Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.559
Filtrar
1.
Methods Mol Biol ; 2713: 45-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639114

RESUMO

In this chapter, we provide an overview of the main techniques and experimental approaches that can be used to analyze autophagy flux in microglia, the brain-resident macrophages. For this purpose, we first briefly introduce the main peculiarities of microglial biology, describe the basic mechanisms and functions of autophagy, and summarize the evidence accumulated so far on the role of autophagy in the regulation of microglial survival and functions, mainly phagocytosis and inflammation. Then, we highlight conceptual and technical aspects of autophagic recycling and microglial physiology that need to be taken into account for the accurate evaluation of autophagy flux in microglia. Finally, we describe the main assays that can be used to analyze the complete sequence of autophagosome formation and degradation or autophagy flux, mainly in cultured microglia and in vivo. The main approaches include indirect tracking of autophagosomes by autophagic enzymes such as LC3 by western blot and fluorescence-based confocal microscopy, as well as direct analysis of autophagic vesicles by electron microscopy. We also discuss the advantages and disadvantages of using these methods in specific experimental contexts and highlight the need to complement LC3 and/or electron microscopy data with analysis of other autophagic effectors and lysosomal proteins that participate in the initiation and completion of autophagy flux, respectively. In summary, we provide an experimental guide for the analysis of autophagosome turnover in microglia, emphasizing the need to combine as many markers and complementary approaches as possible to fully characterize the status of autophagy flux in microglia.


Assuntos
Autofagia , Microglia , Macroautofagia , Autofagossomos , Fagocitose
2.
Methods Mol Biol ; 2713: 389-405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639138

RESUMO

In vitro cocultures of macrophages and apoptotic cells (ACs) provide a practical and useful tool to study efferocytosis. Here, we describe a method for automated quantification and imaging of recognition and engulfment of apoptotic cells by primary macrophages using imaging flow cytometry (IFC). IFC-based analysis allows us to successfully quantify efferocytosis, clearly distinguishing phagocytic from nonphagocytic macrophages and, more importantly, from those in recognition stage, which is not achievable by standard flow cytometrical analysis. To this end, we established a universally employable analysis pipeline to address efferocytosis that can be easily adapted to any macrophage population from samples of different origins.


Assuntos
Macrófagos , Fagocitose , Fagócitos , Técnicas de Cocultura , Citometria de Fluxo
3.
Parasites Hosts Dis ; 61(4): 397-404, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38043535

RESUMO

Acanthamoeba species are free-living amoebae those are widely distributed in the environment. They feed on various microorganisms, including bacteria, fungi, and algae. Although majority of the microbes phagocytosed by Acanthamoeba spp. are digested, some pathogenic bacteria thrive within them. Here, we identified the roles of 3 phagocytosis-associated genes (ACA1_077100, ACA1_175060, and AFD36229.1) in A. castellanii. These 3 genes were upregulated after the ingestion of Escherichia coli. However, after the ingestion of Legionella pneumophila, the expression of these 3 genes was not altered after the consumption of L. pneumophila. Furthermore, A. castellanii transfected with small interfering RNS (siRNA) targeting the 3 phagocytosis-associated genes failed to digest phagocytized E. coli. Silencing of ACA1_077100 disabled phagosome formation in the E. coli-ingesting A. castellanii. Alternatively, silencing of ACA1_175060 enabled phagosome formation; however, phagolysosome formation was inhibited. Moreover, suppression of AFD36229.1 expression prevented E. coli digestion and consequently led to the rupturing of A. castellanii. Our results demonstrated that the ACA1_077100, ACA1_175060, and AFD36229.1 genes of Acanthamoeba played crucial roles not only in the formation of phagosome and phagolysosome but also in the digestion of E. coli.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Acanthamoeba castellanii/genética , Escherichia coli/genética , Fagocitose/genética , Fagossomos
4.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929946

RESUMO

Macrophages represent a crucial line of defense and are responsible for preventing the growth and colonization of pathogens in different tissues. Conidial phagocytosis is a key process that allows for the investigation of the cytoplasmic and molecular events involved in macrophage-pathogen interactions, as well as for the determination of the time of death of internalized conidia. The technique involving the phagocytosis of fungal conidia by macrophages is widely used for studies evaluating the modulation of the immune responses against fungi. The evasion of phagocytosis and escape of phagosomes are mechanisms of fungal virulence. Here, we report the methods that can be used for the analysis of the phagocytosis, clearance, and viability of T. stromaticum conidia, a fungus which is used as a biocontrol and biofertilizer agent and is capable of inducing human infections. The protocol consists of 1) Trichoderma culture, 2) washing to obtain conidia, 3) the isolation of peripheral blood mononuclear cells (PBMCs) using the polysucrose solution method and the differentiation of the PBMCs into macrophages, 4) an in vitro phagocytosis method using round glass coverslips and coloration, and 5) a clearance assay to assess the conidia viability after conidia phagocytosis. In summary, these techniques can be used to measure the fungal clearance efficiency of macrophages.


Assuntos
Leucócitos Mononucleares , Macrófagos , Humanos , Esporos Fúngicos , Fagocitose , Fagossomos , Aspergillus fumigatus
5.
Transl Neurodegener ; 12(1): 48, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37908010

RESUMO

Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aß) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Fagocitose , Encéfalo/metabolismo
6.
Cell Chem Biol ; 30(11): 1329-1331, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977126

RESUMO

The precise and selective quantification of drug-target interactions within the context of RAS-RAF heterodimers in live cells offers a powerful tool for drug development and personalized medicine, particularly in cancer research, where the RAS-RAF pathway is pivotal.


Assuntos
Fagocitose , Subunidades Proteicas
7.
Cell Metab ; 35(11): 1847-1848, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37939654

RESUMO

Macrophages not only secure host defense via phagocytosis but also play a key role in tissue homeostasis. A comprehensive study by Fritsch et al. reveals a novel mechanism by which macrophages in the colon deliver polyamines to epithelial cells to support self-renewal of the epithelium during periods of high proliferation.


Assuntos
Colo , Células Epiteliais , Epitélio , Macrófagos , Fagocitose
8.
PLoS Pathog ; 19(11): e1011585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939134

RESUMO

Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMß2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.


Assuntos
Malária Falciparum , Malária , Humanos , Monócitos , Ligantes , Vacúolos , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Células Matadoras Naturais , Plasmodium falciparum , Malária/metabolismo , Fagocitose , Imunoglobulina G/metabolismo
9.
PLoS One ; 18(11): e0292757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939066

RESUMO

Macrophages can reversibly polarize into multiple functional subsets depending on their micro-environment. Identification and understanding the functionality of these subsets is relevant for the study of immune­related diseases. However, knowledge about canine macrophage polarization is still in its infancy. In this study, we polarized canine monocytes using GM-CSF/IFN- γ and LPS towards M1 macrophages or M-CSF and IL-4 towards M2 macrophages and compared them to undifferentiated monocytes (M0). Polarized M1 and M2 macrophages were thoroughly characterized for morphology, surface marker features, gene profiles and functional properties. Our results showed that canine M1-polarized macrophages obtained a characteristic large, roundish, or amoeboid shape, while M2-polarized macrophages were smaller and adopted an elongated spindle-like morphology. Phenotypically, all macrophage subsets expressed the pan-macrophage markers CD14 and CD11b. M1-polarized macrophages expressed increased levels of CD40, CD80 CD86 and MHC II, while a significant increase in the expression levels of CD206, CD209, and CD163 was observed in M2-polarized macrophages. RNAseq of the three macrophage subsets showed distinct gene expression profiles, which are closely associated with immune responsiveness, cell differentiation and phagocytosis. However, the complexity of the gene expression patterns makes it difficult to assign clear new polarization markers. Functionally, undifferentiated -monocytes, and M1- and M2- like subsets of canine macrophages can all phagocytose latex beads. M2-polarized macrophages exhibited the strongest phagocytic capacity compared to undifferentiated monocytes- and M1-polarized cells. Taken together, this study showed that canine M1 and M2-like macrophages have distinct features largely in parallel to those of well-studied species, such as human, mouse and pig. These findings enable future use of monocyte derived polarized macrophages particularly in studies of immune related diseases in dogs.


Assuntos
Macrófagos , Monócitos , Animais , Cães , Diferenciação Celular , Macrófagos/metabolismo , Monócitos/metabolismo , Fagocitose
10.
Nat Commun ; 14(1): 7306, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951973

RESUMO

Pro-tumoral macrophages in lung tumors present a significant challenge in immunotherapy. Here, we introduce a pH-responsive nanomedicine approach for activating anti-tumoral macrophages and dendritic cells. Using a layered double hydroxide nanosheet carrier, we co-deliver a T-type calcium channel inhibitor (TTA-Q6) and a CD47 inhibitor (RRX-001) into lung tumors. In the tumor acidic environment, TTA-Q6 is released, disrupting cancer cell calcium uptake, causing endoplasmic reticulum stress and inducing calreticulin transfer to the cell surface. Surface calreticulin activates macrophages and triggers dendritic cell maturation, promoting effective antigen presentation and therefore activating antitumor T cells. Simultaneously, RRX-001 reduces CD47 protein levels, aiding in preventing immune escape by calreticulin-rich cancer cells. In lung tumor models in male mice, this combined approach shows anti-tumor effects and immunity against tumor re-exposure, highlighting its potential for lung cancer immunotherapy.


Assuntos
Neoplasias Pulmonares , Neoplasias , Masculino , Camundongos , Animais , Neoplasias Pulmonares/patologia , Calreticulina/metabolismo , Antígeno CD47/metabolismo , Nanomedicina , Imunoterapia , Fagocitose
11.
PLoS Biol ; 21(11): e3002359, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934726

RESUMO

Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Insulinas , Doenças Neurodegenerativas , Animais , Drosophila/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fagocitose/fisiologia , Neuroglia/metabolismo , Encéfalo/metabolismo , Dieta , Doenças Neurodegenerativas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Insulinas/metabolismo
12.
J Neuroinflammation ; 20(1): 256, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941008

RESUMO

BACKGROUND: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. METHODS: We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. RESULTS: Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. CONCLUSIONS: Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.


Assuntos
Orientação de Axônios , Lesões Encefálicas , Camundongos , Animais , c-Mer Tirosina Quinase/metabolismo , Apoptose , Fagocitose/fisiologia , Camundongos Knockout , RNA Mensageiro , Fator de Transcrição STAT6/metabolismo
13.
Arch Microbiol ; 205(12): 370, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37925389

RESUMO

Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Humanos , Fagocitose , Imunidade Inata , Inflamação , Apoptose
14.
Trends Immunol ; 44(12): 965-970, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949786

RESUMO

A binary classification of macrophage activation as inflammatory or resolving does not capture the diversity of macrophage states observed in tissues. However, framing macrophage activation as a continuous spectrum of states overlooks the intracellular and extracellular networks that regulate and coordinate macrophage responses. Here, we suggest that the systems biology concept of network motifs, which incorporate rules of local molecular interactions, is useful for reframing macrophage activation. Because network motifs can be used to regulate distinct biological functions, they offer a simplified unit that can be compared across organismal, tissue, and disease contexts. Moreover, defining macrophage states as combinations of functional modules regulated by network motifs offers a framework to ultimately predict and target macrophage responses arising in complex environments.


Assuntos
Macrófagos , Fagocitose , Humanos , Biologia de Sistemas , Inflamação , Ativação de Macrófagos
16.
Proc Natl Acad Sci U S A ; 120(49): e2306788120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38032935

RESUMO

Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasite Toxoplasma gondii as a model because live Toxoplasma actively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivated Toxoplasma into macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite's intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation.


Assuntos
Parasitos , Toxoplasma , Animais , Internalização do Vírus , Fagocitose , Macrófagos , Fatores de Virulência
17.
Front Immunol ; 14: 1286474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035103

RESUMO

Low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1), also known as receptor associated protein (RAP), is an endoplasmic reticulum (ER) chaperone and inhibitor of LDL receptor related protein 1 (LRP1) and related receptors. These receptors have dozens of physiological ligands and cell functions, but it is not known whether cells release LRPAP1 physiologically at levels that regulate these receptors and cell functions. We used mouse BV-2 and human CHME3 microglial cell lines, and found that microglia released nanomolar levels of LRPAP1 when inflammatory activated by lipopolysaccharide or when ER stressed by tunicamycin. LRPAP1 was found on the surface of live activated and non-activated microglia, and anti-LRPAP1 antibodies induced internalization. Addition of 10 nM LRPAP1 inhibited microglial phagocytosis of isolated synapses and cells, and the uptake of Aß. LRPAP1 also inhibited Aß aggregation in vitro. Thus, activated and stressed microglia release LRPAP1 levels that can inhibit phagocytosis, Aß uptake and Aß aggregation. We conclude that LRPAP1 release may regulate microglial functions and Aß pathology, and more generally that extracellular LRPAP1 may be a physiological and pathological regulator of a wide range of cell functions.


Assuntos
Peptídeos beta-Amiloides , Microglia , Camundongos , Animais , Humanos , Peptídeos beta-Amiloides/metabolismo , Células Cultivadas , Linhagem Celular , Fagocitose , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Transporte/metabolismo
18.
Cell Rep ; 42(11): 113423, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952151

RESUMO

Microglia are the primary phagocytes in the central nervous system and clear dead cells generated during development or disease. The phagocytic process shapes the microglia phenotype, which affects the local environment. A unique population of microglia resides in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence the neurogenic niche is not well understood. Here, we demonstrate that phagocytosis contributes to a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering a neuroinflammatory microglia phenotype that resembles dysfunctional microglia in neurodegeneration and aging and that reduces neural precursor proliferation via elevated interleukin-1ß signaling; interleukin-1 receptor inhibition rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to the maintenance of a pro-neurogenic phenotype in the developing V-SVZ.


Assuntos
Ventrículos Laterais , Microglia , Camundongos , Animais , Microglia/fisiologia , Fagocitose/fisiologia , Fagócitos , Transdução de Sinais
19.
Sci Rep ; 13(1): 21001, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017321

RESUMO

Extensive mechanical stress frequently causes micro-traumas in skeletal muscle, followed by a regeneration period. The effective removal of dead myofibers is a prerequisite for proper regeneration, and several cell types, including professional phagocytes, were reported to be active in this process. Myoblasts express several molecules of the phagocytic machinery, such as BAI1, stabilin-2, and TAM (Tyro3, Axl, Mertk) tyrosine kinase receptors, but these molecules were reported to serve primarily cell fusion and survival, and their role in the phagocytosis was not investigated. Therefore, we aimed to investigate the in vitro phagocytic capacity of the C2C12 mouse myoblast cell line. RNA sequencing data were analyzed to determine the level and changes of phagocytosis-related gene expression during the differentiation process of C2C12 cells. To study the phagocytic capacity of myoblasts and the effect of dexamethasone, all-trans retinoic acid, hemin, and TAM kinase inhibitor treatments on phagocytosis, C2C12 cells were fed dead thymocytes, and their phagocytic capacity was determined by flow cytometry. The effect of dexamethasone and all-trans retinoic acid on phagocytosis-related gene expression was determined by quantitative PCR. Both undifferentiated and differentiated cells engulfed dead cells being the undifferentiated cells more effective. In line with this, we observed that the expression of several phagocytosis-related genes was downregulated during the differentiation process. The phagocytosis could be increased by dexamethasone and all-trans retinoic acid and decreased by hemin and TAM kinase inhibitor treatments. Our results indicate that myoblasts not only express phagocytic machinery genes but are capable of efficient dead cell clearance as well, and this is regulated similarly, as reported in professional phagocytes.


Assuntos
Hemina , Fagocitose , Camundongos , Animais , Hemina/farmacologia , Diferenciação Celular , Mioblastos/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Expressão Gênica , Dexametasona/farmacologia , Dexametasona/metabolismo
20.
Cell Rep Methods ; 3(11): 100640, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37963461

RESUMO

Macrophages provide a first line of defense against invading pathogens, including the leading cause of bacterial mortality, Mycobacterium tuberculosis (Mtb). A challenge for quantitative characterization of host-pathogen processes in differentially polarized primary human monocyte-derived macrophages (MDMs) is their heterogeneous morphology. Here, we describe the use of microfabricated patterns that constrain the size and shape of cells, mimicking the physiological spatial confinement cells experience in tissues, to quantitatively characterize interactions during and after phagocytosis at the single-cell level at high resolution. Comparing pro-inflammatory (M1) and anti-inflammatory (M2) MDMs, we find interferon-γ stimulation increases the phagocytic contraction, while contraction and bacterial uptake decrease following silencing of phagocytosis regulator NHLRC2 or bacterial surface lipid removal. We identify host organelle position alterations within infected MDMs and differences in Mtb subcellular localization in line with M1 and M2 cellular polarity. Our approach can be adapted to study other host-pathogen interactions and coupled with downstream automated analytical approaches.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos , Tuberculose/microbiologia , Fagocitose , Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...