RESUMO
Increasing use of unbiased genomic sequencing in critically ill infants can expand understanding of rare diseases such as Kabuki syndrome (KS). Infants diagnosed with KS through genome-wide sequencing performed during the initial hospitalization underwent retrospective review of medical records. Human phenotype ontology terms used in genomic analysis were aggregated and analyzed. Clinicians were surveyed regarding changes in management and other care changes. Fifteen infants met inclusion criteria. KS was not suspected prior to genomic sequencing. Variants were classified as Pathogenic (n = 10) or Likely Pathogenic (n = 5) by American College of Medical Genetics and Genomics Guidelines. Fourteen variants were de novo (KMT2D, n = 12, KDM6A, n = 2). One infant inherited a likely pathogenic variant in KMT2D from an affected father. Frequent findings involved cardiovascular (14/15) and renal (7/15) systems, with palatal defects also identified (6/15). Three infants had non-immune hydrops. No minor anomalies were universally documented; ear anomalies, micrognathia, redundant nuchal skin, and hypoplastic nails were common. Changes in management were reported in 14 infants. Early use of unbiased genome-wide sequencing enabled a molecular diagnosis prior to clinical recognition including infants with atypical or rarely reported features of KS while also expanding the phenotypic spectrum of this rare disorder.
Assuntos
Anormalidades Múltiplas , Doenças Hematológicas , Doenças Vestibulares , Gravidez , Feminino , Humanos , Lactente , Anormalidades Múltiplas/genética , Face/anormalidades , Doenças Hematológicas/genética , Doenças Vestibulares/genética , Fenótipo , Histona Desmetilases/genéticaRESUMO
A 54-month-old female patient presented to the department of ophthalmology with abnormal head posture and facial asymmetry for two years. The patient's facial development was asymmetrical, with the middle 1/3 of the left side shorter than the right side. The left ear is less malformed than the right. There was no obvious abnormality in corneal light reflex and eye movement. Head tilt test ( -). So, paralysis of the superior oblique muscle was excluded. In consultation with the department of maxillofacial surgery, the patient was confirmed as the first and second branchial arch syndrome and torticollis.
Assuntos
Região Branquial , Síndrome de Goldenhar , Torcicolo , Pré-Escolar , Feminino , Humanos , Assimetria Facial/diagnóstico , Assimetria Facial/etiologia , Síndrome de Goldenhar/complicações , Síndrome de Goldenhar/diagnóstico , Músculos Oculomotores , Postura , Torcicolo/diagnóstico , Região Branquial/anormalidades , Síndrome , Orelha/anormalidades , Face/anormalidadesAssuntos
Humanos , Feminino , Criança , Síndrome de Sjogren/diagnóstico , Pacientes Internados , Exame Físico , Avaliação de Sintomas , Xeroftalmia , Resultado do Tratamento , Tratamento Farmacológico , Face/anormalidades , Anormalidades Múltiplas , Reumatologia , Doenças Autoimunes , Artrite Reumatoide , Doenças ReumáticasRESUMO
Kabuki syndrome (KS) is a rare disorder characterized by distinct face, persistent fingertip pads, and intellectual disability (ID) caused by mutation in KMT2D (56%-76%) or KDM6A (5%-8%). Thirty-seven children aged 1-16 years who followed for median of 6.8 years were included in this study, which aimed to investigate the genetic and clinical characteristics of KS patients. KMT2D and KDM6A were evaluated by sequencing and multiplex-ligation-dependent probe amplification in 32 patients. Twenty-one pathogenic variants in KMT2D, of which 17 were truncated and nine were novel, one frame-shift novel variant in KDM6A were identified. The molecular diagnosis rate was 68.7% (22/32). In the whole-exome sequencing analysis performed in the remaining patients, no pathogenic variant that could cause any disease was detected. All patients had ID; 43.2% were severe and moderate. We observed that facial features that became more prominent with age were enough for a possible diagnosis of KS in infancy. The frequencies of facial features, cardiac and renal anomalies, short stature, microcephaly, and epilepsy did not differ depending on whether they had truncating or nontruncating variants or were in variant-negative KS-like group. This study has expanded clinical features of the disease, as well as identified new variants in genes causing KS.
Assuntos
Doenças Hematológicas , Deficiência Intelectual , Doenças Vestibulares , Anormalidades Múltiplas , Face/anormalidades , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética , Doenças Vestibulares/patologiaRESUMO
Coffin-Siris syndrome (CSS) is a rare neurodevelopmental and multisystemic disorder with wide genetic heterogeneity and phenotypic variability caused by pathogenic variants in the BAF complex with 341 cases enrolled in the CSS/BAF-related disorders registry by 2021. Pathogenic variants of ARID1A account for 7-8% of cases with CSS phenotype. Malignancy has been previously reported in six individuals with CSS associated with BAF mutations. Two of these malignancies including one acute lymphoid leukemia and one hepatoblastoma were reported in ARID1A-associated CSS (ARID1A-CSS). Alterations in ARID1A are among the most common molecular aberrations in human cancer. Somatic deletion of 1p and specifically of 1p36.11 containing ARID1A is frequently seen in hepatoblastoma and has been associated with high-risk features. Here we report a child with CSS Phenotype and a novel de novo variant of ARID1A with hepatoblastoma. Because hepatoblastoma has an incidence of 1 per million children, the presence of hepatoblastoma in 2 of 30 known cases of ARID1A-CSS is significant. ARID1A-CSS should be included among the cancer predisposition syndromes associated with an increased risk of hepatoblastoma and tumour surveillance considered for these patients. The role of ARID1A in the pathogenesis and outcome of hepatoblastoma deserves further investigation.
Assuntos
Deformidades Congênitas da Mão , Hepatoblastoma , Deficiência Intelectual , Neoplasias Hepáticas , Micrognatismo , Anormalidades Múltiplas , Criança , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Hepatoblastoma/complicações , Hepatoblastoma/genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genética , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição/genéticaRESUMO
Pathogenic variants in SMARCA4 cause Coffin-Siris syndrome (CSS) while those in SMAD6 lead to aortic valve disease and other dysmorphisms. We identified a 6-year-old Thai boy with features of CSS alongside unusual manifestations including, very severe coarctation of the aorta (CoA) requiring coarctectomy in the neonatal period and bilateral radioulnar synostoses. Trio exome sequencing revealed that the patient harbored two de novo variants, a missense c.2475G > T, p.(Trp825Cys) in SMARCA4 and a nonsense c.652C > T, p.(Gln218Ter) in SMAD6. Both of which have never been previously reported. The clinical presentations in our patient are a result of the combinational features of each genetic variant: the SMARCA4 p.(Trp825Cys) variant leads to facial features of Coffin Siris syndrome and Dandy-Walker malformation, while the SMAD6 p.(Gln218Ter) variant underlies radioulnar synostosis. Interestingly, the severity of CoA in the proband is beyond the phenotypic spectra of each genetic variant and may be a result of the synergistic effects of both variants. Here, we report a child with variants in SMARCA4 or SMAD6 with combined features of each plus a severe CoA, possibly due to an additive effect of each variant.
Assuntos
Anormalidades Múltiplas , Coartação Aórtica , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Coartação Aórtica/genética , Criança , Coenzima A , DNA Helicases , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Micrognatismo/genética , Micrognatismo/patologia , Pescoço/anormalidades , Proteínas Nucleares/genética , Rádio (Anatomia)/anormalidades , Proteína Smad6 , Sinostose , Fatores de Transcrição/genética , Ulna/anormalidadesRESUMO
Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.
Assuntos
Metilação de DNA , Deficiência Intelectual , Anormalidades Múltiplas , Cromatina , Metilação de DNA/genética , Epigênese Genética , Face/anormalidades , Doenças Hematológicas , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças VestibularesRESUMO
BACKGROUND: Coffin-Siris syndrome (CSS) is a rare autosomal dominant disorder characterized by intellectual disability, developmental delay, and characteristic facial features. Few patients with cutaneous phenotype in this rare syndrome have been reported. CASE PRESENTATION: Herein, we describe a 12-year-old Chinese girl diagnosed with CSS, who was referred to our hospital because of intellectual disability and short stature. Prominent characteristics of the cutaneous system were observed: (1) A congenital giant nevus from the left frontal and temporal regions to the entire left scalp; and (2) multiple melanocytic nevi on the face and trunk. Whole exome sequencing revealed a novel heterozygous variant in the ARID1B gene. Recombinant human growth hormone (rhGH) was given for short stature, and resulted in significantly improved height. No enlargement or malignant transformation of nevi occurred within 4 years of follow-up. CONCLUSION: The symptoms in cutaneous system is noteworthy,which may be a neglected phenotype in CSS.The therapeutic response of growth hormone is effective in this patient and no tumor related signs were found.
Assuntos
Nanismo , Deformidades Congênitas da Mão , Micrognatismo , Nevo Pigmentado , Anormalidades Múltiplas , Criança , Proteínas de Ligação a DNA/genética , Nanismo/genética , Face/anormalidades , Feminino , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Humanos , Deficiência Intelectual , Micrognatismo/genética , Pescoço/anormalidades , Nevo Pigmentado/genética , Fatores de Transcrição/genéticaRESUMO
OBJECTIVE: To explore the genetic basis for two unrelated patients with global developmental delay and coarse facial features. METHODS: Clinical data and family history of the two pedigrees were collected. Whole exome sequencing and Sanger sequencing were carried out to detect potential variants. RESULTS: The two patients have presented with global developmental delay, coarse facies, muscular hypotonia, congenital heart disease, and pectus excavatum, and were found to harbor two de novo loss-of-function variants of the ARID1B gene, namely c.3586delC (p.Gln1196Serfs*15) and c.4954_4957delACGT (p.Thr1652Glyfs*31). Both variants were unreported previously. CONCLUSION: The nonsense variants of the ARID1B gene probably underlay the etiology in these patients. Above finding has enriched the genotypic and phenotypic spectrum of the disease and provided a basis for prenatal diagnosis.
Assuntos
Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Anormalidades Múltiplas , China , Proteínas de Ligação a DNA/genética , Face/anormalidades , Facies , Deformidades Congênitas da Mão/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição/genéticaRESUMO
Kabuki syndrome (KS) is a rare epigenetic disorder caused by heterozygous loss of function variants in either KMT2D (90%) or KDM6A (10%), both involved in regulation of histone methylation. While sleep disturbance in other Mendelian disorders of the epigenetic machinery has been reported, no study has been conducted on sleep in KS. This study assessed sleep in 59 participants with KS using a validated sleep questionnaire. Participants ranged in age from 4 to 43 years old with 86% of participants having a pathogenic variant in KMT2D. In addition, data on adaptive function, behavior, anxiety, and quality of life were collected using their respective questionnaires. Some form of sleep issue was present in 71% of participants, with night-waking, daytime sleepiness, and sleep onset delay being the most prevalent. Sleep dysfunction was positively correlated with maladaptive behaviors, anxiety levels, and decreasing quality of life. Sleep issues were not correlated with adaptive function. This study establishes sleep disturbance as a common feature of KS. Quantitative sleep measures may be a useful outcome measure for clinical trials in KS. Further, clinicians caring for those with KS should consider sleep dysfunction as an important feature that impacts overall health and well being in these patients.
Assuntos
Doenças Hematológicas , Doenças Vestibulares , Anormalidades Múltiplas , Adolescente , Adulto , Criança , Pré-Escolar , Face/anormalidades , Doenças Hematológicas/complicações , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Humanos , Mutação , Qualidade de Vida , Sono , Doenças Vestibulares/complicações , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Adulto JovemRESUMO
BACKGROUND: KDM6A is a demethylase encoded by a gene with female-biased expression due to escape from X inactivation. Its main role is to facilitate gene expression through removal of the repressive H3K27me3 mark, with evidence of some additional histone demethylase-independent functions. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in cancer. METHODS: Kdm6a was knocked out using CRISPR/Cas9 gene editing in F1 male and female mouse embryonic stem cells (ES) derived from reciprocal crosses between C57BL6 x Mus castaneus. Diploid and allelic RNA-seq analyses were done to compare gene expression between wild-type and Kdm6a knockout (KO) clones. The effects of Kdm6a KO on sex-biased gene expression were investigated by comparing gene expression between male and female ES cells. Changes in H3K27me3 enrichment and chromatin accessibility at promoter regions of genes with expression changes were characterized by ChIP-seq and ATAC-seq followed by diploid and allelic analyses. RESULTS: We report that Kdm6a KO in male and female embryonic stem (ES) cells derived from F1 hybrid mice cause extensive gene dysregulation, disruption of sex biases, and specific parental allele effects. Among the dysregulated genes are candidate genes that may explain abnormal developmental features of Kabuki syndrome caused by KDM6A mutations in human. Strikingly, Kdm6a knockouts result in a decrease in sex-biased expression and in preferential downregulation of the maternal alleles of a number of genes. Most promoters of dysregulated genes show concordant epigenetic changes including gain of H3K27me3 and loss of chromatin accessibility, but there was less concordance when considering allelic changes. CONCLUSIONS: Our study reveals new sex-related roles of KDM6A in the regulation of developmental genes, the maintenance of sex-biased gene expression, and the differential expression of parental alleles.
Assuntos
Histona Desmetilases , Histonas , Anormalidades Múltiplas , Alelos , Animais , Cromatina , Face/anormalidades , Feminino , Doenças Hematológicas , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Doenças VestibularesRESUMO
DNA methyltransferase DNMT3B plays an essential role in establishment of DNA methylation during embryogenesis. Mutations of DNMT3B are associated with human diseases, notably the immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome. How ICF mutations affect DNMT3B activity is not fully understood. Here we report the homo-oligomeric structure of DNMT3B methyltransferase domain, providing insight into DNMT3B-mediated DNA methylation in embryonic stem cells where the functional regulator DNMT3L is dispensable. The interplay between one of the oligomer interfaces (FF interface) and the catalytic loop renders DNMT3B homo-oligomer a conformation and activity distinct from the DNMT3B-DNMT3L heterotetramer, and a greater vulnerability to certain ICF mutations. Biochemical and cellular analyses further reveal that the ICF mutations of FF interface impair the DNA binding and heterochromatin targeting of DNMT3B, leading to reduced DNA methylation in cells. Together, this study provides a mechanistic understanding of DNMT3B-mediated DNA methylation and its dysregulation in disease.
Assuntos
DNA (Citosina-5-)-Metiltransferases , Síndromes de Imunodeficiência , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Face/anormalidades , Humanos , Síndromes de Imunodeficiência/genética , Mutação , Doenças da Imunodeficiência PrimáriaRESUMO
Coffin-Siris syndrome (CSS) is an autosomal dominant neurodevelopmental syndrome that can present with a variety of structural birth defects. Pathogenic variants in 12 genes have been shown to cause CSS. Most of these genes encode proteins that are a part of the mammalian switch/sucrose non-fermentable (mSWI/SNF; BAF) complex. An association between genes that cause CSS and congenital diaphragmatic hernia (CDH) has been suggested based on case reports and the analysis of CSS and CDH cohorts. Here, we describe an unpublished individual with CSS and CDH, and we report additional clinical information on four published cases. Data from these individuals, and a review of the literature, provide evidence that deleterious variants in ARID1B, ARID1A, SMARCB1, SMARCA4, SMARCE1, ARID2, DPF2, and SMARCC2, which are associated with CSS types 1-8, respectively, are associated with the development of CDH. This suggests that additional genetic testing to identify a separate cause of CDH in an individual with CSS may be unwarranted, and that comprehensive genetic testing for individuals with non-isolated CDH should include an evaluation of CSS-related genes. These data also suggest that the mSWI/SNF (BAF) complex may play an important role in diaphragm development.
Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Hérnias Diafragmáticas Congênitas , Deficiência Intelectual , Micrognatismo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas Cromossômicas não Histona , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/complicações , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/patologia , Humanos , Deficiência Intelectual/patologia , Micrognatismo/genética , Micrognatismo/patologia , Pescoço/anormalidades , Proteínas Nucleares/genética , Fatores de Transcrição/genéticaRESUMO
PURPOSE: Coffin-Siris syndrome (CSS) is a rare genetic disorder characterized by the presence of particular facies, congenital malformations, intellectual developmental disorder, behavioral issues, and speech and language impairment. Thorough neuropsychological assessments in the case of CSS have been reported infrequently, and its subdomains are poorly defined. A detailed description of the clinical, neurocognitive, behavioral, socio-adaptive sequelae of the patient with CSS is provided. RESULTS: The clinical diagnosis in the patient was confirmed by genetic analysis, which identified the presence of mutation of ARID1B gene; the parents' Sanger sequencing reported normal. The neuropsychological assessments revealed borderline intellectual functioning (IQ-75, verbalâ>âperformance) with a mild socio-adaptive deficit score of 64 as suggested by the adaptive scale. The behavioral profile reported that the child had significant difficulties in the attention subdomain with concern in social and thought subdomains. The child met the profile for mild severity of Autism Spectrum Disorder and did not meet the criteria for Attention Deficit Hyperactivity Disorder. In addition, the child had scholastic difficulties in reading and mathematical skills. CONCLUSION: Neurocognitive, behavioral, socio-adaptive functioning and comorbidity assessment in order to provide holistic management of such children after thorough evaluation is essential for their overall functioning.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Micrognatismo , Anormalidades Múltiplas , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Criança , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição/genéticaRESUMO
We present the case of a 69 years old man affected by Aarskog-Scott syndrome. He came to our attention for an aneurysm of the aortic root, with almost moderate aortic regurgitation; moderate mitral regurgitation was discovered during preoperative assessment. We performed a modified Bentall's procedure and mitral valve repair. A patent foramen ovale was closed. Aarskog-Scott syndrome is a complex developmental disorder, characterized by X-linked recessive hereditariness short stature, craniofacial abnormalities, hyperextension of the proximal interphalangeal joints, and genital malformations. Diagnosis is still a challenge, in light of various clinical pictures and features in common with other syndromes (i.e., Noonan, SHORT, and Robinow syndromes). It has been longly debated if cardiac surveillance is needed among the affected patients; it should be probably undertaken, in view of the higher incidence of congenital heart disease. Moreover, the presence of extremely flexible joints suggests the coexistence of a connective tissue disorder.
Assuntos
Aneurisma da Aorta Torácica , Insuficiência da Valva Aórtica , Nanismo , Deformidades Congênitas da Mão , Cardiopatias Congênitas , Idoso , Aneurisma da Aorta Torácica/cirurgia , Insuficiência da Valva Aórtica/etiologia , Nanismo/complicações , Face/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X , Genitália Masculina/anormalidades , Deformidades Congênitas da Mão/complicações , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/cirurgia , Humanos , Masculino , SíndromeRESUMO
Tessier number 3 craniofacial clefts are a rare congenital deformity of the oronasoocular region with variable severity, most often with serious impacts on appearance and function due to involvement of the bone and soft tissue. However, they can occasionally manifest mildly as a skin-colored congenital facial papule present with subtle anatomic anomalies and signs of deeper involvement, such as crusting and oozing. Recognizing that a congenital facial papule, including non-midline lesions, may be the presenting sign of an underlying developmental anomaly is important to avoid missing the diagnosis of a more extensive underlying congenital defect. We present a rare case of a forme fruste variant of a Tessier number 3 craniofacial cleft to raise awareness of its presentation and advise initial management in hopes of improving outcomes.
Assuntos
Anormalidades Craniofaciais , Anormalidades da Pele , Humanos , Anormalidades Craniofaciais/diagnóstico , Face/anormalidadesRESUMO
While inherited hemizygous variants in PHF6 cause X-linked recessive Borjeson-Forssman-Lehmann syndrome (BFLS) in males, de novo heterozygous variants in females are associated with an overlapping but distinct phenotype, including moderate to severe intellectual disability, characteristic facial dysmorphism, dental, finger and toe anomalies, and linear skin pigmentation. By personal communication with colleagues, we assembled 11 additional females with BFLS due to variants in PHF6. We confirm the distinct phenotype to include variable intellectual disability, recognizable facial dysmorphism and other anomalies. We observed skewed X-inactivation in blood and streaky skin pigmentation compatible with functional mosaicism. Variants occurred de novo in 10 individuals, of whom one was only mildly affected and transmitted it to her more severely affected daughter. The mutational spectrum comprises a two-exon deletion, five truncating, one splice-site and three missense variants, the latter all located in the PHD2 domain and predicted to severely destabilize the domain structure. This observation supports the hypothesis of more severe variants in females contributing to gender-specific phenotypes in addition to or in combination with effects of X-inactivation and functional mosaicism. Therefore, our findings further delineate the clinical and mutational spectrum of female BFLS and provide further insights into possible genotype-phenotype correlations between females and males.
Assuntos
Hipogonadismo , Deficiência Intelectual , Retardo Mental Ligado ao Cromossomo X , Anormalidades Musculoesqueléticas , Proteínas Repressoras , Epilepsia , Face/anormalidades , Feminino , Dedos/anormalidades , Transtornos do Crescimento , Humanos , Hipogonadismo/genética , Deficiência Intelectual/complicações , Masculino , Retardo Mental Ligado ao Cromossomo X/genética , Anormalidades Musculoesqueléticas/complicações , Obesidade , Proteínas Repressoras/genéticaRESUMO
The phenotypic spectrum of SOX11-related Coffin-Siris syndrome (CSS) is expanding with reports of new associations. SOX11 is implicated in neurogenesis and inner ear development. Cochlear nerve deficiency, absence or hypoplasia, is commonly associated with cochlear canal stenosis or with CHARGE syndrome, a monogenic condition that affects inner ear development. SOX11 is a transcription factor essential for neuronal identity, highly correlated with the expression of CHD7, which regulates SOX11. We present two unrelated probands, each with novel de novo SOX11 likely pathogenic variants and phenotypic manifestations of CSS including global developmental delay, growth deficiency, and hypoplastic nails. They have unilateral sensorineural hearing loss due to cochlear nerve deficiency confirmed on MRI. SOX11 is implicated in sensory neuron survival and maturation. It is highly expressed in the developing inner ear. Homozygous ablation of SOX11 in a mouse model resulted in a reduction in sensory neuron survival and decreased axonal growth. A heterozygous knockout mice model had hearing impairment with grossly normal inner ear structures like the two probands reported. We propose cochlear nerve deficiency as a new phenotypic feature of SOX11-related CSS. Magnetic resonance imaging is useful in delineating the cochlear nerve deficiency and other CSS-related brain malformations.
Assuntos
Síndrome CHARGE , Deformidades Congênitas da Mão , Perda Auditiva Neurossensorial , Micrognatismo , Anormalidades Múltiplas , Animais , Nervo Coclear , Face/anormalidades , Deformidades Congênitas da Mão/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual , Camundongos , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição SOXCAssuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adulto , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição/genéticaRESUMO
PURPOSE: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. METHODS: Clinical data was collected through an extensive web-based survey. RESULTS: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). CONCLUSION: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.