Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 953
Filtrar
1.
Food Chem ; 367: 130762, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390912

RESUMO

Inhibitory effects of flavonoids on starch digestibility were well known, but the structural mechanism was not clear. This study was focused on the diverse effect of quercetin and rutin on digestibility of Tartary buckwheat starch. Results showed that quercetin and rutin reduced the starch digestion by altering starch structure in bound forms and inhibiting digestive enzyme activity in free forms simultaneously, and quercetin showed a stronger effect than rutin. Molecular docking and saturation transfer difference-nuclear magnetic resonance (STD-NMR) revealed different binding site of rutin from quercetin was due to its hydroxyl and hydrogen on the glycoside structure. Rutin interacted with enzymes mainly by CH and OH on the glycoside structure which induced steric hindrance and restricted the inhibitory effect of quercetin fraction. The glycoside structure weakened inhibition of rutin on digestive enzymes in free forms rather than influence its anti-digestive effects in bound forms with starch.


Assuntos
Fagopyrum , Rutina , Sítios de Ligação , Digestão , Simulação de Acoplamento Molecular , Quercetina , Amido
2.
Food Chem ; 368: 130806, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34399184

RESUMO

The objective of this study was to compare the in vitro digestibility of different buckwheat and wheat starch cultivars and establish the relationship between digestibility and structure of buckwheat starch. Structure of starches were analyzed with size exclusion chromatography and fluorophore-assisted capillary electrophoresis. Results showed that the amylose content of Tartary buckwheat starch (TBS) and common buckwheat starch (CBS) was 3-4% lower than that of wheat starch. However, no significant difference in the digestibility was found between them. The fast digestion rate coefficient of TBS was negatively correlated with the amount of long amylopectin chains (24 < DP ≤ 36), and the total digested starch percentage of CBS was negatively correlated with the amount of medium-long amylopectin chains (13 < DP ≤ 24). This suggests that the digestibility of fully gelatinized starch had no association with the botanical sources but may be more influenced by starch structure.


Assuntos
Fagopyrum , Amido , Amilopectina , Amilose , Estrutura Molecular , Triticum
3.
Food Res Int ; 148: 110634, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507777

RESUMO

Previous work has demonstrated that slightly acidic electrolyzed water (SAEW) can promote growth and nutrient enrichment of buckwheat sprouts. In this study, iTRAQ-based quantitative proteomic analysis of SAEW-induced buckwheat sprouts was conducted to explore its mechanism of action. The results showed that 11, 10 and 14 differentially expressed proteins (DEPs) related to energy metabolism, oxidative stress and flavonoid biosynthesis accumulated upwards and downwards, respectively, in SAEW-treated buckwheat. Bioinformatics analysis revealed 118 GO categories were in relation to molecular function. In the SAEW group, a total of 9 DEPs (5 up-regulated) were mapped to 10 significantly enriched KEGG pathways. SAEW induced flavonoid enrichment by modulating zymoproteins (e.g. phenylalanine ammonialyase and flavonol synthase) in phenylpropanoid biosynthesis pathway. qRT-PCR results had consistency with abundance levels of their corresponding proteins. These findings are likely to reveal the molecular mechanisms underlying the biochemical enrichment of buckwheat sprouts by SAEW.


Assuntos
Fagopyrum , Eletrólise , Flavonoides , Proteômica , Água
4.
J Agric Food Chem ; 69(38): 11361-11371, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34530609

RESUMO

The key odorants of tartary buckwheat (TB) were researched by a sensory-directed flavor analysis approach for the first time. After the volatiles of TB were isolated by solvent-assisted flavor evaporation (SAFE), 49 aroma-active components with flavor dilution (FD) factors in the range of 1-2187 were identified using gas chromatography-olfactometry-mass spectrometry (GC-O-MS) combined with aroma extract dilution analysis (AEDA). Geranylacetone, phenethyl alcohol, and ß-damascone showed the highest FD factors of 2187. All 49 odorants were further quantitated by the internal standard curve method, and their odor activity values (OAVs) were obtained. The overall aroma of TB was successfully simulated (similarity > 98.16%) by mixing 16 odorants (OAV ≥ 1) with their natural concentrations. The omission tests revealed that geosmin, α-isomethylionone, α-methylionone, ß-ionone, linalool, ß-damascone, geranylacetone, guaiacol, ethyl hexanoate, geraniol, vanillin, tetrahydrolinalool, and 2,5-dimethyl-4-hydroxy-3-(2H)-furanone were the key odorants of TB. Chiral analysis showed that tetrahydrolinalool and linalool existed as racemics in the commercial TB. The relative content of R-enantiomers of α-isomethylionone and α-methylionone was slightly higher than that of their S-enantiomers. The odor thresholds of R- and S-enantiomer of tetrahydrolinalool were first detected as 0.029 and 3.8 µg/L in air, respectively.


Assuntos
Fagopyrum , Compostos Orgânicos Voláteis , Aromatizantes , Odorantes/análise , Olfatometria
5.
J Agric Food Chem ; 69(32): 9419-9433, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34374283

RESUMO

Usage of sprouted grains is an increasing trend in thermally processed foods. Sprouting alters the composition of sugars and amino acids, which are Maillard reaction precursors. Free asparagine, total free amino acids, and sugars were monitored during sprouting and yeast and sourdough fermentations. Acrylamide and 5-hydroxymethylfurfural (HMF) were analyzed in heated samples. The asparagine concentration decreased up to 40% after 24-36 h of sprouting, except for buckwheat, and then increased to the initial concentration after 48 h and several folds after 72 h. The increased amount of reducing sugars after sprouting caused higher acrylamide and HMF formation even if the asparagine concentration was lower. Acrylamide and HMF formation decreased after fermentation of sprouted wholemeal because sugars and asparagine were consumed by yeast. A pH drop of 3 units by sourdough fermentation decreased acrylamide formation but increased HMF formation. Results indicated that sprouted cereal products should be produced under controlled conditions to be used in heated foods.


Assuntos
Fagopyrum , Hordeum , Acrilamida , Asparagina , Avena , Fermentação , Furaldeído/análogos & derivados , Calefação , Temperatura Alta , Reação de Maillard , Secale , Açúcares , Triticum
6.
Food Chem ; 365: 130459, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216911

RESUMO

Buckwheat is a pseudocereal with important nutritional qualities and great potential for broad consumption. The study aimed to determine the biochemical composition, antioxidant properties and multi-mineral composition of the whole grains, hulls, bran, and the light flour of common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat harvested in two consecutive years. Significant differences between fractions of both species were observed. On the other hand, the differences between the production years were not so significant. Biochemical and multi-mineral compositions of common and Tartary buckwheat were comparable, while significant differences between species were observed in antioxidant properties. The antioxidant potential (AOP), total phenolic content (TPC), and total flavonoid content (TFC) were higher in all fractions of Tartary buckwheat compared to individual fractions of common buckwheat. Fourteen minerals were quantified in fractions. Contents of all major minerals and most of the trace minerals were the highest in bran fraction.


Assuntos
Fagopyrum , Antioxidantes , Flavonoides , Farinha , Fenóis
7.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205369

RESUMO

The benefits of natural honeybee products (e.g., honey, royal jelly, beeswax, propolis, beevenom and pollen) to the immune system are remarkable, and many of them are involved in the induction of antibody production, maturation of immune cells and stimulation of the immune system. The type of plants in the geographical area, climatic conditions and production method have a significantly influence on the nutritional quality of honey. However, this variability can influence consumer liking by the sensory attributes of the product. The aim of this work was to compare the most popular honeys from Poland in terms of nutritional value, organoleptic properties and antioxidant activity. In the study, five varieties of honey (honeydew, forest, buckwheat, linden and dandelion) from conventional and organic production methods were tested. The nutritional characteristics of honey samples included acidity, content of water, sugars, vitamin C, HMF and phenolics (total and flavonoids), while honey color, taste, aroma and consistency were investigated in the organoleptic characteristics. The antioxidant activity was determined in water- and ethanol-soluble honey extracts using DPPH and ORAC tests. The results showed that organoleptic and nutritional characteristics of popular Polish honeys differ significantly in relation to plant source and production method. The significant effect of honey variety on the content of HMF, saccharose and phenolics, as well as acidity and antioxidant capacity were noted. The impact of variety and variety × production method interaction was significant in the case of the content of vitamin C, glucose and fructose. A visible difference of buckwheat and forest honeys from other samples was observed. The highest content of total phenolics with antioxidant activity based on the SET mechanism was found in buckwheat honeys, while forest honeys were richer in flavonoids.


Assuntos
Antioxidantes/farmacologia , Abelhas/metabolismo , Mel/análise , Nutrientes/farmacologia , Animais , Ácido Ascórbico/farmacologia , Etanol/química , Fagopyrum , Feminino , Flavonoides/farmacologia , Frutose/farmacologia , Glucose/farmacologia , Sistema Imunitário/efeitos dos fármacos , Masculino , Fenóis/farmacologia , Polônia , Água/química
8.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201389

RESUMO

The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing mechanisms involving FFF with light exposure were determined using a spectrophotometer and a fluorometer. S. mutans and its biofilm inactivation after PDI treatment of FFF using blue light (BL; 450 nm) were determined by plate count method and crystal violet assay, respectively. The biofilm destruction by ROS produced from FFF after exposure to BL was visualized using confocal laser scanning microscopy (CLSM) and field emission scanning electron microscope (FE-SEM). BL among 3 light sources produced type 1 ROS the most when applying FFF as a photosensitizer. FFF exposed to BL (5 and 10 J/cm2) significantly more inhibited S. mutans viability and biofilm formation than FFF without the light exposure (p < 0.05). In the PDI of FFF exposed to BL (10 J/cm2), an apparent destruction of S. mutans and its biofilm were observed by the CLSM and FE-SEM. Antibacterial PDI effect of FFF was determined for the first time in this study.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fagopyrum/química , Flores/química , Fármacos Fotossensibilizantes/farmacologia , Extratos Vegetais/farmacologia , Quinonas/farmacologia , Streptococcus mutans/crescimento & desenvolvimento , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Luz , Fotoquimioterapia , Streptococcus mutans/efeitos dos fármacos
9.
Beijing Da Xue Xue Bao Yi Xue Ban ; 53(3): 447-452, 2021 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-34145843

RESUMO

OBJECTIVE: To study the effects of buckwheat-oat-pea (BOP) composite flour [buckwheat ∶ oats ∶ peas=6 ∶ 1 ∶ 1 (quality ratio)] on blood glucose in diabetic rats. METHODS: In this study, 64 male Sprague-Dawley rats were divided into 8 groups by fasting blood glucose (FBG) and body weight: normal control group, model control group, metformin group, buckwheat group, oats group, BOP low-dose group (BOP-L), medium-dose group (BOP-M), and high-dose group (BOP-H). The rats in the normal control group were fed with normal diet, the rats in the model control group and metformin group were fed with a high-fat diet (HFD), and the rats in the buckwheat group, oats group, and BOP-L, BOP-M, BOP-H groups were fed with HFD containing 10% buckwheat flour, 10% oat flour, 3.3% BOP, 10% BOP, 30% BOP, respectively. The HFD in all the groups had the same percentage of energy from fat (45%). After 30 days, the rats fed with HFD received intraperitoneal injection of streptozotocin (30 mg/kg, once a week for two weeks) to establish diabetes mellitus. After the model was successful established, the rats were fed for another 28 days. During the study, the body weight, food intake/body weight (FI/BW) and water intake/body weight (WI/BW), food utilization rate, 24 h urine volume, FBG, glucose area under curve (GAUC) of oral glucose tolerance test were measured regularly. At the end of the study, the fasting serum glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. RESULTS: With the inducing of HFD and streptozotocin, compared with the normal control group, the rats in the model control group had higher FI/BW, WI/BW, 24 h urine volume, FBG, GAUC, HOMA-IR (P < 0.05), and lower body weight, food utilization rate (P < 0.05). Compared with the model control group, the rats in the three BOP groups all had higher body weight, food utilization rate (P < 0.05), and lower WI/BW, HOMA-IR (P < 0.05); the rats in the BOP-L and BOP-M groups had lower FI/BW, 24 h urine volume, FBG (P < 0.05), and the rats in the BOP-M group also had lower GAUC (P < 0.05). After the establishment of diabetes, there was no significant difference in blood glucose and the other indicators between the rats in the three BOP groups and the buckwheat group or the oats group (P>0.05). CONCLUSION: The BOP had the effects of reducing blood glucose, insulin resistance and diabetic symptoms on diabetic rats, and had the value for further development and utilization.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fagopyrum , Resistência à Insulina , Animais , Avena , Glicemia , Dieta Hiperlipídica/efeitos adversos , Insulina , Masculino , Ervilhas , Ratos , Ratos Sprague-Dawley
10.
J Agric Food Chem ; 69(25): 7218-7229, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34151566

RESUMO

The characteristics of flavonoid metabolism in different Tartary buckwheat (TB) tissues and the related gene regulation network are still unclear at present. One hundred forty-seven flavonoids were identified from six TB tissues using the ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The roadmap of the rutin synthesis pathway was revealed. Through transcriptomic analysis it was revealed that the differentially expressed genes (DEGs) are mainly enriched in the "Phenylpropanoid biosynthesis" pathway. Fifty-two DEGs involved in the "flavonol synthesis" pathway were identified. The weighted gene correlation network analysis revealed four co-expression network modules correlated with six flavonol metabolites. Eventually, 74 genes revealed from MEblue and MElightsteelblue modules were potentially related to flavonol synthesis. Of them, 7 MYB transcript factors had been verified to regulate flavonoid synthesis. Furthermore, overexpressed FtMYB31 enhanced the rutin content in vivo. The present findings provide a dynamic flavonoid metabolism profile and co-expression network related to rutin synthesis and are thus valuable in understanding the molecular mechanisms of rutin synthesis in TB.


Assuntos
Fagopyrum , Transcriptoma , Cromatografia Líquida , Fagopyrum/genética , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Espectrometria de Massas em Tandem
11.
Food Chem ; 362: 130255, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111694

RESUMO

For selective adsorption of main flavonoids from crude Tartary buckwheat extract (rutin, 0.021 mg/mL; quercetin, 0.030 mg/mL; and kaempferol, 0.011 mg/mL), new ionic liquid-based sorbents were successfully prepared by encapsulating [Bmim]Br and [Bmim]Pro in regular spherical non-magnetic and magnetic microcapsules with polysulfone content of 8%, respectively. After appropriate loading process, the microcapsules were comprehensively characterized by infrared spectroscopy, thermogravimetry analysis and scanning electron microscopy. Then the separation strategy was designed to separate rutin and quercetin from kaempferol by combinational use of two kinds of IL-loaded microcapsules (ILLMs). The effects of solid-liquid ratio of ILLMs and extract, pH, time and adsorption temperature were all investigated. The experimental data fit well with the quasi-second-order kinetics model and Langmuir model. After desorption, target flavonoids were well recovered and the ILLMs showed good stability. As the result, a new IL-based separation technology for main flavonoids from food crop was developed for the first time.


Assuntos
Fagopyrum/química , Flavonoides/isolamento & purificação , Tecnologia de Alimentos/métodos , Líquidos Iônicos/química , Misturas Complexas , Flavonoides/análise , Quempferóis/isolamento & purificação , Quercetina/isolamento & purificação , Rutina/isolamento & purificação , Vitaminas
12.
Int J Biol Macromol ; 184: 1026-1034, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166697

RESUMO

The effects of repeated retrogradation (RR, range from 1 to 3 times) at different temperatures (4 °C; 4/25 °C, with a 24 h interval; 25 °C) on the in vitro digestibility and structures of Tartary buckwheat starch (TS) were investigated in this study. Results demonstrated that TS treated by RR for 1 time under 4/25 °C contained the maximum content of slowly digestible starch (SDS, 35.25%); TS treated by RR for 3 times under 25 °C contained the maximum content of resistant starch (RS, 54.92%). As the increase of RR cycle times, the value of relative crystallinity, the ratios of 1047/1022 cm-1 and 995/1022 cm-1 increased, the starch pore wall thickened, and more smooth fragments appeared (observed by scanning electron microscope), while the value of melting temperature range trended to decrease. The crystallization type of TS changed from type "A" to a mixture of "B + V" after retrogradation treatment. Pearson correlation analysis revealed that the content of rapidly digestible starch (RDS) was negatively correlated with the ratio of 995/1022 cm-1, transition temperatures, and enthalpy (P < 0.05). These results would supply a potential method for the preparation of starch with slow-digesting properties, also improve the utilization and expand the application of TS.


Assuntos
Fagopyrum/química , Amido/química , Cristalização , Hidrólise , Temperatura , Termodinâmica , Difração de Raios X
13.
BMC Res Notes ; 14(1): 181, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985559

RESUMO

OBJECTIVES: Pearl millet (Pennisetum glaucum) is a staple cereal crop for semi-arid regions. Its whole genome sequence and deduced putative gene sequences are available. However, the functions of many pearl millet genes are unknown. Situations are similar for other crop species such as garden asparagus (Asparagus officinalis), chickpea (Cicer arietinum) and Tartary buckwheat (Fagopyrum tataricum). The objective of the data presented here was to improve functional annotations of genes of pearl millet, garden asparagus, chickpea and Tartary buckwheat with gene annotations of model plants, to systematically provide such annotations as well as their sequences on a website, and thereby to promote genomics for those crops. DATA DESCRIPTION: Sequences of genomes and transcripts of pearl millet, garden asparagus, chickpea and Tartary buckwheat were downloaded from a public database. These transcripts were associated with functional annotations of their Arabidopsis thaliana and rice (Oryza sativa) counterparts identified by BLASTX. Conserved domains in protein sequences of those species were identified by the HMMER scan with the Pfam database. The resulting data was deposited in the figshare repository and can be browsed on the Terse Genomics Interface for Developing Botany (TGIF-DB) website ( http://webpark2116.sakura.ne.jp/rlgpr/ ).


Assuntos
Botânica , Fagopyrum , Genômica , Filogenia , Proteínas de Plantas/genética
14.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946760

RESUMO

Fagopyrum tataricum 'Hokkai T10' is a buckwheat cultivar capable of producing large amounts of phenolic compounds, including flavonoids (anthocyanins), phenolic acids, and catechin, which have antioxidant, anticancer, and anti-inflammatory properties. In the present study, we revealed that the maize transcription factor Lc increased the accumulation of phenolic compounds, including sinapic acid, 4-hydroxybenzonate, t-cinnamic acid, and rutin, in Hokkai T10 hairy roots cultured under long-photoperiod (16 h light and 8 h dark) conditions. The transcription factor upregulated phenylpropanoid and flavonoid biosynthesis pathway genes, yielding total phenolic contents reaching 27.0 ± 3.30 mg g-1 dry weight, 163% greater than the total flavonoid content produced by a GUS-overexpressing line (control). In contrast, when cultured under continuous darkness, the phenolic accumulation was not significantly different between the ZmLC-overexpressing hairy roots and the control. These findings suggest that the transcription factor (ZmLC) activity may be light-responsive in the ZmLC-overexpressing hairy roots of F. tataricum, triggering activation of the phenylpropanoid and flavonoid biosynthesis pathways. Further studies are required on the optimization of light intensity in ZmLC-overexpressing hairy roots of F. tataricum to enhance the production of phenolic compounds.


Assuntos
Fagopyrum/metabolismo , Fagopyrum/efeitos da radiação , Fenóis/metabolismo , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , Escuridão , Fagopyrum/genética , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/efeitos da radiação , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos da radiação
15.
J Agric Food Chem ; 69(20): 5764-5773, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33973775

RESUMO

Common buckwheat sprout (CBS) contains more flavone C-glycosides (FCGs) and flavonol O-glycosides (FOGs) than does common buckwheat seed. Both flavonoids in CBS are well known for providing benefits to human health. However, they are relatively less bioaccessible and more directly degradable to aglycone during digestion than are multiglycosylated flavonoids. To overcome such limitations, the water solubility and digestion stability of FCGs and FOGs were enhanced by transglycosylation using cyclodextrin glycosyltransferase. Gastric conditions had little effect on the stability of FCGs and FOGs and their enzyme-modified compounds. In contrast, under intestinal conditions, transglycosylated FCGs lost a glucose moiety and reverted to their parent compounds before transglycosylation. Under colonic fermentation using human fecal samples, the different profiles and concentrations of short-chain fatty acids were suggested to be mainly due to the presence of transglycosylated FCGs and FOGs. These findings indicate that the process of transglycosylation changes the bioaccessibility of flavonoids in CBS.


Assuntos
Fagopyrum , Digestão , Fermentação , Flavonoides , Glicosídeos , Humanos , Extratos Vegetais
16.
BMC Plant Biol ; 21(1): 206, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931042

RESUMO

BACKGROUND: Tartary buckwheat is an important minor crop species with high nutritional and medicinal value and is widely planted worldwide. Cultivated Tartary buckwheat plants are tall and have hollow stems that lodge easily, which severely affects their yield and hinders the development of the Tartary buckwheat industry. METHODS: Heifeng No. 1 seeds were treated with ethylmethanesulfonate (EMS) to generate a mutant library. The dwarf mutant ftdm was selected from the mutagenized population, and the agronomic characteristics giving rise to the dwarf phenotype were evaluated. Ultra-fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was performed to determine the factors underlying the different phenotypes between the wild-type (WT) and ftdm plants. In addition, RNA sequencing (RNA-seq) was performed via the HiSeq 2000 platform, and the resulting transcriptomic data were analysed to identify differentially expressed genes (DEGs). Single-nucleotide polymorphism (SNP) variant analysis revealed possible sites associated with dwarfism. The expression levels of the potential DEGs between the WT and ftdm mutant were then measured via qRT-PCR and fragments per kilobase of transcript per million mapped reads (FPKM). RESULT: The plant height (PH) of the ftdm mutant decreased to 42% of that of the WT, and compared with the WT, the mutant and had a higher breaking force (BF) and lower lodging index (LI). Lower GA4 and GA7 contents and higher contents of jasmonic acid (JA), salicylic acid (SA) and brassinolactone (BR) were detected in the stems of the ftdm mutant compared with the WT. Exogenous application of GAs could not revert the dwarfism of the ftdm mutant. On the basis of the transcriptomic analysis, 146 homozygous SNP loci were identified. In total, 12 DEGs with nonsynonymous mutations were ultimately identified, which were considered potential candidate genes related to the dwarf trait. When the sequences of eight genes whose expression was downregulated and four genes whose expression was upregulated were compared, SKIP14, an F-box protein whose sequence is 85% homologous to that of SLY1 in Arabidopsis, presented an amino acid change (from Ser to Asn) and was expressed at a lower level in the stems of the ftdm mutant compared with the WT. Hence, we speculated that this amino acid change in SKIP14 resulted in a disruption in GA signal transduction, indirectly decreasing the GA content and downregulating the expression of genes involved in GA biosynthesis or the GA response. Further studies are needed to determine the molecular basis underlying the dwarf phenotype of the ftdm mutant. CONCLUSION: We report a Tartary buckwheat EMS dwarf mutant, ftdm, suitable for high-density planting and commercial farming. A significant decrease in GA4 and GA7 levels was detected in the ftdm mutant, and 12 DEGs expressed in the stems of the ftdm mutant were selected as candidates of the dwarfing gene. One nonsynonymous mutation was detected in the SKIP14 gene in the ftdm mutant, and this gene had a lower transcript level compared with that in the WT.


Assuntos
Fagopyrum/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Fagopyrum/anatomia & histologia , Fagopyrum/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Mutação , Fenótipo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
17.
Food Res Int ; 143: 110262, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992363

RESUMO

Buckwheat was processed by solid-state fermentation (SSF) with the probiotic fungal strain Eurotium cristatum YL-1. The effects of SSF on the phytochemical content, as well as the antioxidant and α-glucosidase inhibitory activities, on buckwheat were revealed. Metabolite differences between non-fermented buckwheat (BW) and E. cristatum fermented buckwheat (FBW) were investigated by LC-MS/MS-based untargeted metabolomics. Results showed that 103 and 68 metabolites remarkably differed between BW and FBW in positive and negative ionization modes, respectively. Most phenolic compounds and alkaloids were significantly up-regulated during SSF. Hydrolytic enzymes (i.e., ß-glucosidase, α-amylase, protease, and cellulase) were produced by the filamentous fungus E. cristatum during SSF. In vitro spectrophotometric assays demonstrated that the total phenolics content, ferric reducing antioxidant power, reducing power, scavenging activities of DPPH radical and ABTS+, and α-glucosidase inhibitory activity of buckwheat were considerably enhanced after processing by SSF with E. cristatum. Additionally, solvents with different polarities significantly influenced the antioxidant and α-glucosidase inhibitory activities of buckwheat extracts. Our study indicated that processing by SSF with E. cristatum can greatly improve the phytochemical components of buckwheat and consequently contribute to its antioxidant and α-glucosidase inhibitory activities. SSF with E. cristatum is an innovative method for enhancing the health-promoting components and bioactivities of buckwheat.


Assuntos
Eurotium , Fagopyrum , Antioxidantes , Aspergillus , Cromatografia Líquida , Fermentação , Espectrometria de Massas em Tandem , alfa-Glucosidases/metabolismo
18.
J Food Biochem ; 45(7): e13780, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34028049

RESUMO

This study aims to investigate the effects of two flavonoids, rutin and quercetin, on inhibitory activity of recombinant buckwheat trypsin inhibitor (rBTI). We found that rutin and quercetin could quench the florescence of rBTI through the static quenching process. We also observed that upon binding to rutin or quercetin, rBTI underwent conformational changes. The results also suggested that rutin and quercetin bind to two different sites on rBTI through different interactions: rutin binds to rBTI through van der Waals forces and hydrogen bonds, whereas quercetin binds through hydrophobic interactions. Rutin and quercetin also markedly deactivated the trypsin inhibitory activity (TIA) of rBTI, while quercetin exhibited higher inactivation effect on rBTI than rutin due to its structure. Finally, the molecular docking revealed the molecular binding between the flavonoids and rBTI. These findings can be useful for the understanding of how flavonoid affects the inhibitory of rBTI.


Assuntos
Fagopyrum , Solanum tuberosum , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Quercetina/farmacologia , Rutina/farmacologia
19.
Int J Biol Macromol ; 183: 818-830, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33965481

RESUMO

Tartary buckwheat is one of the few pseudocereals with abundant flavonoids and starch. However, there are different views on the digestibility of Tartary buckwheat starch (TBS) because of its particle size and structure. In this study, fluorescence spectrum methods and enzymatic kinetics were used to investigate the interaction between TBS /two glycosidase (α-amylase and α-glucosidase) and quercetin to explore its digestive properties and provide a perspective regarding the application of TBS in functional starch products. The results showed that the interaction between TBS and quercetin was probably weak hydrophobic force and hydrogen bonding. The inhibitory effect of quercetin on α-amylase was better than that on α-glucosidase. The half inhibitory concentrations (IC50) of quercetin to α-amylase and α- glucosidase was (270 ±â€¯3.31) and (544 ±â€¯9.01) µg/mL, respectively. The intrinsic fluorescence of two enzymes was statically quenched by forming a complex with quercetin. Quercetin also increased the microenvironment hydrophilicity of tryptophan residues in glycosidase. In vitro digestion experiment demonstrated that quercetin and TBS co-gelatinized together was more effective to inhibit TBS hydrolysis than quercetin itself alone. In the first-order kinetic and LOS model, quercetin-starch gel structure and quercetin inhibitory activity against enzymes had synergistic effects of the TBS digestion.


Assuntos
Quercetina/farmacologia , Amido/química , alfa-Amilases/metabolismo , alfa-L-Fucosidase/metabolismo , Fagopyrum , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Cinética , Ligação Proteica , Quercetina/química , alfa-Amilases/química , alfa-L-Fucosidase/química
20.
J Sci Food Agric ; 101(14): 6104-6116, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33908040

RESUMO

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is a traditional edible and medicinal crop and has been praised as one of the green foods for humans in the 21st century. However, its production and promotion are restricted by the low yields of current varieties. The interaction of genotype and environment could lead to inconsistent phenotypic performance of genotypes across different environments. Climate change has intensified these effects and poses a substantial threat to crop production. RESULTS: In the present study, the effects of meteorological factors on the phenotypic traits of 200 Tartary buckwheat landraces across four macro-environments were investigated. Overall, the phenotypic performance of these Tartary buckwheat landraces was markedly varied across the different environments. Also, the average daily temperature and precipitation had relatively higher impacts on phenotypic performance. The results also revealed the negative impacts of relative humidity on the yield-related traits. Twenty-five Tartary buckwheat landraces were ultimately identified as having good overall phenotypic performance and high yield stability. CONCLUSION: Understanding the impacts of meteorological factors on the phenotypic performance of crops can guide appropriate measures and facilitate germplasm selection for yield enhancement in the context of climate change. The landraces selected comprehensively in this study could be used as parents or intermediate materials for breeding high-quality Tartary buckwheat varieties in the future. The methods used could also be extended to other crops for breeding and germplasm innovation. © 2021 Society of Chemical Industry.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Ecossistema , Meio Ambiente , Conceitos Meteorológicos , Fenótipo , Chuva/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...