Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.196
Filtrar
1.
BMC Genomics ; 22(1): 655, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34511070

RESUMO

BACKGROUND: Myxobacteria harbor numerous biosynthetic gene clusters that can produce a diverse range of secondary metabolites. Minicystis rosea DSM 24000T is a soil-dwelling myxobacterium belonging to the suborderSorangiineae and family Polyangiaceae and is known to produce various secondary metabolites as well as polyunsaturated fatty acids (PUFAs). Here, we use whole-genome sequencing to explore the diversity of biosynthetic gene clusters in M. rosea. RESULTS: Using PacBio sequencing technology, we assembled the 16.04 Mbp complete genome of M. rosea DSM 24000T, the largest bacterial genome sequenced to date. About 44% of its coding potential represents paralogous genes predominantly associated with signal transduction, transcriptional regulation, and protein folding. These genes are involved in various essential functions such as cellular organization, diverse niche adaptation, and bacterial cooperation, and enable social behavior like gliding motility, sporulation, and predation, typical of myxobacteria. A profusion of eukaryotic-like kinases (353) and an elevated ratio of phosphatases (8.2/1) in M. rosea as compared to other myxobacteria suggest gene duplication as one of the primary modes of genome expansion. About 7.7% of the genes are involved in the biosynthesis of a diverse array of secondary metabolites such as polyketides, terpenes, and bacteriocins. Phylogeny of the genes involved in PUFA biosynthesis (pfa) together with the conserved synteny of the complete pfa gene cluster suggests acquisition via horizontal gene transfer from Actinobacteria. CONCLUSION: Overall, this study describes the complete genome sequence of M. rosea, comparative genomic analysis to explore the putative reasons for its large genome size, and explores the secondary metabolite potential, including the biosynthesis of polyunsaturated fatty acids.


Assuntos
Myxococcales , Ácidos Graxos Insaturados , Genoma Bacteriano , Família Multigênica , Myxococcales/genética , Filogenia
2.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3838-3845, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472257

RESUMO

The longevity mechanism of ginseng(Panax ginseng) is related to its strong meristematic ability. In this paper, this study used bioinformatic methods to identify the members of the ginseng TCP gene family in the whole genome and analyzed their sequence characteristics. Then, quantitative real-time fluorescent PCR was performed to analyze the TCP genes containing elements rela-ted to meristem expression in the taproots, fibrous roots, stems, and leaves. According to the data, this study further explored the expression specificity of TCP genes in ginseng tissues, which facilitated the dissection of the longevity mechanism of ginseng. The ginseng TCP members were identified and analyzed using PlantTFDB, ExPASy, MEME, PLANTCARE, TBtools, MEGA and DNAMAN. The results demonstrated that there were 60 TCP gene family members in ginseng, and they could be divided into two classes: Class Ⅰ and Class Ⅱ, in which the Class Ⅱ possessed two subclasses: CYC-TCP and CIN-TCP. The deduced TCP proteins in ginseng had the length of 128-793 aa, the isoelectric point of 4.49-9.84 and the relative molecular mass of 14.2-89.3 kDa. They all contained the basic helix-loop-helix(bHLH) domain. There are a variety of stress response-related cis-acting elements in the promoter regions of ginseng TCP genes, and PgTCP20-PgTCP24 contained the elements associated with meristematic expression. The transcription levels of PgTCP20-PgTCP24 were high in fibrous roots and leaves, but low in stems, indicating the tissue-specific expression of ginseng TCP genes. The Class Ⅰ TCP members which contained PgTCP20-PgTCP23, may be important regulators for the growth and development of ginseng roots.


Assuntos
Panax , Fatores de Transcrição , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Família Multigênica , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Planta ; 254(4): 64, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487243

RESUMO

MAIN CONCLUSION: Thirty CcMYB were identified to involve in flavonoid and lignin biosynthesis in pigeon pea genome. A comprehensive analysis of gene structure, phylogenetic relationships, distribution on chromosomes, gene duplication, and expression patterns was performed. MYB transcription factor is one of the largest gene families in plants and plays critical roles in plant growth and development, as well as resistance to biotic and abiotic stress. However, the function of MYB genes in pigeon pea (Cajanus cajan) remains largely unknown. Here, 30 R2R3-MYB which involved flavonoid and lignin biosynthesis were identified in the pigeon pea genome and were classified into five groups based on phylogenetic analysis. Simultaneously, another 122 key enzyme genes from biosynthetic pathways of flavonoid and lignin were identified and all of them were mapped on 11 chromosomes with the co-linearity relationship. Among these genes, the intron/exon organization and motif compositions were conserved and they have undergone a strong purifying selection and tandem duplications during evolution. Expression profile analysis demonstrated most of these genes were expressed in different tissues and responded significantly to MeJA, RNA-seq analysis revealed clear details of genes varied with time of induction. Ten key genes from the phenylpropanoid pathway were selected to further verify whether they responded to induction under different abiotic stress conditions (UV-B, cold, heat, salt, drought, and GA3). This study elaborates on potential regulatory relationships between R2R3-MYB genes and some key genes involved in flavonoid and lignin biosynthesis under MeJA treatment, as well as adding to the understanding of improving abiotic stress tolerance and regulating the secondary metabolism in woody crops. A simplified discussion model for the different regulation networks involved with flavonoid and lignin biosynthesis in pigeon pea is proposed.


Assuntos
Cajanus , Cajanus/genética , Cajanus/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário
4.
Euro Surveill ; 26(36)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34505571

RESUMO

We identified a novel van gene cluster in a clinical Enterococcus faecium isolate with vancomycin minimum inhibitory concentration (MIC) of 4 µg/mL. The ligase gene, vanP, was part of a van operon cluster of 4,589 bp on a putative novel integrative conjugative element located in a ca 98 kb genomic region presumed to be acquired by horizontal gene transfer from Clostridium scidens and Roseburia sp. 499. Screening for van genes in E. faecium strains with borderline susceptibility to vancomycin is important.


Assuntos
Enterococcus faecium , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bélgica , Enterococcus faecium/genética , Humanos , Família Multigênica , Resistência a Vancomicina/genética
5.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445524

RESUMO

The family of B-box (BBX) transcription factors contains one or two B-BOX domains and sometimes also features a highly conserved CCT domain, which plays important roles in plant growth, development and stress response. Nevertheless, no systematic study of the BBX gene family in Iris germanica L. has been undertaken. In this study, a set of six BBX TF family genes from I. germanica was identified based on transcriptomic sequences, and clustered into three clades according to phylogenetic analysis. A transient expression analysis revealed that all six BBX proteins were localized in the nucleus. A yeast one-hybrid assay demonstrated that IgBBX3 has transactivational activity, while IgBBX1, IgBBX2, IgBBX4, and IgBBX5 have no transcriptional activation ability. The transcript abundance of IgBBXs in different tissues was divided into two major groups. The expression of IgBBX1, IgBBX2, IgBBX3 and IgBBX5 was higher in leaves, whereas IgBBX4 and IgBBX6 was higher in roots. The stress response patterns of six IgBBX were detected under phytohormone treatments and abiotic stresses. The results of this study lay the basis for further research on the functions of BBX gene family members in plant hormone and stress responses, which will promote their application in I. germanica breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Iris (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Iris (Planta)/genética , Iris (Planta)/crescimento & desenvolvimento , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico , Fatores de Transcrição/genética
6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445565

RESUMO

Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1-McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mentha/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mentha/genética , Mentha/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/genética , Homologia de Sequência
7.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445115

RESUMO

The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant-pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses.


Assuntos
Transporte Biológico/genética , Citrullus/genética , Genoma de Planta/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Açúcares/metabolismo , Fusarium/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Filogenia , Raízes de Plantas/genética , Regiões Promotoras Genéticas/genética
8.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445464

RESUMO

The GLABROUS1 enhancer-binding protein (GeBP) gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the GeBP gene family is available in the case of the Gramineae crops. Here, 125 GeBP genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis. Evolutionary analyses showed that whole genome duplication (WGD) and segmental duplication play important roles in the expansion of the GeBP gene family. The various gene structures and protein motifs revealed that the GeBP genes play diverse functions in plants. In addition, the expression profile analysis of the GeBP genes showed that 13 genes expressed in all tested organs and stages of development in rice, with especially high levels of expression in the leaf, palea, and lemma. Furthermore, the hormone- and metal-induced expression patterns showed that the expression levels of most genes were affected by various biotic stresses, implying that the GeBP genes had an important function in response to various biotic stresses. Furthermore, we confirmed that OsGeBP11 and OsGeBP12 were localized to the nucleus through transient expression in the rice protoplast, indicating that GeBPs function as transcription factors to regulate the expression of downstream genes. This study provides a comprehensive understanding of the origin and evolutionary history of the GeBP genes family in Gramineae, and will be helpful in a further functional characterization of the GeBP genes.


Assuntos
Produtos Agrícolas , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Poaceae , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo
9.
Nat Commun ; 12(1): 5013, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408147

RESUMO

Human families with chromosomal rearrangements at 2q31, where the human HOXD locus maps, display mesomelic dysplasia, a severe shortening and bending of the limb. In mice, the dominant Ulnaless inversion of the HoxD cluster produces a similar phenotype suggesting the same origin for these malformations in humans and mice. Here we engineer 1 Mb inversion including the HoxD gene cluster, which positioned Hoxd13 close to proximal limb enhancers. Using this model, we show that these enhancers contact and activate Hoxd13 in proximal cells, inducing the formation of mesomelic dysplasia. We show that a secondary Hoxd13 null mutation in-cis with the inversion completely rescues the alterations, demonstrating that ectopic HOXD13 is directly responsible for this bone anomaly. Single-cell expression analysis and evaluation of HOXD13 binding sites suggests that the phenotype arises primarily by acting through genes normally controlled by HOXD13 in distal limb cells. Altogether, these results provide a conceptual and mechanistic framework to understand and unify the molecular origins of human mesomelic dysplasia associated with 2q31.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/metabolismo , Animais , Doenças do Desenvolvimento Ósseo/embriologia , Doenças do Desenvolvimento Ósseo/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/metabolismo , Mutação com Perda de Função , Masculino , Camundongos Endogâmicos C57BL , Família Multigênica , Fatores de Transcrição/metabolismo
10.
Clin Immunol ; 230: 108820, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365017

RESUMO

BACKGROUND: Peanut oral immunotherapy (POIT) has provided desensitization to peanut allergic individuals. Limited immunological evaluation exists during the first 24-weeks of POIT. OBJECTIVE: Regulatory T-cells (Tregs) are antigen induced immunosuppressive T-cells important in establishing tolerance. Delineation of early immunologic changes contributing to the development of peanut desensitization would help clarify the mechanism of action in POIT. We performed single-cell RNA sequencing (scRNAseq) on Tregs in pediatric subjects undergoing POIT during the first 24-weeks of therapy to evaluate early immunological changes induced by POIT. METHODS: PBMC samples from peanut allergic subjects between 5 and 12 years of age enrolled in a Phase 1/2a POIT study were collected and analyzed at 0, 6, and 24-weeks after POIT initiation and samples were compared to healthy non-peanut allergic controls. Tregs were enriched from PBMCs and scRNAseq analysis performed. Cell Ranger 3.1.0 (10× Genomics) was utilized to identify cell clusters and differentially expressed genes, and results were analyzed with Seurat suite version 3.0.0. RESULTS: Gene analysis revealed 10 major clusters corresponding to different cell types observed to change during POIT when compared to the healthy, non-peanut-allergic state. scRNAseq analysis of Tregs revealed strong CD3G expression correlating with gdTregs. scRNAseq analysis of gdTregs revealed dynamic changes occurring within the first 6-weeks of treatment and cell frequencies of naïve and memory gdTregs at 24-weeks of treatment reducing to levels similar to healthy controls. Analysis of transcriptomic cell identity analysis using SingleR showed gene expression in gdTregs similar to healthy control after 24-weeks of POIT treatment. scRNAseq analysis revealed alterations in gene expression for memory and naïve gdTregs during this timeframe. Specifically, expression of OX40R (TNFRSF4), GITR (TNFRSF18), TGFB1, CTLA4, ISG20, CD69 were upregulated in memory gdTregs compared to naive gdTregs by 24-weeks of POIT, while IL7R and SELL were downregulated in memory gdTregs compared to naïve gdTregs. CONCLUSIONS: There are specific expression profiles of peripheral naïve and mature gdTreg cells in peanut allergic patients undergoing POIT in the first 24-weeks of treatment implicating pathways involved in maintenance of immune homeostasis. gdTreg cells may contribute to the tolerogenic effect of POIT within the first 24-weeks of POIT treatment. These findings suggest that gdTregs cells may be an early marker of desensitization in subjects undergoing POIT.


Assuntos
Arachis/imunologia , Dessensibilização Imunológica/métodos , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T , Hipersensibilidade a Amendoim/terapia , Linfócitos T Reguladores/imunologia , Administração Oral , Alérgenos/administração & dosagem , Criança , Pré-Escolar , Humanos , Memória Imunológica , Família Multigênica , Hipersensibilidade a Amendoim/genética , Hipersensibilidade a Amendoim/imunologia , RNA-Seq , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Análise de Célula Única , Fatores de Tempo , Transcriptoma
11.
BMC Plant Biol ; 21(1): 376, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399701

RESUMO

BACKGROUND: Glycolytic pathway is common in all plant organs, especially in oxygen-deficient tissues. Phosphofructokinase (PFK) is a rate-limiting enzyme in the glycolytic pathway and catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate. Cassava (M. esculenta) root is a huge storage organ with low amount of oxygen. However, less is known about the functions of PFK from M. esculenta (MePFK). We conducted a systematic analysis of MePFK genes to explore the function of the MePFK gene family under hypoxic stress. RESULTS: We identified 13 MePFK genes and characterised their sequence structure. The phylogenetic tree divided the 13 genes into two groups: nine were MePFKs and four were pyrophosphate-fructose-6-phosphate phosphotransferase (MePFPs). We confirmed by green fluorescent protein fusion protein expression that MePFK03 and MePFPA1 were localised in the chloroplast and cytoplasm, respectively. The expression profiles of the 13 MePFKs detected by quantitative reverse transcription polymerase chain reaction revealed that MePFK02, MePFK03, MePFPA1, MePFPB1 displayed higher expression in leaves, root and flower. The expression of MePFK03, MePFPA1 and MePFPB1 in tuber root increased gradually with plant growth. We confirmed that hypoxia occurred in the cassava root, and the concentration of oxygen was sharply decreasing from the outside to the inside root. The expression of MePFK03, MePFPA1 and MePFPB1 decreased with the decrease in the oxygen concentration in cassava root. Waterlogging stress treatment showed that the transcript level of PPi-dependent MePFP and MeSuSy were up-regulated remarkably and PPi-dependent glycolysis bypass was promoted. CONCLUSION: A systematic survey of phylogenetic relation, molecular characterisation, chromosomal and subcellular localisation and cis-element prediction of MePFKs were performed in cassava. The expression profiles of MePFKs in different development stages, organs and under waterlogging stress showed that MePFPA1 plays an important role during the growth and development of cassava. Combined with the transcriptional level of MeSuSy, we found that pyrophosphate (PPi)-dependent glycolysis bypass was promoted when cassava was under waterlogging stress. The results would provide insights for further studying the function of MePFKs under hypoxic stress.


Assuntos
Genoma de Planta , Manihot/enzimologia , Manihot/genética , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Cloroplastos/enzimologia , Mapeamento Cromossômico , Cromossomos de Plantas , Sequência Conservada , Citoplasma/enzimologia , Éxons , Flores/enzimologia , Íntrons , Família Multigênica , Oxigênio/metabolismo , Filogenia , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Transcriptoma
12.
BMC Ecol Evol ; 21(1): 154, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348652

RESUMO

BACKGROUND: Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. RESULTS: Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. CONCLUSIONS: The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods.


Assuntos
Evolução Molecular , Família Multigênica , Adaptação Fisiológica , Animais , Abelhas , Feminino , Genoma de Inseto/genética , Genômica , Insetos/genética , Família Multigênica/genética , Filogenia
13.
BMC Plant Biol ; 21(1): 360, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362300

RESUMO

BACKGROUND: Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. RESULTS: In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. CONCLUSIONS: The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Assuntos
Basidiomycota/patogenicidade , Ciclopentanos/metabolismo , Dendrobium/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Dendrobium/efeitos dos fármacos , Dendrobium/imunologia , Dendrobium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Transdução de Sinais/genética
14.
BMC Plant Biol ; 21(1): 400, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454435

RESUMO

BACKGROUNDS: Pomegranate is an excellent tree species with nutritional, medicinal, ornamental and ecological values. Studies have confirmed that SPL factors play an important role in floral transition and flower development. RESULTS: Used bioinformatics methods, 15 SPL (SQUAMOSA promoter-binding protein-like) genes were identified and analyzed from the 'Taishanhong' pomegranate (P. granatum L.) genome. Phylogenetic analysis showed that PgSPLs were divided into six subfamilies (G1 ~ G6). PgSPL promoter sequences contained multiple cis-acting elements associated with abiotic stress or hormonal response. Based on the transcriptome data, expression profiles of different tissues and different developmental stages showed that PgSPL genes had distinct temporal and spatial expression characteristics. The expression analysis of miR156 in small RNA sequencing results showed that miR156 negatively regulated the expression of target genes. qRT-PCR analysis showed that the expression levels of PgSPL2, PgSPL3, PgSPL6, PgSPL11 and PgSPL14 in leaves were significantly higher than those in buds and stems (p < 0.05). The expression levels of PgSPL5, PgSPL12 and PgSPL13 in flower buds were significantly higher than that in leaves and stems (p < 0.05). The full-length of coding sequence of PgSPL5 and PgSPL13 were obtained by homologous cloning technology. The full length of PgSPL5 is 1020 bp, and PgSPL13 is 489 bp, which encodes 339 and 162 amino acids, respectively. Further investigation revealed that PgSPL5 and PgSPL13 proteins were located in the nucleus. Exogenous plant growth regulator induction experiments showed that PgSPL5 was up-regulated in leaves and stems. PgSPL13 was up-regulated in leaves and down-regulated in stems. When sprayed with 6-BA, IBA and PP333 respectively, PgSPL5 and PgSPL13 were up-regulated most significantly at P2 (bud vertical diameter was 5.1 ~ 12.0 mm) stage of bisexual and functional male flowers. CONCLUSIONS: Our findings suggested that PgSPL2, PgSPL3, PgSPL6, PgSPL11 and PgSPL14 played roles in leaves development of pomegranate. PgSPL5, PgSPL12 and PgSPL13 played roles in pomegranate flower development. PgSPL5 and PgSPL13 were involved in the response process of different plant hormone signal transduction in pomegranate development. This study provided a robust basis for further functional analyses of SPL genes in pomegranate.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Romã (Fruta)/crescimento & desenvolvimento , Romã (Fruta)/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Análise de Sequência
15.
BMC Genomics ; 22(1): 632, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461821

RESUMO

BACKGROUND: As an important group of the multidrug efflux transporter family, the multidrug and toxic compound extrusion (MATE) family has a wide range of functions and is distributed in all kingdoms of living organisms. However, only two MATE genes in apple have been analyzed and genome-wide comprehensive analysis of MATE family is needed. RESULTS: In this study, a total of 66 MATE (MdMATE) candidates encoding putative MATE transporters were identified in the apple genome. These MdMATE genes were classified into four groups by phylogenetic analysis with MATE genes in Arabidopsis. Synteny analysis reveals that whole genome duplication (WGD) and segmental duplication events played a major role in the expansion of MATE gene family in apple. MdMATE genes show diverse expression patterns in different tissues/organs and developmental stages. Analysis of cis-regulatory elements in MdMATE promoter regions indicates that the function of MdMATE genes is mainly related to stress response. Besides, the changes of gene expression levels upon different pathogen infections reveal that MdMATE genes are involved in biotic stress response. CONCLUSIONS: In this work, we systematically identified MdMATE genes in apple genome using a set of bioinformatics approaches. Our comprehensive analysis provided valuable resources for improving disease resistance in apple and further functional characterization of MATE genes in other species.


Assuntos
Arabidopsis , Malus , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Malus/genética , Malus/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
BMC Genomics ; 22(1): 633, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461836

RESUMO

BACKGROUND: Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst development. Recently, CylC - the first predicted dimetal-carboxylate halogenase to be characterized - was shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. The study of CylC-like enzymes will provide insights into substrate scope, mechanism and catalytic partners, and will also enable engineering these biocatalysts for similar or additional C-H activating functions. Still, little is known regarding the diversity and distribution of these enzymes. RESULTS: In this study, we used both genome mining and PCR-based screening to explore the genetic diversity of CylC homologs and their distribution in bacteria. While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum Cyanobacteria. CONCLUSIONS: Our data show that dimetal-carboxylate halogenases are widely distributed throughout the Cyanobacteria phylum and that BGCs encoding CylC homologs are diverse and mostly uncharacterized. This work will help guide the search for new halogenating biocatalysts and natural product scaffolds.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Halogenação , Humanos , Família Multigênica , Recidiva Local de Neoplasia
17.
J Microbiol ; 59(9): 854-860, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34382147

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is an important zoonotic pathogen that places severe burdens on public health and animal husbandry. There are many pathogenic factors in E. coli. The type VI secretion system (T6SS) is a nano-microbial weapon that can assemble quickly and inject toxic effectors into recipient cells when danger is encountered. T6SSs are encoded in the genomes of approximately 25% of sequenced Gram-negative bacteria. When these bacteria come into contact with eukaryotic cells or prokaryotic microbes, the T6SS assembles and secretes associated effectors. In the porcine ExPEC strain PCN033, we identified four classic rearrangement hotspot (Rhs) genes. We determined the functions of the four Rhs proteins through mutant construction and protein expression. Animal infection experiments showed that the Δrhs-1CT, Δrhs-2CT, Δrhs-3CT, and Δrhs-4CT caused a significant decrease in the multiplication ability of PCN033 in vivo. Cell infection experiments showed that the Rhs protein is involved in anti-phagocytosis activities and bacterial adhesion and invasion abilities. The results of this study demonstrated that rhs1, rhs3, and rh4 plays an important role in the interaction between PCN033 and host cell. Rhs2 has contribution to cell and mice infection. This study helps to elucidate the pathogenic mechanism governing PCN033 and may help to establish a foundation for further research seeking to identify potential T6SS effectors.


Assuntos
Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Doenças dos Suínos/microbiologia , Animais , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/metabolismo , Feminino , Intestinos/microbiologia , Camundongos , Família Multigênica , Suínos
18.
BMC Plant Biol ; 21(1): 386, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416873

RESUMO

BACKGROUND: The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS: A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS: Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.


Assuntos
Adaptação Fisiológica/genética , Estudo de Associação Genômica Ampla , Genótipo , Gossypium/genética , Gossypium/fisiologia , Metais Pesados/toxicidade , Filogenia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Família Multigênica
19.
BMC Genomics ; 22(1): 589, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348651

RESUMO

BACKGROUND: The Botryosphaeriaceae are important plant pathogens, but also have the ability to establish asymptomatic infections that persist for extended periods in a latent state. In this study, we used comparative genome analyses to shed light on the genetic basis of the interactions of these fungi with their plant hosts. For this purpose, we characterised secreted hydrolytic enzymes, secondary metabolite biosynthetic gene clusters and general trends in genomic architecture using all available Botryosphaeriaceae genomes, and selected Dothideomycetes genomes. RESULTS: The Botryosphaeriaceae genomes were rich in carbohydrate-active enzymes (CAZymes), proteases, lipases and secondary metabolic biosynthetic gene clusters (BGCs) compared to other Dothideomycete genomes. The genomes of Botryosphaeria, Macrophomina, Lasiodiplodia and Neofusicoccum, in particular, had gene expansions of the major constituents of the secretome, notably CAZymes involved in plant cell wall degradation. The Botryosphaeriaceae genomes were shown to have moderate to high GC contents and most had low levels of repetitive DNA. The genomes were not compartmentalized based on gene and repeat densities, but genes of secreted enzymes were slightly more abundant in gene-sparse regions. CONCLUSION: The abundance of secreted hydrolytic enzymes and secondary metabolite BGCs in the genomes of Botryosphaeria, Macrophomina, Lasiodiplodia, and Neofusicoccum were similar to those in necrotrophic plant pathogens and some endophytes of woody plants. The results provide a foundation for comparative genomic analyses and hypotheses to explore the mechanisms underlying Botryosphaeriaceae host-plant interactions.


Assuntos
Ascomicetos , Ascomicetos/genética , Parede Celular , Endófitos , Família Multigênica , Filogenia , Plantas
20.
BMC Genomics ; 22(1): 603, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34362293

RESUMO

BACKGROUND: Alfalfa, the "queen of forage", is the most extensively cultivated forage legume in the world. The development and yield of alfalfa are seriously limited by abiotic stress. MADS-box transcription factors are one of the largest gene families and play a pivotal role in plant development and abiotic stress. However, little is known regarding the MADS-box transcription factors in autotetraploid cultivated alfalfa. RESULTS: In the present study, we identified 120 MsMADS-box genes in the alfalfa genome. Phylogenetic analysis indicated that 75 type-I MsMADS-box genes were classified into the Mα, Mß, and Mγ subgroups, and 45 type-II MsMADS-box genes were classified into 11 subgroups. The promoter region of MsMADS-box genes containing several hormone and stress related elements. Chromosomal location analysis revealed that 117 MsMADS-box genes were unevenly distributed on 32 chromosomes, and the remaining three genes were located on unmapped scaffolds. A total of nine pairs of segmental duplications and four groups of tandem duplications were found. Expression analysis showed that MsMADS-box genes were differentially expressed in various tissues and under abiotic stresses. qRT-PCR analysis revealed that the expression profiles of eight selected MsMADS-box genes were distinct under various stresses. CONCLUSIONS: In this study, MsMADS-box genes were identified in the cultivated alfalfa genome based on autotetraploid level, and further confirmed by Gene Ontology (GO) analysis, phylogenetic analysis, sequence features and expression analysis. Taken together, these findings will provide clues for further study of MsMADS-box functions and alfalfa molecular breeding. Our study is the first to systematically identify and characterize the MADS-box transcription factors in autotetraploid cultivated alfalfa (Medicago sativa L.), and eight MsMADS-box genes were significantly involved in response to various stresses.


Assuntos
Medicago sativa , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Medicago sativa/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...