the regulatory subunit R2Alpha of protein kinase A was developed. Generated lentiviral vectors are able to induce an efficient and stable downregulation of R2Alpha in different cellular models, including non-stem and stem-like glioblastoma cells. In addition, our data suggest a potential correlation between silencing of the regulatory subunit of protein kinase A and reduced viability of tumor cells, apparently due to a reduction in replication rate. Thus, our findings support the role of protein kinase A as a promising target for novel anti-glioma therapies.


Assuntos
Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Glioblastoma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/fisiopatologia , Glioma/genética , Glioma/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução Genética/métodos
7.
Nutrients ; 13(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371826

RESUMO

BACKGROUND: Sarcopenia is a major health problem in older adults. Exercise and nutrient supplementation have been shown to be effective interventions but there are limited studies to investigate their effects on the management of sarcopenia and its possible underlying mechanisms. Here, we studied T cell gene expression responses to interventions in sarcopenia. METHODS: The results of this study were part of a completed trial examining the effectiveness of a 12-week intervention with exercise and nutrition supplementation in community-dwelling Chinese older adults with sarcopenia, based on the available blood samples at baseline and 12 weeks from 46 randomized participants from three study groups, namely: exercise program alone (n = 11), combined-exercise program and nutrition supplement (n = 23), and waitlist control group (n = 12). T cell gene expression was evaluated, with emphasis on inflammation-related genes. Real-time PCR (RT-PCR) was performed on CD3 T cells in 38 selected genes. Correlation analysis was performed to relate the results of gene expression analysis with lower limb muscle strength performance, measured using leg extension tests. RESULTS: Our results showed a significant improvement in leg extension for both the exercise program alone and the combined groups (p < 0.001). Nine genes showed significant pre- and post-difference in gene expression over 12 weeks of intervention in the combined group. Seven genes (RASGRP1, BIN1, LEF1, ANXA6, IL-7R, LRRN3, and PRKCQ) showed an interaction effect between intervention and gene expression levels on leg extension in the confirmatory analysis, with confounder variables controlled and FDR correction. CONCLUSIONS: Our findings showed that T cell-specific inflammatory gene expression was changed significantly after 12 weeks of intervention with combined exercise and HMB supplementation in sarcopenia, and that this was associated with lower limb muscle strength performance.


Assuntos
Suplementos Nutricionais , Exercício Físico/fisiologia , Expressão Gênica/genética , Sarcopenia/terapia , Linfócitos T/metabolismo , Valeratos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Análise Fatorial , Feminino , Humanos , Vida Independente , Extremidade Inferior/fisiopatologia , Masculino , Força Muscular/genética , Músculo Esquelético/fisiopatologia , Treinamento de Força/métodos , Sarcopenia/genética , Resultado do Tratamento
8.
Theranostics ; 11(16): 7640-7657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335955

RESUMO

Background: Since primary prostate cancer (PCa) can advance to the life-threatening metastatic PCa, exploring the molecular mechanisms underlying PCa metastasis is crucial for developing the novel targeted preventive strategies for decreasing the mortality of PCa. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism for gene expression and its specific roles in PCa progression remains elusive. Methods: Western blotting, quantitative real-time PCR and immunohistochemical analyses were used to detect target gene expression in PCa cells in vitro and prostate tissues from patients. RNA immunoprecipitation was conducted to analyze the specific binding of mRNA to the target protein. Migration and invasion assays were used to assess the migratory capacities of cancer cells. The correlation between target gene expression and survival rate of PCa patients was analyzed based the TCGA database. Results: We found that total RNA N6-methyladenosine (m6A) modification levels were markedly upregulated in human PCa tissues due to increased expression of methyltransferase like 3 (METTL3). Further studies revealed that the migratory and invasive capacities of PCa cells were markedly suppressed upon METTL3 knockdown. Mechanistically, METTL3 mediates m6A modification of USP4 mRNA at A2696, and m6A reader protein YTHDF2 binds to and induces degradation of USP4 mRNA by recruiting RNA-binding protein HNRNPD to the mRNA. Decrease of USP4 fails to remove the ubiquitin group from ELAVL1 protein, resulting in a reduction of ELAVL1 protein. Lastly, downregulation of ELAVL1 in turn increases ARHGDIA expression, promoting migration and invasion of PCa cells. Conclusions: Our findings highlight the role of METTL3 in modulating invasion and metastasis of PCa cells, providing insight into promising therapeutic strategies for hindering PCa progressing to deadly metastases.


Assuntos
Metiltransferases/genética , Neoplasias da Próstata/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Humanos , Masculino , Metiltransferases/metabolismo , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteases Específicas de Ubiquitina/genética
9.
Theranostics ; 11(16): 7779-7796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335964

RESUMO

Rationale: The progression of prostate cancer (PCa) to castration-resistant PCa (CRPC) despite continuous androgen deprivation therapy is a major clinical challenge. Over 90% of patients with CRPC exhibit sustained androgen receptor (AR) signaling. KDM4B that removes the repressive mark H3K9me3/2 is a transcriptional activator of AR and has been implicated in the development of CRPC. However, the mechanisms of KDM4B involvement in CRPC remain largely unknown. Here, we sought to demonstrate the molecular pathway mediated by KDM4B in CRPC and to provide proof-of-concept evidence that KDM4B is a potential CRPC target. Methods: CRPC cells (C4-2B or CWR22Rv1) depleted with KDM4B followed by cell proliferation (in vitro and xenograft), microarray, qRT-PCR, Seahorse Flux, and metabolomic analyses were employed to identify the expression and metabolic profiles mediated by KDM4B. Immunoprecipitation was used to determine the KDM4B-c-Myc interaction region. Reporter activity assay and ChIP analysis were used to characterize the KDM4B-c-Myc complex-mediated mechanistic actions. The clinical relevance between KDM4B and c-Myc was determined using UCSC Xena analysis and immunohistochemistry. Results: We showed that KDM4B knockdown impaired CRPC proliferation, switched Warburg to OXPHOS metabolism, and suppressed gene expressions including those targeted by c-Myc. We further demonstrated that KDM4B physically interacted with c-Myc and they were co-recruited to the c-Myc-binding sequence on the promoters of metabolic genes (LDHA, ENO1, and PFK). Importantly, KDM4B and c-Myc synergistically promoted the transactivation of the LDHA promoter in a demethylase-dependent manner. We also provided evidence that KDM4B and c-Myc are co-expressed in PCa tissue and that high expression of both is associated with worse clinical outcome. Conclusions: KDM4B partners with c-Myc and serves as a coactivator of c-Myc to directly enhance c-Myc-mediated metabolism, hence promoting CRPC progression. Targeting KDM4B is thus an alternative therapeutic strategy for advanced prostate cancers driven by c-Myc and AR.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antagonistas de Androgênios , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Histona Desmetilases com o Domínio Jumonji/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
10.
Theranostics ; 11(16): 8112-8128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335983

RESUMO

The coiled-coil domain containing protein members have been well documented for their roles in many diseases including cancers. However, the function of the coiled-coil domain containing 65 (CCDC65) remains unknown in tumorigenesis including gastric cancer. Methods: CCDC65 expression and its correlation with clinical features and prognosis of gastric cancer were analyzed in tissue. The biological role and molecular basis of CCDC65 were performed via in vitro and in vivo assays and a various of experimental methods including co-immunoprecipitation (Co-IP), GST-pull down and ubiquitination analysis et al. Finally, whether metformin affects the pathogenesis of gastric cancer by regulating CCDC65 and its-mediated signaling was investigated. Results: Here, we found that downregulated CCDC65 level was showed as an unfavourable factor in gastric cancer patients. Subsequently, CCDC65 or its domain (a.a. 130-484) was identified as a significant suppressor in GC growth and metastasis in vitro and in vivo. Molecular basis showed that CCDC65 bound to ENO1, an oncogenic factor has been widely reported to promote the tumor pathogenesis, by its domain (a.a. 130-484) and further promoted ubiquitylation and degradation of ENO1 by recruiting E3 ubiquitin ligase FBXW7. The downregulated ENO1 decreased the binding with AKT1 and further inactivated AKT1, which led to the loss of cell proliferation and EMT signal. Finally, we observed that metformin, a new anti-cancer drug, can significantly induce CCDC65 to suppress ENO1-AKT1 complex-mediated cell proliferation and EMT signals and finally suppresses the malignant phenotypes of gastric cancer cells. Conclusion: These results firstly highlight a critical role of CCDC65 in suppressing ENO1-AKT1 pathway to reduce the progression of gastric cancer and reveals a new molecular mechanism for metformin in suppressing gastric cancer. Our present study provides a new insight into the mechanism and therapy for gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Glicoproteínas/genética , Humanos , Masculino , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oncogenes , Prognóstico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Medicine (Baltimore) ; 100(31): e26775, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34397824

RESUMO

ABSTRACT: Rhabdomyosarcoma is the most common soft tissue sarcoma in children, and embryonal rhabdomyosarcoma is the most typical type of rhabdomyosarcoma. The heterogeneity, etiology, and origin of embryonal rhabdomyosarcoma remain unknown.After obtaining the gene expression data of every cell in the tumor tissue by single-cell RNA sequencing, we used the Seurat package in R studio for quality control, analysis, and exploration of the data. All cells are divided into tumor cells and non-tumor cells, and we chose tumor cells by marker genes. Then, we repeated the process to cluster the tumor cells and divided the subgroups by their differentially expressed genes and gene ontology/Kyoto Encyclopedia of Genes and Genomes analysis. Additionally, Monocle 2 was used for pseudo-time analysis to obtain the evolution trajectory of cells in tumor tissues.Tumor cells were divided into 5 subgroups according to their functions, which were characterized by high proliferation, sensing and adaptation to oxygen availability, enhanced epigenetic modification, enhanced nucleoside phosphonic acid metabolism, and ossification. Evolution trajectory of cells in tumor tissues is obtained.We used pseudo-time analysis to distinguish between mesenchymal stem cells and fibroblasts, proved that embryonal rhabdomyosarcoma in the pelvic originated from skeletal muscle progenitor cells, showed the evolutionary trajectory of embryonal rhabdomyosarcoma, and improved the method of evaluating the degree of malignancy of embryonal rhabdomyosarcoma.


Assuntos
Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/patologia , Análise de Célula Única/métodos , Expressão Gênica/genética , Humanos , Pelve/anormalidades , Pelve/diagnóstico por imagem , Análise de Célula Única/estatística & dados numéricos
12.
Medicine (Baltimore) ; 100(33): e26981, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414975

RESUMO

ABSTRACT: Hirschsprung disease (HD) is a common form of digestive tract malformation in children. However, the pathogenesis of HD is not very clear. This study aimed to investigate the expression of slit guidance ligand 2 (Slit2) and roundabout 1 (Robo1) in patients with HD.From January 2018 to January 2019, 30 colon specimens from children with HD undergoing surgical resection at the Department of Surgery in Qilu Children's Hospital of Shandong University were obtained. These specimens were divided into the normal segment group, the transitional segment group and the spastic segment group. Immunohistochemical staining, Western blotting, and real-time polymerase chain reaction were used to measure the expression of Slit2 and Robo1 in the intestinal walls of normal, transitional, and spastic segments.Immunohistochemical staining and Western blot analyses showed high levels of the Slit2 and Robo1 proteins in normal ganglion cells in children with HD, lower levels in transitional ganglion cells, and no expression in spastic segments, with significant differences between groups (P < .05). Similarly, the real-time polymerase chain reaction results were consistent with the Western blot analysis results.The expression of Slit2 and Robo1 decreases significantly in the spastic segment of the intestinal tract in patients with HD.


Assuntos
Orientação de Axônios/genética , Doença de Hirschsprung/genética , Peptídeos e Proteínas de Sinalização Intercelular/análise , Proteínas do Tecido Nervoso/análise , Receptores Imunológicos/análise , Orientação de Axônios/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Doença de Hirschsprung/patologia , Humanos
13.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299244

RESUMO

OBJECTIVES: This study employed genetic and functional analyses using OASIS meta-analysis of multiple existing GWAS and gene-expression datasets to identify novel SLE genes. METHODS: Four hundred and ten genes were mapped using SNIPPER to 30 SLE GWAS loci and investigated for expression in three SLE GEO-datasets and the Cordoba GSE50395-dataset. Blood eQTL for significant SNPs in SLE loci and STRING for functional pathways of differentially expressed genes were used. Confirmatory qPCR on SLE monocytes was performed. The entire 12p11 locus was investigated for genetic association using two additional GWAS. Expression of 150 genes at this locus was assessed. Based on this significance, qPCRs for DNM1L and KRAS were performed. RESULTS: Fifty genes were differentially expressed in at least two SLE GEO-datasets, with all probes directionally aligned. DDX11, an RNA helicase involved in genome stability, was downregulated in both GEO and Cordoba datasets. The most significant SNP, rs3741869 in OASIS locus 12p11.21, containing DDX11, was a cis-eQTL regulating DDX11 expression. DDX11 was found repressed. The entire 12p11 locus showed three association peaks. Gene expression in GEO datasets identified DNM1L and KRAS, besides DDX11. Confirmatory qPCR validated DNM1L as an SLE susceptibility gene. DDX11, DNM1L and KRAS interact with each other and multiple known SLE genes including STAT1/STAT4 and major components of IFN-dependent gene expression, and are responsible for signal transduction of cytokines, hormones, and growth-factors, deregulation of which is involved in SLE-development. CONCLUSION: A genomic convergence approach with OASIS analysis of multiple GWAS and expression datasets identified DDX11 and DNM1L as novel SLE-genes, the expression of which is altered in monocytes from SLE patients. This study lays the foundation for understanding the pathogenic involvement of DDX11 and DNM1L in SLE by identifying them using a systems-biology approach, while the 12p11 locus harboring these genes was previously missed by four independent GWAS.


Assuntos
RNA Helicases DEAD-box/genética , DNA Helicases/genética , Dinaminas/genética , Lúpus Eritematoso Sistêmico/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 12 , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Bases de Dados Genéticas , Suscetibilidade a Doenças/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transdução de Sinais/genética , Transcriptoma/genética
14.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299246

RESUMO

Cholangiocarcinoma (CCA), an aggressive malignancy, is typically diagnosed at an advanced stage. It is associated with dismal 5-year postoperative survival rates, generating an urgent need for prognostic and diagnostic biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are associated with cancer regulation, including modulation of cell cycle progression, apoptosis, metastasis, angiogenesis, autophagy, therapy resistance, and epithelial-mesenchymal transition. Several miRNAs have been found to be dysregulated in CCA and are associated with CCA-related risk factors. Accumulating studies have indicated that the expression of altered miRNAs could act as oncogenic or suppressor miRNAs in the development and progression of CCA and contribute to clinical diagnosis and prognosis prediction as potential biomarkers. Furthermore, miRNAs and their target genes also contribute to targeted therapy development and aid in the determination of drug resistance mechanisms. This review aims to summarize the roles of miRNAs in the pathogenesis of CCA, their potential use as biomarkers of diagnosis and prognosis, and their utilization as novel therapeutic targets in CCA.


Assuntos
Colangiocarcinoma/genética , MicroRNAs/genética , Apoptose/genética , Autofagia/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/fisiologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Prognóstico , Transcriptoma/genética
15.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299260

RESUMO

The CD73 pathway is an important anti-inflammatory mechanism in various disease settings. Observations in mouse models suggested that CD73 might have a protective role in kidney damage; however, no direct evidence of its role in human kidney disease has been described to date. Here, we hypothesized that podocyte injury in human kidney diseases alters CD73 expression that may facilitate the diagnosis of podocytopathies. We assessed the expression of CD73 and one of its functionally important targets, the C-C chemokine receptor type 2 (CCR2), in podocytes from kidney biopsies of 39 patients with podocytopathy (including focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulonephritis (MGN) and amyloidosis) and a control group. Podocyte CD73 expression in each of the disease groups was significantly increased in comparison to controls (p < 0.001-p < 0.0001). Moreover, there was a marked negative correlation between CD73 and CCR2 expression, as confirmed by immunohistochemistry and immunofluorescence (Pearson r = -0.5068, p = 0.0031; Pearson r = -0.4705, p = 0.0313, respectively), thus suggesting a protective role of CD73 in kidney injury. Finally, we identify CD73 as a novel potential diagnostic marker of human podocytopathies, particularly of MCD that has been notorious for the lack of pathological features recognizable by light microscopy and immunohistochemistry.


Assuntos
5'-Nucleotidase/genética , Nefropatias/metabolismo , Podócitos/metabolismo , 5'-Nucleotidase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Podócitos/fisiologia , Proteinúria , Receptores CCR2/genética , Receptores CCR2/metabolismo
16.
Cell Mol Life Sci ; 78(16): 6003-6015, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34236444

RESUMO

Invariant natural killer T cells (iNKT) are a prevalent population of innate-like T cells in mice, but quite rare in humans that are critical for regulation of the innate and adaptive immune responses during antimicrobial immunity, tumor rejection, and inflammatory diseases. Multiple transcription factors and signaling molecules that contribute to iNKT cell selection and functional differentiation have been identified. However, the full molecular network responsible for regulating and maintaining iNKT populations remains unclear. MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that regulate gene expression post-transcriptionally. Previous reports uncovered the important roles of miRNAs in iNKT cell development and function using Dicer mutant mice. In this review, we discuss the emerging roles of individual miRNAs in iNKT cells reported by our group and other groups, including miR-150, miR-155, miR-181, let-7, miR-17 ~ 92 cluster, and miR-183-96-182 cluster. It is likely that iNKT cell development, differentiation, homeostasis, and functions are orchestrated through a multilayered network comprising interactions among master transcription factors, signaling molecules, and dynamically expressed miRNAs. We provide a comprehensive view of the molecular mechanisms underlying iNKT cell differentiation and function controlled by dynamically expressed miRNAs.


Assuntos
MicroRNAs/genética , Células T Matadoras Naturais/fisiologia , Animais , Diferenciação Celular/genética , Expressão Gênica/genética , Humanos , Transdução de Sinais/genética
17.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281158

RESUMO

Thymic stromal lymphopoietin (TSLP) is a well-known cytokine for T helper 2 inflammatory responses. A nerve injury activates the neuroinflammation cascade and neuron-glia interaction in dorsal root ganglions (DRG)s, leading to neuropathic pain. Therefore, this study was to investigate the role of TSLP after nerve injury. Male Sprague-Dawley rats were divided as an experimental group with chronic constriction injury (CCI) to the sciatic nerve and a control group. The mechanical pain threshold response was determined by calibration forceps. After assessment of mechanical allodynia, the ipsilateral spinal cord, DRG, sciatic nerve and skin were harvested. Immunofluorescence staining was performed to identify cell types with various markers. Western blot analyses were performed to evaluate protein expressions. Mechanical allodynia developed after CCI and persisted for the next 14 days. Astrocyte reactions occurred and continued until day 14, too. After CCI, DRG and the sciatic nerve also had significantly increased expressions of TSLP/TSLP-R/STAT5. The TSLPR was localized to sensory neuronal endings innervating the skin. This study is the first to demonstrate that the TSLP complex and the STAT5 pathway in nerve are potential therapeutic targets because of their roles in pain regulation after nerve injury.


Assuntos
Lesões por Esmagamento/metabolismo , Citocinas/metabolismo , Neurônios/metabolismo , Animais , Constrição Patológica/metabolismo , Lesões por Esmagamento/genética , Citocinas/genética , Gânglios Espinais/metabolismo , Expressão Gênica/genética , Hiperalgesia/metabolismo , Masculino , Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Neuroglia/metabolismo , Limiar da Dor , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/metabolismo
18.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299294

RESUMO

Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Nitrogênio/deficiência , Oryza/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Proteômica/métodos , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
19.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299295

RESUMO

Nearly three decades ago, the Wilms' tumor suppressor Wt1 was identified as a crucial regulator of heart development. Wt1 is a zinc finger transcription factor with multiple biological functions, implicated in the development of several organ systems, among them cardiovascular structures. This review summarizes the results from many research groups which allowed to establish a relevant function for Wt1 in cardiac development and disease. During development, Wt1 is involved in fundamental processes as the formation of the epicardium, epicardial epithelial-mesenchymal transition, coronary vessel development, valve formation, organization of the cardiac autonomous nervous system, and formation of the cardiac ventricles. Wt1 is further implicated in cardiac disease and repair in adult life. We summarize here the current knowledge about expression and function of Wt1 in heart development and disease and point out controversies to further stimulate additional research in the areas of cardiac development and pathophysiology. As re-activation of developmental programs is considered as paradigm for regeneration in response to injury, understanding of these processes and the molecules involved therein is essential for the development of therapeutic strategies, which we discuss on the example of WT1.


Assuntos
Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Proteínas WT1/metabolismo , Animais , Transição Epitelial-Mesenquimal/fisiologia , Expressão Gênica/genética , Coração/embriologia , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Pericárdio/embriologia , Pericárdio/patologia , Fatores de Transcrição/metabolismo , Proteínas WT1/genética , Proteínas WT1/fisiologia
20.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299325

RESUMO

Extramammary Paget's disease (EMPD) is a rare skin cancer arising in the apocrine gland-rich areas. Most EMPD tumors are dormant, but metastatic lesions are associated with poor outcomes owing to the lack of effective systemic therapies. Trophoblast cell surface antigen 2 (Trop2), a surface glycoprotein, has drawn attention as a potential therapeutic target for solid tumors. Sacituzumab govitecan, an antibody-drug conjugate of Trop2, has recently entered clinical use for the treatment of various solid cancers. However, little is known about the role of Trop2 in EMPD. In this study, we immunohistochemically examined Trop2 expression in 116 EMPD tissue samples and 10 normal skin tissues. In normal skin, Trop2 was expressed in the epidermal keratinocytes, inner root sheaths, and infundibulum/isthmus epithelium of hair follicles, eccrine/apocrine glands, and sebaceous glands. Most EMPD tissues exhibited homogeneous and strong Trop2 expression, and high Trop2 expression was significantly associated with worse disease-free survival (p = 0.0343). These results suggest the potential use of Trop2-targeted therapy for EMPD and improve our understanding of the skin-related adverse effects of current Trop2-targeted therapies such as sacituzumab govitecan.


Assuntos
Antígenos de Neoplasias/biossíntese , Moléculas de Adesão Celular/biossíntese , Doença de Paget Extramamária/metabolismo , Neoplasias Cutâneas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Glândulas Apócrinas/metabolismo , Biomarcadores Tumorais , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Folículo Piloso/metabolismo , Humanos , Imunoconjugados/farmacologia , Queratinócitos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Doença de Paget Extramamária/tratamento farmacológico , Doença de Paget Extramamária/genética , Doença de Paget Extramamária/patologia , Glândulas Sebáceas/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...