Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.634
Filtrar
1.
J Environ Sci (China) ; 85: 119-128, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471018

RESUMO

A novel struvite crystallization method induced by bioelectrochemical acidolysis of magnesia (MgO) was investigated to recover phosphorus (P) from aqueous solution using a dual-chamber microbial electrolysis cell (DMEC). Magnesium ion (Mg2+) in the anolyte was firstly confirmed to automatically migrate from the anode chamber to the cathode chamber, and then react with ammonium (NH4+) and phosphate (PO43-) in the catholyte to form struvite. Recovery efficiency of 17.8%-60.2% was obtained with the various N/P ratios in the catholyte. When MgO (low solubility under alkali conditions) was added into the anolyte, the bioelectrochemical acidolysis of MgO naturally took place and the released Mg2+ induced struvite crystallization in the cathode chamber for P recovery likewise. Besides, there was a strong linear positive correlation between the recovery efficiency and the MgO dosage (R2 = 0.935), applied voltage (R2 = 0.969) and N/P ratio (R2 = 0.905). Increasing the applied voltage was found to enhance the P recovery via promoting the MgO acidolysis and the released Mg2+ migration, while increasing the N/P ratio in the catholyte enhanced the P recovery via promoting the struvite crystallization. Moreover, the electrochemical performance of the system was promoted due to more stable anolyte pH and lower pH gradient between the two chambers. Current density was promoted by 10%, while the COD removal efficiency was improved from 78.2% to 91.8% in the anode chamber.


Assuntos
Modelos Químicos , Fósforo/química , Estruvita/química , Óxido de Magnésio , Água
2.
Water Sci Technol ; 80(1): 191-202, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31461436

RESUMO

This study investigated the influence of the unique internal recirculation characteristics of an oxidation ditch (OD) system, namely, the internal recirculation frequency (IRF) on denitrifying phosphorus removal (DNPR). The ratios of denitrifying polyphosphate-accumulating organisms (DPAOs) to polyphosphate-accumulating organisms (PAOs) under different IRF conditions were measured using a batch experiment. On this basis, the variation of nutrient transformations was studied using the IRF changes by the mass balance method. The results showed that, for the OD system that had an anaerobic zone upstream from the circular corridor and set anoxic and aerobic zones along the circular corridor, when the IRF was between 3.4 h-1 and 7.5 h-1, the DPAOs/PAOs ratio reached about 50%. Approximately 20% of the total phosphorus (TP) was removed and over 11% of the total nitrogen (TN) was transformed into nitrogen gas by the DNPR process, and meanwhile the total removal efficiencies of the TP and TN were over 93% and 80%. When the IRF was greater than 11.5 h-1, the TN removal efficiency decreased significantly, and this was not conducive to simultaneous nitrogen and phosphorus removal. The results indicated that the OD process would possess a better DNPR potential if the IRF were controlled within the proper scope.


Assuntos
Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/química , Reatores Biológicos , Nitrogênio , Oxirredução
3.
Top Curr Chem (Cham) ; 377(4): 20, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273478

RESUMO

Form a green and sustainable chemistry point of view, cross-dehydrogenative coupling (or oxidative cross-coupling) reactions have been recognized as environmentally sustainable and atom economical synthetic routes for the construction of new carbon-carbon and carbon-heteroatom bonds, since no pre-functionalization of starting materials is required. In the past few years, the direct coupling of sp-hybridized C-H bonds with heteroatom-H bonds has received much attention because of the importance of heteroatom-substituted alkynes in organic and medicinal chemistry. This review examines the recent developments in cross-dehydrogenative coupling reactions between C(sp)-H and X-H (X = N, P, S, Si, Sn) bonds, with a particular focus on the mechanistic aspects of the reactions.


Assuntos
Alquinos/química , Carbono/química , Hidrogênio/química , Hidrogenação , Nitrogênio/química , Fósforo/química , Silício/química , Enxofre/química , Estanho/química
4.
Chem Biodivers ; 16(8): e1900205, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31294527

RESUMO

The importance of phenolic compounds for responding to various environmental conditions has been widely emphasized. However, the role of interactions between polyphenols and ecological factors, especially C, N, and P stoichiometry was little studied. Here, 15 sites across five provinces of Pinus bungeana in temperate regions of China were studied. The results showed that the higher values of total phenolic contents (TPC) of leaf and litter were distributed among the north distribution area of P. bungeana, lower values were in the south, whereas soil TPC were contrary to leaf and litter TPC. The stepwise regression, path analysis and decision index of path analysis for leaf TPC and ecological factors showed that altitude had the most direct impact on leaf TPC. Moreover, the principal determinants of leaf, litter and soil TPC were soil C/P ratios, longitude, and soil N/P ratios, respectively. In addition, the leaf, litter and soil TPC of P. bungeana were limited by soil C/N ratios, mean annual temperature, and soil P, respectively. Overall, our study provided evidence that ecological factors affected strongly the leaf, litter and soil TPC of P. bungeana.


Assuntos
Pinus/química , Polifenóis/química , Solo/química , Carbono/química , China , Colorimetria , Ecossistema , Nitrogênio/química , Fósforo/química , Pinus/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Polifenóis/análise , Temperatura Ambiente
5.
Water Sci Technol ; 79(11): 2046-2055, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31318342

RESUMO

The purpose of this study was to optimize the coagulation-flocculation effect of a wastewater treatment system using the response surface methodology (RSM) and three-step method to minimize phosphorus concentration in the distillate wastewater. In order to minimize the concentration of total phosphorus (TP), experiments were carried out using 33-factorial designs with three levels and three factors. A Box-Behnken design, which is the standard design of RSM, was used to evaluate the effects and interactions of three major factors (Fe:P (w/w) ratio, coagulation pH and fast mixing speed (FMS)) on the treatment efficiency. A multivariable quadratic model developed for studying the response indicated that the values for optimum conditions for Fe:P (w/w) ratio, coagulation pH and FMS were 2.40, 6.48 and 100 rev min-1, respectively. Under optimal process conditions, the TP concentration in the distillery effluent was reduced from 10 mg L-1 to 0.215 mg L-1, representing a removal efficiency of 97.85%. Based upon the statistical evaluation of results, it is inferred that RSM can be used as an appropriate approach to optimize the coag-flocculation process. Meanwhile, the study has shown that, for the equivalent dose of ferric chloride, the average three-step effect is better than that of the one-time addition.


Assuntos
Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Cloretos/química , Compostos Férricos/química , Floculação , Fósforo/química
6.
Sci Total Environ ; 690: 321-328, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299567

RESUMO

Cadmium (Cd)-contaminated paddy soil has become a global agricultural safety issue. The application of foliage dressing with mineral elements to alleviate Cd toxicity in rice might offer a cost-effective and practical strategy for safe food production. In this study, a pot experiment was conducted to optimize foliar composition and dosage. Field experiments in two consecutive rice seasons were performed to investigate the effectiveness and mechanisms of foliage dressing. Foliar spray of S, P, and a mixture of both were effective to reduce the Cd concentration in rice grain. The maximum decrease by leaf-grain translocation was achieved at 84%, and the maximum decrease of bio-concentration was 69% in the stem. The reduction of Cd concentration in rice decreased the direct damage to the photosynthetic system, and then increased the rice growth. Foliage dressing relieved the oxidative stress of Cd to rice by decreasing the MDA content, and increasing antioxidant enzyme activities. Foliar spray with S likely reduced Cd accumulation in rice by minimizing the production of reactive oxygen species, improving the activities of enzymatic and non-enzymatic antioxidant defense systems, and manipulating glutathione synthesis. The detoxification of foliar spray with P was originated from the decrease of Cd translocation and maintaining photosynthetic machinery. These results indicated that foliage dressing with S and P has great potential for the remediation of vast agricultural fields.


Assuntos
Cádmio/química , Oryza/química , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Fósforo/química , Solo , Poluentes do Solo , Enxofre/química
7.
Environ Sci Pollut Res Int ; 26(22): 23082-23094, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187376

RESUMO

Layered combined bio-ceramic, zeolite, and anthracite were used as substrates in vertical-flow constructed wetlands (VFCWs) for enhancing contaminant removal from synthetic municipal wastewater. Plant growth and propagation and the removal of organic matter, nitrogen, and phosphorus as well as its spatiotemporal variation were evaluated systematically. The results demonstrated that three different substrates were adequate for the establishment of Canna indica L., especially for zeolite. All small-scale VFCW units were simultaneous efficient in removing CODCr (73.9-78.7%), NH4+-N (83.8-89.9%), TN (88.3-91.5%), SRP (93.8-98.6%), and TP (87.1-90.9%) with a little significant difference on treatment performance. Different pollution removal processes followed a different trend because of their different removal mechanisms driven by the synergy of substrate, plant, and microorganism. Purification space moved down due to the adsorption capacity consumption of upper layer substrate over time. It was concluded that VFCWs filled with layered combined bio-ceramic, zeolite, and anthracite had great potential for treating municipal wastewater.


Assuntos
Nitrogênio/análise , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Zeolitas/química , Carvão Mineral , Nitrogênio/química , Fósforo/química , Desenvolvimento Vegetal , Áreas Alagadas , Zingiberales
8.
Chemosphere ; 233: 207-215, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31173958

RESUMO

Rain garden is a typical facility with many applications in urban low impact development (LID). It plays an important role in regulating runoff water quantity and quality. Two rain gardens with the discharge ratios of 20:1 and 15:1 were used as studied facilities. Seven soil sampling events were conducted from April 2017 to February 2019 to study the influences of stormwater concentration infiltration in rain gardens on soil nitrogen (N), phosphorus (P) and TOC and their relations with enzymes. The results showed that the contents of soil TN and NO2-N + TON in gardens gradually decreased with time, while those of NH3-N and TP increased with time. The content of NO3-N varied greatly with time, and there was no obvious rule. TOC increased first and then decreased. Vertical distributions of N, P and TOC showed that the contents of NH3-N, NO2-N + TON and TN at 0-50 cm were high, so the upper soil was the sensitive area to the influence of stormwater concentration infiltration in rain gardens. The content of NH3-N decreased gradually with the increase of soil depth, but those of NO3-N and TP increased with the soil depth. Therefore, NO3-N and TP migrated down with water infiltration in soil, and preventing NO3-N and P leaching was critical for effective N and P removal though rain gardens. Soil urease (SU), sucrose (SS), protease (SP) and acid phosphatase (SAP) had a good linear relationship with N, P and TOC, and R2were all greater than 0.5.


Assuntos
Carbono/química , Enzimas/metabolismo , Nitrogênio/análise , Fósforo/análise , Solo/química , Carbono/análise , China , Monitoramento Ambiental , Enzimas/química , Jardins , Nitrogênio/química , Fósforo/química , Chuva
9.
Nat Commun ; 10(1): 2829, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249296

RESUMO

Extracellular vesicles (EVs) are involved in the regulation of cell physiological activity and the reconstruction of extracellular environment. Matrix vesicles (MVs) are a type of EVs released by bone-related functional cells, and they participate in the regulation of cell mineralization. Here, we report bioinspired MVs embedded with black phosphorus (BP) and functionalized with cell-specific aptamer (denoted as Apt-bioinspired MVs) for stimulating biomineralization. The aptamer can direct bioinspired MVs to targeted cells, and the increasing concentration of inorganic phosphate originating from BP can facilitate cell biomineralization. The photothermal effect of the Apt-bioinspired MVs can also promote the biomineralization process by stimulating the upregulated expression of heat shock proteins and alkaline phosphatase. In addition, the Apt-bioinspired MVs display outstanding bone regeneration performance. Our strategy provides a method for designing bionic tools to study the mechanisms of biological processes and advance the development of medical engineering.


Assuntos
Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Biomineralização , Osso e Ossos/química , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Vesículas Extracelulares/química , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/química , Osteoblastos/metabolismo , Fosfatos/metabolismo , Fósforo/química , Ratos
10.
Chemistry ; 25(47): 10995-11006, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31206798

RESUMO

Low-dimensional nanomaterials (LDNs) are receiving increasing attention in cancer therapy owing to their unique properties, especially the large surface area-to-volume ratio. LDNs such as metallic nanoparticles (NPs), hydroxyapatite NPs, graphene derivatives, and black phosphorus (BP) nanosheets have been proposed for drug delivery, photothermal/photodynamic therapies, and multimodal theranostic treatments. The therapeutic effectiveness is mainly based on the physical characteristics of LDNs, but their inherent bioactivity has not been fully capitalized. In this Minireview, recent advances in the anti-cancer effects of various types of LDNs with inherent chemotherapeutic bioactivity are described and the bioactivity mechanisms are discussed on the cellular and molecular levels. BP, one of the newest and exciting members of the LDN family, is highlighted owing to the excellent inherent bioactivity, selectivity, and biocompatibility in cancer therapy. LDNs and related derivatives possess inherent bioactivity and selective chemotherapeutic effects suggesting large potential as nanostructured anti-cancer agents in cancer therapy.


Assuntos
Nanoestruturas/química , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Fosfatos de Cálcio/química , Fosfatos de Cálcio/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanoestruturas/uso terapêutico , Fósforo/química , Fósforo/uso terapêutico
11.
Plant Physiol Biochem ; 141: 306-314, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207491

RESUMO

Prosopis strombulifera (Lam.) Benth. is a halophytic shrub found in highly saline soils in Argentina, with high tolerance against NaCl but strong growth inhibition by Na2SO4. In the present study, the differences in the physiological responses caused by these salts and an iso-osmotic combination thereof on photosynthesis, mineral composition and metabolism were analyzed. Na2SO4 treated plants were the most affected by salinity, showing a significant decrease in several photosynthetic parameters. Proline and cysteine accumulated significantly in the plants in response to salt stress. These results show by the first time that the SO42- anion is triggering damage in the photosynthetic apparatus and consequently affecting the photosynthetic process, which may explain the strong growth inhibition in these plants at high salinity. Moreover, the SO42- anion provoke challenges in the incorporation of nutrients, decreasing the levels of K, Ca, P and Mg, and inducing a strong antioxidant activity in P. strombulifera.


Assuntos
Fotossíntese , Prosopis/metabolismo , Cloreto de Sódio/química , Sulfatos/química , Ânions , Argentina , Cálcio/química , Clorofila/química , Grupo dos Citocromos b/metabolismo , Magnésio/química , Osmose/efeitos dos fármacos , Fósforo/química , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/química , Prosopis/efeitos dos fármacos , Ligação Proteica , Salinidade , Sódio/química
12.
Environ Sci Pollut Res Int ; 26(21): 21404-21415, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31124074

RESUMO

Phosphoric acid production and olive oil production are among the most important economical sectors in Tunisia. However, they generate huge amounts of wastes (phosphogypsum, olive mill waste water, and olive pomace). In a previous study, we used phosphogypsum (PG), in co-composting with organic wastes. Three composts were produced; their PG content was of 0 (AT), 10 (A10), and 30% (A30). In the present study, we focused on their derived compost teas. The physico-chemical characterization of the different compost teas showed that those from A10 and A30 composts presented higher P and Ca contents than that from control one (AT). The microbial characterization using DGGE showed a noticeable microbial diversity in the different compost teas and that the addition of 10% and 30% PG in the compost had different effects on the compost tea microbial diversity. The identification results showed that the addition of 10 and 30% of PG did not affect the presence of PGPR (plant growth-promoting rhizobacteria) and fungal soil antagonists in the compost teas. Two PGPRs were isolated from AT and A30 compost teas, and their effect on the growth of potato plants in vitro was evaluated.


Assuntos
Sulfato de Cálcio/química , Compostagem , Fósforo/química , Microbiologia do Solo , Olea , Azeite de Oliva , Desenvolvimento Vegetal , Solo/química , Solanum tuberosum/crescimento & desenvolvimento , Chá , Tunísia , Águas Residuárias
13.
Huan Jing Ke Xue ; 40(4): 1957-1964, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087942

RESUMO

This research studied the response of the input and allocation of photosynthetic carbon (C) to phosphorus (P) in paddy soils. Two treatments were conducted in this experiment:no P application (P0) and the application of 80 mg·kg-1 of P (P80). The rice cultivar was the indica Zhongzao 39. The 13C-CO2 continuous labeling technique was used to identify the photosynthetic C distribution of the rice. The results showed that the application of P80 significantly increased the photosynthates allocation in the rice aboveground, but reduced their allocation in the rhizosphere soil (P<0.05). At the jointing stage, P80 application increased the photosynthetic C content of the rice by 70%, but the root dry weight decreased 31%. Compared with P0, the total C content of the aboveground rice was increased 0.31 g·pot-1 by P80. The ratio of rice roots to shoots decreased with the P80 treatment. Moreover, P80 application led to an increase in the photosynthetic microbial biomass in the non-rhizosphere soil C (13C-MBC) of 0.03 mg·kg-1, but still decreased its allocation in the rhizosphere soil. The allocation of photosynthetic C to the particulate organic matter fraction (POC) and mineral fraction (MOC) in the non-rhizosphere soil showed no significant differences between P0 and P80. Additionally, the P80 fertilization treatment significantly lowered the content of POC in the rhizosphere soil. In summary, P application increased the allocation of photosynthetic C in the soil-rice system, but reduced the accumulation of photosynthetic C in the soil. This research provided a theoretical basis and data supporting the rational application of P fertilizer, and was also of great significance as a study of the transportation and allocation of photosynthetic C and its sequestration potential response to the application of P to the rice soil.


Assuntos
Carbono/química , Fertilizantes , Oryza/fisiologia , Fósforo/química , Solo/química , Fotossíntese
14.
Chemosphere ; 230: 219-229, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31103868

RESUMO

In the salth-marshes of the Tinto River (Huelva estuary, SW Spain), are stored in stacks around 100 Mt of PG, covering a surface of 1000 ha without any type of isolation, which produce an important impact in the surrounding environment. On the other hand, this ecosystem it is affected by acid mine drainage (AMD) from sulphide mines located upstream the Tinto River. The aim of this study is to evaluate the deep pollution of the underlain salt-marsh sediments due to leachates from the PG stacks. For that purpose, 7 cores were collected from zones 2 and 3 of the stacks, and PG and salt-marsh sediments samples from different depths were analyzed. The physicochemical parameters, mineralogy, granulometry and the concentration of the main elements of interest were determined in the samples. Most analysed salt-marsh sediments are not affected by PG stacks pollution, because sediments act as a "barrier" for the leachates from the PG, concentrating the contaminants in the first decimetres (0.5 m) under PG-sediments contact, and the deep infiltration is very limited. The obtained results suggest that the perimeter channel which is projected to build in the restauration project, should has a depth of 1 m below the level of the PG stacks for assuring the complete collection of leachates from the stacks, and avoid their liberation into the Tinto River estuary.


Assuntos
Sulfato de Cálcio/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Fósforo/química , Rios/química , Poluentes Químicos da Água/análise , Áreas Alagadas , Estuários , Mineração , Espanha
15.
Chemosphere ; 228: 619-628, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31059960

RESUMO

The recovery of phosphorus from sewage sludge was critical due to the depletion of phosphate ore. The present research aims to identify the phosphorus speciation and reveal the phosphorus transformation mechanism of dewatered sewage sludge during hydrothermal conversion (HTC) process, as well as to achieve the high efficiency recovery of phosphorus. Multiple analysis of SMT method, VK diagram, XANES and NMR showed that most phosphorus (>80%) was transferred to the hydrochar and presented as inorganic phosphorus (IP) after the HTC process. A dehydration trend was observed of the HTC process with the increase of sub-critical temperature. Ca-associated phosphorus increased significantly as the temperature increased. The Pyro-P gradually transformed to Ortho-P with the increase of HTC temperature and disappeared at 320 °C. The addition of HCl (6.13 and 12.3 mmol/g) in the HTC process resulted in a high percentage (>80%) of phosphorus transferred to the aqueous phase, and the bioavailability of the residual phosphorus increased significantly. The recovery rate of phosphorus could achieve 98.37% at the pH of 7.52, with the struvite purity of 90.41%. The results of this study provide new insights into the selective transfer of phosphorus in dewatered sludge by HTC process, in addition to some efficient ways for the utilisation of the HTC products.


Assuntos
Fósforo/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Espectroscopia de Ressonância Magnética , Estruvita , Temperatura Ambiente , Espectroscopia por Absorção de Raios X
16.
Environ Sci Pollut Res Int ; 26(19): 19063-19077, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102218

RESUMO

Phosphorus (P) is a significant limiting nutrient which is essential for all forms of lives. However, phosphate rock reserves are depleting rapidly due to population growth. At the same time, several countries have imposed legislative regulations on P-release into surface waters due to eutrophication. Nutrient recovery from wastewater can facilitate a sustainable, cost-effective and environment-friendly source of phosphorus. Although P-recovery as struvite from wastewater has been widely studied for a long time, there still exists a lot of challenges for widespread full-scale implementation. This paper presents a comprehensive analysis of the current state of the technologies for phosphorus recovery in the form of struvite. Fluidized bed reactors (FBRs) are widely used compared to continuously stirred reactors for P-recovery as struvite because of different solid and liquid retention time. Commercially available technologies were reported to accomplish about 80% P-removal efficiencies with a reasonable P-recovery for the most of the cases. The struvite production rate of various technologies varies from 0.89 to 13.7 kg/kg influent P. Nevertheless, these technologies are associated with several shortcomings such as high operational costs, high energy consumption, and large footprint. Increasing efforts focusing on the development of sustainable and commercially feasible technologies are expected in this sector as P-recovery is considered to be the future of wastewater engineering.


Assuntos
Fósforo/química , Estruvita/química , Águas Residuárias/química , Purificação da Água/métodos , Eutrofização , Compostos de Magnésio
17.
Water Sci Technol ; 79(7): 1376-1386, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31123237

RESUMO

Struvite crystallization is an interesting method for the recovery of phosphorus (P) from wastewater. However, the struvite crystals obtained are small, which makes them difficult to separate from wastewater. A continuous reactor for enlarging struvite crystals was developed. Batch-scale experiments were conducted to investigate the optimum factors for the enlargement of struvite crystals. The results of pH experiments showed that P recovery efficiency increased with an increase of pH values (7.6 to 10), while the size of struvite crystals decreased. The results of the Mg:P ratios found that the maximum P recovery efficiency occurred at the maximum ratio of Mg:P. The sizes of struvite crystals were not significantly different. For the variation of temperature values, the results showed that P recovery efficiency and crystal sizes decreased when temperature values increased. Therefore, the optimized conditions for P recovery efficiency and enlargement of struvite crystals for the continuous reactor were pH 8.5 and an Mg:P ratio of 1.2:1 at 30 °C (room temperature). The treated swine wastewater and seawater were continuously fed in at the bottom of the reactor. After 30 days, the size of struvite crystals had increased from 125 µm to 0.83 mm (seven times).


Assuntos
Fósforo/química , Água do Mar/química , Estruvita/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Animais , Reatores Biológicos , Magnésio/química , Fosfatos , Fósforo/análise , Estruvita/análise , Suínos , Águas Residuárias/química , Poluentes Químicos da Água/análise
18.
Chemosphere ; 226: 307-315, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30939369

RESUMO

A novel struvite crystallization method induced by electrochemical acidolysis of cheap magnesite was investigated to recover phosphorus from aqueous solution. Magnesite was confirmed to continuously dissolve in the anolyte whose pH stabilized at about 2. Driven by the electrical field force, over 90% of the released Mg2+ migrated to the cathode chamber via passing through the cation exchange membrane. The pH of the phosphate-containing aqueous solution in the cathode chamber was elevated to the appropriate pH fit for struvite crystallization. The products were identified as struvite crystals by scanning electron microscopy and X-ray diffraction. Increasing the magnesite dosage from 0.83 to 3.33 g L-1 promoted the phosphorus recovery efficiency from 2.2% to 78.3% at 3 d, which was attributed to sufficient Mg2+ supply. Increasing the applied voltage from 3 to 6 V improved the recovery efficiency from 43.6% to 76.4% at 1 d, since the enhanced current density of the electrochemical system markedly accelerated both the magnesite acidolysis and the catholyte pH elevation. The initial catholyte pH between 3 and 5 was found to benefit the phosphorus recovery due to the final catholyte pH fit for the struvite crystallization.


Assuntos
Cristalização , Técnicas Eletroquímicas/métodos , Magnésio/química , Fósforo/isolamento & purificação , Estruvita/química , Ácidos/química , Concentração de Íons de Hidrogênio , Fósforo/química , Água/química , Difração de Raios X
19.
Sci Total Environ ; 672: 30-39, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954821

RESUMO

To increase the sustainable reuse of animal manure as fertiliser, in many cases suitable treatment techniques are needed to modify the composition and obtain a balanced nutrient content. This study was conducted to evaluate the best strategies to remove solids, P, Cu and Zn, using two additives Ca(OH)2 and Al2(SO4)3, in combination with an ammonia stripping process. The assessment was carried out on five type of liquid fractions derived from the mechanical separation of: raw pig slurry, pig digested slurry, pig digested slurry after ammonia stripping, pig and cattle digested slurry, pig and cattle digested slurry after ammonia stripping. After the addition of the chemicals, the liquid fractions were mixed and then separated using a static filter. The contents of total solids P, Cu and Zn were determined. The additives effectively improved separation efficiencies which depended on the type of slurry and additive used. The P separation efficiencies ranged from 72% to 93% using Al2(SO4)3, and from 20 to 74% using Ca(OH)2. The use of Al2(SO4)3 always had a more consistent effect on the removal efficiencies than Ca(OH)2. The ammonia stripping process, reducing the alkalinity of the digested liquid fractions, facilitated a higher concentration of elements in the separated fraction. With the addition of Al2(SO4)3 to digestate after stripping the concentration of P, Cu and Zn in the solid fraction generally increased when compared to the same liquid fraction without stripping. The addition of Ca(OH)2 might be effective in removing P before the stripping process with the additional benefit to raise pH and improve the ammonia removal efficiency. These findings indicate that solid-liquid separation of animal manure slurries, assisted by chemical additives and coupled with ammonia stripping, can be a viable option for improving the sustainable use of animal manure as a fertiliser.


Assuntos
Amônia/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Animais , Cobre/química , Esterco , Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Zinco/química
20.
Sci Total Environ ; 672: 88-96, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954828

RESUMO

Practical recovery of a non-renewable nutrient, such as phosphorus (P), is essential to support modern agriculture in the near future. The high P content of urine, makes it an attractive source for practicing the recovery of this crucial nutrient. This paper presents the experimental results at pilot-plant scale of struvite crystallisation from a source-separated urine stream using two different magnesium sources, namely magnesium chloride and seawater. The latter was chosen as sustainable option to perform P-recovery in coastal areas. Real seawater was used to assess in a more realistic way its efficiency to precipitate P as struvite, since its composition (with noticeable concentration of ions such as Ca2+, SO42-, Na+, …) could lead to the formation of impurities and other precipitates. 0.99 g of struvite was obtained per litre of urine irrespective of the operational conditions tested. In all tested conditions, precipitation efficiencies exceeded 90% and recovery efficiencies were higher than 87%, with an average struvite crystal size higher than 110 µm (and up to 320 µm, depending on the experimental conditions) in the harvested struvite samples. Almost pure struvite was obtained when MgCl2 was used as precipitant, while amorphous calcium phosphate and other impurities appeared in the precipitates using seawater as magnesium source. However, the lower settling velocity of the amorphous precipitates in comparison with the struvite precipitates suggests that their separation at industrial scale could be relatively straightforward.


Assuntos
Conservação dos Recursos Naturais/métodos , Cloreto de Magnésio/química , Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Água do Mar/química , Estruvita/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA