Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.462
Filtrar
1.
Braz. j. biol ; 84: e256916, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355874

RESUMO

Abstract Crotalaria (Fabaceae) occurs abundantly in tropical and subtropical regions and has about 600 known species. These plants are widely used in agriculture, mainly as cover plants and green manures, in addition to their use in the management of phytonematodes. A striking feature of these species is the production of pyrrolizidine alkaloids (PAs), secondary allelochemicals involved in plant defense against herbivores. In Crotalaria species, monocrotaline is the predominant PA, which has many biological activities reported, including cytotoxicity, tumorigenicity, hepatotoxicity and neurotoxicity, with a wide range of ecological interactions. Thus, studies have sought to elucidate the effects of this compound to promote an increase in flora and fauna (mainly insects and nematodes) associated with agroecosystems, favoring the natural biological control. This review summarizes information about the monocrotaline, showing such effects in these environments, both above and below ground, and their potential use in pest management programs.


Resumo Crotalaria (Linnaeus, 1753) (Fabaceae) ocorre abundantemente em regiões tropicais e subtropicais e tem cerca de 600 espécies conhecidas. Estas plantas são amplamente utilizadas na agricultura, principalmente como cobertura e adubos verdes, além da sua utilização no manejo de fitonematoides. Uma característica marcante destas espécies é a produção de alcalóides pirrolizidinicos (APs), aleloquímicos secundários envolvidos na defesa das plantas contra os herbívoros. Nas espécies de Crotalaria, a monocrotalina é a AP predominante, que tem muitas atividades biológicas relatadas, incluindo citotoxicidade, tumorigenicidade, hepatotoxicidade e neurotoxicidade, além de uma vasta gama de interações ecológicas. Assim, estudos têm procurado elucidar os efeitos desse composto para promover um incremento na flora e fauna (principalmente insetos e nematoides) associados aos agroecossistemas, favorecendo o controle biológico natural. Esta revisão compila informações sobre a monocrotalina, mostrando tais efeitos nesses ambientes, tanto acima como abaixo do solo e a sua potencial utilização em programas de manejo de pragas.


Assuntos
Animais , Artrópodes , Alcaloides de Pirrolizidina , Crotalaria , Fabaceae , Monocrotalina/toxicidade
3.
PLoS One ; 18(9): e0283817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37676868

RESUMO

Zika virus (ZIKV) has spread all over the world since its major outbreak in 2015. This infection has been recognized as a major global health issue due to the neurological complications related to ZIKV infection, such as Guillain-Barré Syndrome and Zika virus Congenital Syndrome. Currently, there are no vaccines or specific treatments for ZIKV infection, which makes the development of specific therapies for its treatment very important. Several studies have been developed to analyze the potential of compounds against ZIKV, with the aim of finding new promising treatments. Herein, we evaluate the ability of a copaiba (Copaifera officinalis) oil nanoemulsion (CNE) to inhibit ZIKV. First, the highest non-cytotoxic concentration of 180 µg/mL was chosen since this concentration maintains 80% cell viability up to 96h after treatment with CNE in VERO cells resulted from MTT assay. The intracellular uptake assay was performed, and confirmed the internalization of the nanoemulsion in cells at all times analyzed. VERO cells were infected with ZIKV and simultaneously treated with CNE and the nanoformulation without oil (ENE) at the highest non-toxic concentration. The results evaluated by plaque assay revealed a viral inhibition of 80% for CNE and 70% for ENE. A dose-dependence assay revealed that the CNE treatment demonstrated a dose-dependent response in the viral RNA levels, whereas all ENE tested concentrations exhibited a similar degree of reduction. Taken together, our results suggest CNE as a promising nano-sized platform to be further studied for antiviral treatments.


Assuntos
Fabaceae , Infecção por Zika virus , Zika virus , Chlorocebus aethiops , Animais , Células Vero , Projetos de Pesquisa
4.
PLoS One ; 18(9): e0288316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682881

RESUMO

BACKGROUND: Intraocular lenses are typically calculated based on a pseudophakic eye model, and for toric lenses (tIOL) a good estimate of corneal astigmatism after cataract surgery is required in addition to the equivalent corneal power. The purpose of this study was to investigate the differences between the preoperative IOLMaster (IOLM) and the preoperative and postoperative Casia2 (CASIA) tomographic measurements of corneal power in a cataractous population with tIOL implantation, and to predict total power (TP) from the IOLM and CASIA keratometric measurements. METHODS: The analysis was based on a dataset of 88 eyes of 88 patients from 1 clinical centre before and after tIOL implantation. All IOLM and CASIA keratometric and total corneal power measurements were converted to power vector components, and the differences between preoperative IOLM or CASIA and postoperative CASIA measurements were assessed. Feedforward neural network and multivariate linear regression prediction algorithms were implemented to predict the postoperative total corneal power (as a reference for tIOL calculation) from the preoperative IOLM and CASIA keratometric measurements. RESULTS: On average, the preoperative IOLM keratometric / total corneal power under- / overestimates the postoperative CASIA keratometric / real corneal power by 0.12 dpt / 0.21 dpt. The prediction of postoperative CASIA real power from preoperative IOLM or CASIA keratometry shows that postoperative total corneal power is systematically (0.18 dpt / 0.27 dpt) shifted towards astigmatism against the rule, which is not reflected by keratometry. The correlation of postoperative CASIA real power to the corresponding preoperative CASIA values is better than those as compared to the preoperative IOLM keratometry. However, there is a large variation from preoperative IOLM or CASIA keratometry to the postoperative CASIA real power of up to 1.1 dpt (95% confidence interval). CONCLUSION: One of the challenges of tIOL calculation is the prediction of postoperative total corneal power from preoperative keratometry. Keratometric power restricted to a front surface measurement does not fully reflect the situation of corneal back surface astigmatism, which typically adds some extra against the rule astigmatism.


Assuntos
Astigmatismo , Catarata , Doenças da Córnea , Fabaceae , Lentes Intraoculares , Lentes , Humanos , Astigmatismo/diagnóstico , Astigmatismo/cirurgia , Córnea/cirurgia
5.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1771-1778, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37694460

RESUMO

To understand the interspecific relationships of tree species in the karst forest of Junzi Mountain in Eas-tern Yunnan, we evaluated the niche and interspecific association of dominant tree species based on field survey plot data with the combining approaches of niche determination, χ2 test, association coefficient (AC), and Spearman rank correlation test. The results showed that the niche breadth of Quercus glaucoides was the largest and that of Juglans mandshurica was the smallest. The ranking of niche breadth was more consistent with the ranking of frequency than with that of importance values. The degree of niche overlap was generally low, with a mean value of 0.21, suggesting a low similarity in resource utilization among tree species. The overall association of dominant tree species was significantly positive, and the ratio of positive and negative association was 1.07, indicating that the communities were at a relatively stable and the late succession stage. The χ2 test and Spearman rank correlation test for tree dominant species showed that 65.3% species pairs were not significantly associated with each other, indicating a weak interspecific association. Both association coefficient (AC) and Spearman rank correlation coefficient showed significantly positive correlations with the corresponding niche overlap index. The species pairs of Q. glaucoides-Rhamnella martini, Viburnum propinquum-Zanthoxylum myriacanthum, Cladrastis delavayi-Carrierea calycina, Z. myriacanthum-C. delavayi had strong interspecific associations and wide ecological niches, thus may have potential application value in ecological restoration of karst region in eastern Yunnan and the vicinity areas.


Assuntos
Fabaceae , Árvores , China , Florestas , Ecossistema
6.
Sci Rep ; 13(1): 14446, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660193

RESUMO

Cowpea is one of the widely cultivated and consumed grain legumes in Africa, but its production is hampered by soil fertility degradation on farms. Here, we assessed the spatial nutritional diagnosis of cowpea and the variability of their productivity using the diagnosis and recommendation integrated system (DRIS) and geostatistics tool. We achieved a sampling of 200 geo-referred points in cowpea farms in four communes of Benin. In addition, we determined grain yield and the content of N, P, K, Ca, Mg, and Zn in the leaves. From DRIS, the order of nutrient deficiency was as follows: P > K > Ca > Zn > N > Mg; P > K > Ca > N > Zn > Mg; N > Mg > Zn > K > P > Ca; P > Ca > K > N > Mg > Zn, at Dassa-Zoume, Glazoue, Ketou, and Ouesse, respectively. Sampling points were close enough to detect the spatial variability of the DRIS Index, mean of nutrient balance index (NBIm), and cowpea productivity (spatial dependence index ˃ 50%). The combined analysis of the cowpea relative yield and NBIm maps showed that the NBIm map effectively indicated the spatial distribution of cowpea productivity. The spatial variability of the DRIS index has provided an accurate guide to where adjustments to fertilization rates are needed.


Assuntos
Fabaceae , Vigna , Estado Nutricional , Nutrientes , Benin , Grão Comestível
7.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686117

RESUMO

Sinorhizobium meliloti 1021 bacteria secretes a considerable amount of flavins (FLs) and can form a nitrogen-fixing symbiosis with legumes. This strain is also associated with non-legume plants. However, its role in plant growth promotion (PGP) of non-legumes is not well understood. The present study evaluated the growth and development of lettuce (Lactuca sativa) and kale (Brassica oleracea var. acephala) plants inoculated with S. meliloti 1021 (FL+) and its mutant 1021ΔribBA, with a limited ability to secrete FLs (FL-). The results from this study indicated that inoculation with 1021 significantly (p < 0.05) increased the lengths and surface areas of the roots and hypocotyls of the seedlings compared to 1021ΔribBA. The kale and lettuce seedlings recorded 19% and 14% increases in total root length, respectively, following inoculation with 1021 compared to 1021ΔribBA. A greenhouse study showed that plant growth, photosynthetic rate, and yield were improved by 1021 inoculation. Moreover, chlorophylls a and b, and total carotenoids were more significantly (p < 0.05) increased in kale plants associated with 1021 than non-inoculated plants. In kale, total phenolics and flavonoids were significantly (p < 0.05) increased by 6% and 23%, respectively, and in lettuce, the increments were 102% and 57%, respectively, following 1021 inoculation. Overall, bacterial-derived FLs enhanced kale and lettuce plant growth, physiological indices, and yield. Future investigation will use proteomic approaches combined with plant physiological responses to better understand host-plant responses to bacteria-derived FLs.


Assuntos
Brassicaceae , Fabaceae , Verduras , Flavinas , Proteômica , Alface , Plântula , Bactérias
8.
PLoS Negl Trop Dis ; 17(9): e0011618, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37672536

RESUMO

Antimicrobial Peptides (AMPs) are key constituents of the invertebrate innate immune system and provide critical protection against microbial threat. Nematodes display diverse life strategies where they are exposed to heterogenous, microbe rich, environments highlighting their need for an innate immune system. Within the Ecdysozoa, arthropod AMPs have been well characterised, however nematode-derived AMP knowledge is limited. In this study the distribution and abundance of putative AMP-encoding genes was examined in 134 nematode genomes providing the most comprehensive profile of AMP candidates within phylum Nematoda. Through genome and transcriptome analyses we reveal that phylum Nematoda is a rich source of putative AMP diversity and demonstrate (i) putative AMP group profiles that are influenced by nematode lifestyle where free-living nematodes appear to display enriched putative AMP profiles relative to parasitic species; (ii) major differences in the putative AMP profiles between nematode clades where Clade 9/V and 10/IV species possess expanded putative AMP repertoires; (iii) AMP groups with highly restricted profiles (e.g. Cecropins and Diapausins) and others [e.g. Nemapores and Glycine Rich Secreted Peptides (GRSPs)] which are more widely distributed; (iv) complexity in the distribution and abundance of CSαß subgroup members; and (v) that putative AMPs are expressed in host-facing life stages and biofluids of key nematode parasites. These data indicate that phylum Nematoda displays diversity in putative AMPs and underscores the need for functional characterisation to reveal their role and importance to nematode biology and host-nematode-microbiome interactions.


Assuntos
Anti-Infecciosos , Artrópodes , Fabaceae , Nematoides , Animais , Transporte Biológico
9.
J Hazard Mater ; 460: 132504, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703725

RESUMO

Recently, the environmental and agricultural impact of plastic waste has attracted considerable attention. Here, we investigated the impact of sub-micron polyethylene (PE) and polypropylene (PP) microplastics (MPs) on nitrogen cycling, with emphasis on bacterial abundance and diversity in a soil-soybean (Glycine max) system. Exposure to soil containing MPs (50 and 500 mg kg-1) did not affect soybean growth, but significantly increased plant nitrogen uptake, which was confirmed by increased activities of nitrogenase in the soil and glutamine synthetase in soybean root. Additionally, there was an increase in 16S gene copy number and carbon and nitrogen substrate utilization, indicating increased abundance and activity of rhizosphere microbial communities. Moreover, MP contamination affected the taxonomic profile of rhizosphere bacteria, especially the abundance of symbiotic and free-living bacteria involved in nitrogen cycling. Furthermore, qPCR analysis of nitrogen-related genes and Kyoto Encyclopedia of Genes and Genomes analysis of 16S rRNA gene sequencing data revealed an increased abundance of functional genes associated with nitrogen fixation and nitrification. However, the concentration and polymer type of MPs did not have a significant impact in our system. Overall, these results provide insights into the interactions between MPs and rhizosphere bacterial communities in the soil-legume system.


Assuntos
Fabaceae , Microplásticos , Plásticos , Solo , RNA Ribossômico 16S/genética , Verduras , Soja
10.
Pol J Microbiol ; 72(3): 247-268, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725892

RESUMO

We aimed to compare the clinical efficacy of fecal microbiota transplantation (FMT) from the same sex on ulcerative colitis (UC) patients. A total of 272 UC patients were selected in the prospective clinical study, which incorporated four distinct groups, each comprising male and female patients, who were either receiving FMT or placebo, respectively. FMT was performed by sending the gut microbiota of healthy female or male adolescents to the same gender patients via gastroscope three times (one time/three weeks), and a placebo was used with an equal volume of saline. Abdominal pain, diarrhea, thick bloody stool, intestinal mucosal lesion, and Mayo scores were measured. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were evaluated. The changes of intestinal flora were detected by the 16S rRNA sequencing. FMT reduced the scores of diarrhea, abdominal pain, mucosal lesion, and Mayo, SAS, and SDS in UC patients compared to the placebo group (p < 0.05). Clostridiales and Desulfovibrionaceae were dominant in gut microbiota from male patients and were reduced after FMT. Meanwhile, the abundance of Prevotella, Lactobacillus, and Bifidobacterium was increased in the male group. Female patients had a higher abundance of Escherichia-Shigella, Desulfovibrionaceae, and Staphylococcaceae before FMT, and it was reduced after FMT. Meanwhile, the abundance of Porphyromonadaceae, Prevotella, Lactobacillus, and Bifidobacterium was increased in the female group. There were no significant changes for the species in the corresponding placebo groups. FMT improved the UC symptoms of male and female patients, which may be associated with different gut microbiota changes.


Assuntos
Colite Ulcerativa , Fabaceae , Adolescente , Humanos , Feminino , Masculino , Colite Ulcerativa/terapia , Transplante de Microbiota Fecal , Estudos Prospectivos , RNA Ribossômico 16S , Dor Abdominal , Bifidobacterium , Diarreia , Lactobacillus
11.
BMC Plant Biol ; 23(1): 438, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726682

RESUMO

Intercropping can obtain yield advantages, but the mechanism of yield advantages of maize-legume intercropping is still unclear. Then, we explored the effects of cropping systems and N input on yield advantages in a two-year experiment. Cropping systems included monoculture maize (Zea mays L.) (MM), monoculture soybean (Glycine max L. Merr.) (MS), monoculture peanut (Arachis hypogaea L.) (MP), maize-soybean substitutive relay intercropping (IMS), and maize-peanut substitutive strip intercropping (IMP). N input included without N (N0) and N addition (N1). Results showed that maize's leaf area index was 31.0% and 34.6% higher in IMS and IMP than in MM. The specific leaf weight and chlorophyll a (chl a) of maize were notably higher by 8.0% and 18.8% in IMS, 3.1%, and 18.6% in IMP compared with MM. Finally, N addition resulted in a higher thousand kernels weight of maize in IMS and IMP than that in MM. More dry matter accumulated and partitioned to the grain, maize's averaged partial land equivalent ratio and the net effect were 0.76 and 2.75 t ha-1 in IMS, 0.78 and 2.83 t ha-1 in IMP. The leaf area index and specific leaf weight of intercropped soybean were 16.8% and 26% higher than MS. Although soybean suffers from shade during coexistence, recovered growth strengthens leaf functional traits and increases dry matter accumulation. The averaged partial land equivalent ratio and the net effect of intercropped soybean were 0.76 and 0.47 t ha-1. The leaf area index and specific leaf weight of peanuts in IMP were 69.1% and 14.4% lower than in the MP. The chlorophyll a and chlorophyll b of peanut in MP were 17.0% and 24.4% higher than in IMP. A less dry matter was partitioned to the grain for intercropped peanut. The averaged pLER and NE of intercropped peanuts were 0.26 and -0.55 t ha-1. In conclusion, the strengthened leaf functional traits promote dry matter accumulation, maize-soybean relay intercropping obtained a win-win yield advantage, and maize-peanut strip intercropping achieved a trade-off yield advantage.


Assuntos
Fabaceae , Zea mays , Clorofila A , Verduras , Soja , Arachis , Folhas de Planta , Grão Comestível
12.
Trop Anim Health Prod ; 55(5): 311, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733126

RESUMO

Ruminant production in West Africa faces both qualitative and quantitative feeding constraints during the dry season and animal diseases in smallholder farms. High-protein legume seeds can represent an alternative and sustainable feed that could enhance animal performance. The use of legume beans, limited by their anti-nutritional factor contents, can be improved through different detoxification methods. The study evaluated the effects of processed velvet beans compared to raw velvet beans on the nutritive value of the beans, nutrient intakes, growth performance, and blood profile in West African Dwarf (WAD) goats. Four diets were tested, including 22.22% of raw velvet beans (RW diet), soaked beans (SK diet), boiled beans (BL diet), or roasted beans (RT diet). Twenty WAD goats of 6.85 ± 0.93 kg of body weight were divided equally into 4 groups and fed one of the four experimental diets. The processing method affects the crude protein content of velvet beans; in particular, tannin content was reduced with soaking or boiling. Dry matter and nutrient intakes resulted significantly (p < 0.05) higher in the SK diet compared to the control. Daily weight gain was highest in SK and RT diets and lowest in BL and the control diets RW. Therefore, the FCR was highest in BL and lowest in SK diets. In addition, SK diet showed the lowest feeding cost (1046.70 XOF/kg WG in SK). Our study revealed that processed velvet beans obtained using simple methods (e.g., soaking, boiling, or roasting) could be used as low-cost protein supplements in smallholder farms to enhance goats' performance. The soaking method appears the simplest and cheapest process that smallholder farmers can easily use to enhance goats' productivity and improve their livelihoods.


Assuntos
Fabaceae , Mucuna , Animais , Cabras , Ingestão de Alimentos , Verduras , Nutrientes
13.
Colloids Surf B Biointerfaces ; 230: 113534, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690227

RESUMO

It is still a challenge to prevent the formation of bacterial biofilms on the surfaces of oral implants. A chemical peptide with binding and antibacterial properties may be a promising agent if used to modify titanium (Ti) surfaces to inhibit biofilm formation. In this study, peptides were designed by linking the antimicrobial sequence derived from human ß-defensin-3 (hBD-3) to the Ti-binding peptide-1 (TBP-1) sequence by using a triple glycine (G) linker. The antimicrobial activity and biocompatibility characteristics of the chemical-peptide-modified Ti surface were then evaluated and the potential antibacterial mechanism was investigated. This study demonstrated that the chemical-peptide-modified surface exhibited satisfactory bactericidal activities against Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis. In addition to its potent bacteria-killing efficacy, the surface-immobilised chemical peptide also demonstrated excellent biocompatibility to L929 cells. Moreover, the disruption of the integrity of the bacterial membrane partially revealed the antibacterial mechanism of the peptide. This study demonstrated the potential of chemical-peptide-modified Ti surfaces for preventing the occurrence of peri-implant diseases, thereby providing a promising approach to improving the survival rate of oral implants.


Assuntos
Fabaceae , Titânio , Humanos , Titânio/farmacologia , Antibacterianos/farmacologia , Biofilmes , Peptídeos/farmacologia
14.
Sci Rep ; 13(1): 15450, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723187

RESUMO

Increasing temperature affects all food crops, thereby reducing their yield potential. Chickpea is a cool-season food legume vital for its nutritive value, but it is sensitive to high temperatures (> 32/20 °C maximum/minimum) during its reproductive and seed-filling stages. This study evaluated the effects of heat stress on yield and qualitative traits of chickpea seeds in a controlled environment. Chickpea genotypes differing in heat sensitivity [two heat-tolerant (HT) and two heat-sensitive (HS)] were raised in pots, initially in an outdoor environment (average 23.5/9.9 °C maximum/minimum), until the beginning of pod set (107-110 days after sowing). At this stage, the plants were moved to a controlled environment in the growth chamber to impose heat stress (32/20 °C) at the seed-filling stage, while maintaining a set of control plants at 25/15 °C. The leaves of heat-stressed plants of the HT and HS genotypes showed considerable membrane damage, altered stomatal conductance, and reduced leaf water content, chlorophyll content, chlorophyll fluorescence, and photosynthetic ability (RuBisCo, sucrose phosphate synthase, and sucrose activities) relative to their corresponding controls. Seed filling duration and seed rate drastically decreased in heat-stressed plants of the HT and HS genotypes, severely reducing seed weight plant-1 and single seed weight, especially in the HS genotypes. Yield-related traits, such as pod number, seed number, and harvest index, noticeably decreased in heat-stressed plants and more so in the HS genotypes. Seed components, such as starch, proteins, fats, minerals (Ca, P, and Fe), and storage proteins (albumin, globulins, glutelin, and prolamins), drastically declined, resulting in poor-quality seeds, particularly in the HS genotypes. These findings revealed that heat stress significantly reduced leaf sucrose production, affecting the accumulation of various seed constituents, and leading to poor nutritional quality. The HT genotypes were less affected than the HS genotypes because of the greater stability of their leaf water status and photosynthetic ability, contributing to better yield and seed quality traits in a heat-stressed environment.


Assuntos
Cicer , Fabaceae , Cicer/genética , Sementes/genética , Genótipo , Clorofila
15.
Braz J Biol ; 83: e274475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729316

RESUMO

Depending on the intensity and ecological successional classification of plants, light availability can become an unfavorable condition for producing high-quality seedlings. We hypothesized that applying silicon sources might contribute to inducing tolerance to different shading levels for Peltophorum dubium (Spreng.) Taub. seedlings. Two independent experiments were developed: I) the application of five doses of silicon oxide (SiO2: 0.0; 1.0; 2.0; 4.0; and 6.0 g L-1); and II) the application of five doses of potassium silicate (K2SiO3: 0.0; 5.0; 10.0; 15.0; and 20.0 mL L-1 of water). Both were associated with three shading levels: 0% (direct sunlight), 30%, and 50%. In experiment I, we observed that seedlings were more responsive to shading levels and had little influence from foliar application of SiO2, with higher growth, biomass, and quality values when grown under direct sunlight (0% shading). In experiment II, the foliar application of 20.0 mL L-1 of K2SiO3 contributed to greater heights under 0% and 30% shading. Meanwhile, under 50% shading, the dose of 5.0 K2SiO3 favored the species' growth. The application of K2SiO3 favored the increase in the dry mass of the aerial part (DMAP). The highest biomass production and seedling quality occurred under 0% and 30% shading. The 50% shaded environment was most unfavorable to the growth and quality of P. dubium seedlings. Even though the seedlings were not very responsive to silicon sources, K2SiO3 provided a greater response than SiO2. High-quality seedling production is favored when the seedlings are grown under direct sunlight (0% shading).


Assuntos
Fabaceae , Dióxido de Silício , Plântula , Biomassa , Água
16.
BMC Genomics ; 24(1): 520, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667205

RESUMO

BACKGROUND: Symbiotic nitrogen fixation differs among Bradyrhizobium japonicum strains. Soybean inoculated with USDA123 has a lower yield than strains known to have high nitrogen fixation efficiency, such as USDA110. In the main soybean-producing area in the Midwest of the United States, USDA123 has a high nodule incidence in field-grown soybean and is competitive but inefficient in nitrogen fixation. In this study, a high-throughput system was developed to characterize nodule number among 1,321 Glycine max and 69 Glycine soja accessions single inoculated with USDA110 and USDA123. RESULTS: Seventy-three G. max accessions with significantly different nodule number of USDA110 and USDA123 were identified. After double inoculating 35 of the 73 accessions, it was observed that PI189939, PI317335, PI324187B, PI548461, PI562373, and PI628961 were occupied by USDA110 and double-strain nodules but not by USDA123 nodules alone. PI567624 was only occupied by USDA110 nodules, and PI507429 restricted all strains. Analysis showed that 35 loci were associated with nodule number in G. max when inoculated with strain USDA110 and 35 loci with USDA123. Twenty-three loci were identified in G. soja when inoculated with strain USDA110 and 34 with USDA123. Only four loci were common across two treatments, and each locus could only explain 0.8 to 1.5% of phenotypic variation. CONCLUSIONS: High-throughput phenotyping systems to characterize nodule number and occupancy were developed, and soybean germplasm restricting rhizobium strain USDA123 but preferring USDA110 was identified. The larger number of minor effects and a small few common loci controlling the nodule number indicated trait genetic complexity and strain-dependent nodulation restriction. The information from the present study will add to the development of cultivars that limit USDA123, thereby increasing nitrogen fixation efficiency and productivity.


Assuntos
Fabaceae , Rhizobium , Soja/genética , Citoplasma , Variação Genética
17.
An Acad Bras Cienc ; 95(suppl 1): e20220613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672397

RESUMO

Fifteen polar extracts from leaf, seed, pod, stem, flower and root of Crotalaria spectabilis were prepared using aqueous systems, based on the principles of green chemistry, and showed different protease inhibitor (PI) activities on trypsin, papain, pepsin and the extracellular L. amazonensis serine protease (LSPIII). The most pronounced inhibitory effect on LSPIII was observed in leaf (CS-P), root, stem, flower (CS-FPVPP) and pod (CS-VA) extracts. Crotalaria extracts exhibited low cytotoxicity on macrophages; however, they decreased the viability of L. amazonensis promastigotes and amastigotes, as observed in leaf (CS-AE, CS-P, CS-T and CS-PVPP), seed (CS-ST), flower and root (CS-RA) extracts. CS-P was chosen to study PI and secondary metabolites and a 10-12 kDa protein, analyzed by mass spectrometry, was identified as a serine PI homologous with papaya latex serine PI. Glycosylated flavonoids, such as quercetins, vitexin and tricin were the major secondary metabolites of CS-P. The presence of PIs in C. spectabilis is a new finding, especially in other organs than seeds since PIs have been reported only in seed legumes. Besides, this is the first report of antileishmanial activity of C. spectabilis extracts and the identification of serine polypeptide PI and glycosylated flavonoids from leaf.


Assuntos
Antiprotozoários , Crotalaria , Fabaceae , Leishmania , Inibidores de Serino Proteinase , Flavonoides , Serina
18.
PLoS One ; 18(9): e0290616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656753

RESUMO

Technique of malting legume seeds is not currently widespread among scientists as well as industrial maltsters. However, this method of seed modification is successfully used by humankind for millennia to improve technological parameters, as well as change taste and aroma of various food products. Three lentil cultivars (black, brown and green) were malted (steeped, germinated for three various time periods and then kilned) to produce nine lentil malts. Malting had significant influence on the volatile composition of lentil seeds. Total concentration of volatiles in the green lentils increased and decreased in the case of black and brown lentils after malting procedure. However, most importantly, in every lentil cultivar the contribution of various groups of compounds (such as aldehydes, alcohols, terpenes or ketones) to the overall volatilome was changed due to the malting procedure.


Assuntos
Fabaceae , Lens (Planta) , Aldeídos , Indústrias , Sementes
19.
PLoS One ; 18(9): e0291250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695782

RESUMO

Legumes and their interaction with rhizobia represent one of the most well-characterized symbioses that are widespread across both natural and agricultural environments. However, larger distribution patterns and host associations on isolated Pacific islands with many native and introduced hosts have not been well-documented. Here, we used molecular and culturing techniques to characterize rhizobia from soils and 24 native and introduced legume species on the island of O'ahu, Hawai'i. We chose two of these isolates to inoculate an endemic legume tree, Erythina sandwicensis to measure nodulation potentials and host benefits. We found that all rhizobia genera can be found in the soil, where only Cupriavidus was found at all sites, although at lower abundance relative to other more common genera such as Rhizobium (and close relatives), Bradyzhizobium, and Devosia. Bradyrhizobium was the most common nodulator of legumes, where the strain Bradyrhizobium sp. strain JA1 is a generalist capable of forming nodules on nine different host species, including two native species. In greenhouse nursery inoculations, the two different Bradyrhizobium strains successfully nodulate the endemic E. sandwicensis; both strains equally and significantly increased seedling biomass in nursery inoculations. Overall, this work provides a molecular-based framework in which to study potential native and introduced rhizobia on one of the most isolated archipelagos on the planet.


Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Havaí , Solo , Verduras , Bradyrhizobium/genética , Espécies Introduzidas , Rhizobium/genética
20.
Proc Biol Sci ; 290(2006): 20231083, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700642

RESUMO

Mutualism improves organismal fitness, but strong dependence on another species can also limit a species' ability to thrive in a new range if its partner is absent. We assembled a large, global dataset on mutualistic traits and species ranges to investigate how multiple plant-animal and plant-microbe mutualisms affect the spread of legumes and ants to novel ranges. We found that generalized mutualisms increase the likelihood that a species establishes and thrives beyond its native range, whereas specialized mutualisms either do not affect or reduce non-native spread. This pattern held in both legumes and ants, indicating that specificity between mutualistic partners is a key determinant of ecological success in a new habitat. Our global analysis shows that mutualism plays an important, if often overlooked, role in plant and insect invasions.


Assuntos
Formigas , Fabaceae , Animais , Simbiose , Fenótipo , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...